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EXTENSION OF HOLDER'S INEQUALITY (I)

E.G. KWON

A continuous form of Holder's inequality is established and used to extend the
inequality of Chuan on the arithmetic-geometric mean inequality.

1.

Throughout we let X = (X,S,(i) and Y = (Y,T,v) be o--finite measure spaces
with positive measures fi and v. When we call / defined o n X x Y measurable it
refers to (<S x T)-measurable. /J. x v denotes the product measure of fi and v (see
[4, Chapter 7]). i1(/x) denotes the space of Lebesgue integrable (with respect to fi)
functions denned on X and Lp(fi), 0 < p < oo, denotes the space of those complex
measurable / defined on X for which | / | p £ Z1(^).

In Section 2 we establish a continuous form of Holder's inequality. In Section 3
we give an application of the inequality by generalising a result of Chuan [2] on the
arithmetic-geometric mean inequality. In Section 4, we give further extensions of the
result of Section 3.

2.

If 0 Sj x ^ 1, then Holder's inequality says that

(2.1) JYMy)'f2(y)1-xdv(y)

for all positive functions /i and fa of ^(y). It is known that (2.1) can be extended
to the case of a multiple product of functions (see, for example, [1, 3 and 5]), and even
to a countable product of functions (provided the product converges). In this section,
we generalise (2.1) to the following

THEOREM 1. (Continuous form of Holder's inequality). Let fi(X) = 1. Let
f(x,y) be a positive measurable function defined on X xY. Then

(2.2) J exp (J log / d^ dv < exp j j^ log Qf / d^ iy. J .
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Equality holds in (2.2) as a nonzero finite value if and only if

f(x,y) — g(x)h(y) almost everywhere fi x v

for a positive p-measurable function g with —oo < Jx log g dp, < oo and a positive
t/-measurable h with Jy hdv — 1.

PROOF: TO avoid the difficulty caused by measure zero sets and ff-finiteness of Y,

we shall use the well known fact that if fi(X) = 1 and F is a positive function in //1(/x)
then

(2.3) lim ( / Fpdp ) = exp [ /

and the convergence is monotone [4, p.74].

If v(Y) = 0 there is nothing to prove. Otherwise, let {Yn} be a measurable
sequence of subsets of Y such that

oo

Y1CY2C., \jYn = Y, v(Yn)<oo,
n=l

and let
min{ f(x,y),N} if y£YN

0 otherwise .

If (2.2) is valid for /N and YN instead of / and Y then (2.2) follows from the monotone
convergence theorem by taking the limit as JV" —* oo. Therefore we may assume that
0 < v{Y) < oo and / G Lx{p x v). Now, setting F{x) = f(x,y) in (2.3), we have

i/p

(2.4)

almost everywhere dv. On integrating both sides of (2.4) with respect to dv, we obtain

J exp Q£ log f(x,y) dfi(x)^ du(y) = J^ hm ^ f(x,y)pd^x)^ du(y).

Since ( / x /(z,j/)pd/x(«)) p is decreasing as p —» 0, by the monotone convergence
theorem this last term equals

(2.5) hmi/ ( / f(x,y)"d^x)) "dv(y).
p-^ojy \JX J
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On the other hand, if we use the continuous form of Minkowski's inequality, we have

(2.6) J ( J y ' [J ( f y } '
provided 0 < p ^ 1. Taking the limit p -> 0 on both sides of (2.6) and using (2.3)
once more, we bound (2.5) by

) ) •exp j j^log (Jf(x,y)Mv)) M*
This proves (2.2).

If
/(*>!/) = 9{x)h(y) almost everywhere fi x v

for some positive measurable functions g and h with —oo<Jx log g dfi < oo and
JY h dv — 1 then it is not difficult to see that equality holds in (2.2) as a nonzero finite
value. Conversely, suppose that equality holds in (2.2) as a nonzero finite value. Then

(2.7)

Since Jensen's inequahty and Fubini's inequahty tell us that

p.8)

to have (2.7) we should have equality in (2.8):

Hence the inner integral of (2.9) is zero almost everywhere [u], so that

———— = constant function of x := h(y)
JyfdV

almost everywhere x £ X once y 6 Y is fixed [«/]-almost everywhere. If we set Jy fdv =
g(x) then g is positive /x-measurable (see [4, Theorem 7.8]) and —oo < Jx log gdfi <
oo. Also, h is positive ^-measurable. Therefore

f(x,y) = g(x)h(y) almost everhwhere fi x v

with g, h positive measurable, Jyhdu = 1 and — oo < Jxlog gdfi < oo. This
completes the proof. D

If we take
X = {1,2}, f(x,y) = fx(y), x G X,

and

<*A* = (<X{i} + (1 - 0X{2}) dm,

dm the counting measure, X{.) the corresponding characteristic functions, then (2.2)
reduces to (2.1).
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3.

