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Abstract. In response to a question of Newhouse, we show that in many cases an
Anosov automorphism can be uniformly approximated by a Smale diffeomorphism
of the same topological entropy. We conjecture this can be done whenever the
automorphism is sufficiently hyperbolic.

A three-dimensional example is given that suggests this approximation is not
always possible.

Introduction
We will study and partly solve a problem of S. Newhouse concerning the geometric
realization of the symbolic dynamics of an Anosov automorphism. Our results give
many non-trivial new examples of isotopy classes that contain simplest representa-
tives in the sense of Shub [10].

The two best understood classes of structurally stable diffeomorphisms are the
Anosov automorphisms and the Smale diffeomorphisms, denned as follows. Let N
be a simply connected nilpotent Lie group, T a discrete cocompact subgroup and
a a Lie group automorphism of N that preserves T. The induced map a :N/Y^>
is an automorphism of the nilmanifold N/T. If the differential Da{e) of a at the
identity e e N is hyperbolic we call d Anosov. A Smale diffeomorphism is a
diffeomorphism / of a closed manifold whose chain-recurrent set R (/) is hyperbolic
and 0-dimensional. Amongst structurally stable diffeomorphisms these lie at
opposite extremes in that R (d) has codimension 0 and R (/) has dimension 0.

By well-known results of Sinai and Bowen ([12], [1]) each of these systems is
described by symbolic dynamics. Sinai showed d is a factor of a subshift of finite
type of the same topological entropy (we will call systems of equal entropy isen-
tropic). Bowen showed that f\R{f) is conjugate to a subshift of finite type.
Newhouse asked for a direct connection between these two classes of dynamical
systems. Question: Can an Anosov automorphism d be deformed by a C°-small
isotopy to an isentropic Smale diffeomorphism /? If it can we say that d has
isentropic Smale approximations (ISA's). By a result of Franks [4], there is a
semiconjugacy from / onto d, so that R(f) gives symbolic dynamics for d. Shub
used this semiconjugacy to show that an ISA for d is a simplest diffeomorphism,
meaning that it is Smale and its entropy is as small as possible in its isotopy class [10].
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174 D. Fried

Some motivation for this problem arises from the case N/Y = R2/Z2. Then one
may apply Smale's DA construction twice to a to produce an ISA /. So what is
needed is an alternative to the DA construction in higher dimensions.

When a had no real eigenvalues it was previously unknown whether there were
any isentropic maps isotopic to a besides other Anosov diffeomorphisms. Moreover
there are ergodic (non-hyperbolic) toral automorphisms that do not have ISA's
[6]. But we will produce an Anosov automorphism without real eigenvalues that
does admit ISA's. We use the fitted diffeomorphisms of Shub & Sullivan [11]. This
and our other examples are evidence for the conjecture of Shub that the lowest
entropy amongst structurally stable diffeomorphisms in an isotopy class arises for
a fitted diffeomorphism [10].

These fitted diffeomorphisms are Smale diffeomorphisms that preserve the skeleta
%€i of some handle decomposition $f (for full definitions and proofs, see [5], [11]).
Given some ordering and orientations for the i- handles, a fitted diffeomorphism
determines two matrices At(f) and G,(/) that discretize the topology and dynamics
of/ respectively. Here Gt(f) is the geometric intersection matrix: its (/, fc)'th entry
measures how many times the y'th transverse disk meets the image under / of the
Ar'th core disk. A,(/) is the algebraic intersection matrix that counts these intersec-
tions with weights +1 or —1 according to the orientations. Writing |A,-(/)| for the
non-negative matrix whose entries are the absolute values of those of At(f), we
have the basic inequality (holding entry by entry) |/4,(/)|<G,(/) [11].

It is important for our purposes not only to construct fitted / 's but to compute
the topological entropy h(f). For a linear endomorphism g of a finite dimensional
real vector space (or a matrix) we let

L(£) = log(sup|A|)

where A varies over the eigenvalues of £ by the logarithmic spectral radius of £
For a fitted /,

h{f) = sup L(Gt{f))

[11].
A somewhat similar formula for Anosov automorphisms is due to Bowen. If

c = J V ° c A r 1 c • -cNk=N,

with Ni+1/N' the centre of N/N1 and Ni+1 # N1 for all i, is the ascending central
series for N then N/NT is a nilmanifold that fibres over the nilmanifold N/Ni+1T
with fibre a torus Af'+Ir/AfT. The automorphism a induces linear transformations

Then h(d) = ££(« , ) [2].
The contents of this paper are as follows. In § 1 we simplify the Newhouse

problem and reduce it to a special case of Shub's conjecture. Namely we show that
it suffices to find an isentropic Smale diffeomorphism in the isotopy class of each
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irreducible Anosov toral automorphism. Also we show that the characteristic
polynomial (not the integral conjugacy class) of a is all that really matters here.

In § 2 we set up our tools for the isentropic fitting of toral automorphisms. We
use these in § 2 to redo the dimension two case and in § 3 for our new results in
dimensions three and four. Finally we give in § 4 an Anosov automorphism of T3

for which the methods of § 2 cannot give an isentropic Smale map. These examples
lead us to conjecture that Newhouse's question has an affirmative answer for
sufficiently hyperbolic automorphisms, as follows.

CONJECTURE. There is a number k{d) depending only on the dimension d of N/Y
such that an Anosov automorphism a :N/Y^> has ISA's whenever every eigenvalue
A of Da (e) satisfies |log \\\>k(d).

This is shown to hold for d = 3 provided stable and unstable orientations are
preserved (theorem 2).

We remark that Newhouse's question is interesting for other Axiom A systems
as well. Since transitive Anosov diffeomorphisms have the largest possible non-
wandering sets, this would seem to be the most difficult case. As all known Anosov
diffeomorphisms are finitely covered by Anosov diffeomorphisms of nilmanifolds
and the latter are topologically conjugate to Anosov automorphisms [8] the question
as posed above is of special importance.

We thank Sheldon Newhouse for prompting this research.

1. Some simplifications
In this section we show that Newhouse's question reduces to the case of minimal
toral automorphisms. We also show that if two minimal toral automorphisms have
the same characteristic polynomial then one admits ISA's if and only if the other
does. Both arguments rely on constructing fibre preserving isotopies of the total
space of a fibration.

Let G be a Lie group and /? eAut(G). Recall that if F, F' admit transitive
G- actions then a diffeomorphism h:F^F' is an affine automorphism with linear
part /? if for all x e F