Concerning the arithmetic-geometric mean inequality, Chuan [2] inserted a contin-
uum of additional terms between the two sides of the inequality as follows.

THEOREM A. If n is a natural number, a > 0, a, > 0, q, > 0 (j — l , . . . , n ) ,

and qi + ... + qn = 1

(3.1)

Our result in. this section is the following generalisation of Theorem A:

THEOREM 2 . If s > 0, fi(X) = 1, and / is a positive function of £*(/*), then

(3.2) Gxf^{s I exp ( / log(j/ + /(x)) " 1 dfi(x) ) dy > ^Axf-
I Jo \Jx / )

Either of the equalities in (3.2) holds if and only if f(x) is constant almost everywhere

Here

(J log f(x)dfx{x)\

and

Axf= I f{x
Jx

are respectively the geometric mean and the arithmetic mean of / over X.

PROOF: Besides using Theorem 1, our proof is modelled from that of Theorem A
in [2]. By Jensen's inequality

exp ( / log (y + /(as)) dfi(x)) ^ f (y + /(as)) dp{x) =y + Axf
\Jx J Jx

for all y > 0. Thus for s > 0

(3.3)

{ ( f M ~'~1 f°°

exp I / log (y + f(x)) dfi(x)}} dy ^ / (y +
\Jx ) J Jo

(3.3) proves the second inequality of (3.2).

https://doi.org/10.1017/S0004972700014192 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014192


[5] Holder's inequality 373

To prove the first inequality of (3.2), apply Theorem 1 to get

j T jexp ^ log („ + /(*)) d^x)j J ' dy

< exp { / log ( / " ( »

= exp ( j ^ log-/(*)

= iexp Qf̂ log f(x)M*)) ' = \(Gxf)-',

which is the desired result.
Next, in order to have equality in either one of the inequalities of (3.2), we should

have equality either in (3.3) or in (3.4). By considering the equality case of Jensen's
inequality and that of (2.2) as stated in Theorem 1, we conclude that / is constant
almost everywhere \p]. The proof is complete. u

4.

Let's denote, for positive \i-measurable function / ,

Mpf = Mp(f, X) = Qf )

if 0 < p < oo and

M0/ = exp Q^ log/

Note that Mj(/) = Axf and Mo(/) = Gxf provided fi(X) = 1. Our goal in this
section is to improve (3.2) as follows:

THEOREM 3 . Suppose a > 0, I*(X) — 1, and / is positive /i-measurable. If
0 < p < q ^ 1 and if f € Ll{p) then

(41) Mof * { a I ° ° e x p ( X l o g

and
(4.2)

f too f f N(-»-D/P YXI'

I * Jo \Jx ^ + fix))PMx)J dy f
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If 1 ^ q ^ p <oo and if f G Lp(/i) then we iave (4.2) with both inequalities reversed.

PROOF: Suppose that 0 < p < q ^ 1. The left side inequality of (4.1) follows from
(3.2), and the right side inequality of (4.1) follows from (4.2) via the inequality

^°°exp Qf log (y + /(*))—^(s)) dj/J

W ^jx(y + f(x))pd^x)J dy\ .

The last inequality is obvious by the convexity of exp x.
Now we prove (4.2). It follows from Minkowski's inequality that

(4.3) ( ^ )

Hence
(~«-l)/p

Therefore

(4.4) | a y yjy + f(x))pd^x)j dy

On the other hand, since 0 < p < q < 1 and /i(X) = 1, we have

(4.5)

Hence it follows that

i'/o {Jjy + fWM*)) dy\
(4.6)

Now (4.2) follows from (4.4) and (4.6). The proof of the other half, that is, of the case
1 ^ q ^ P < oo, proceeds exactly the same way by reversing the inequahties in (4.3),
(4.4), (4.5) and (4.6). D
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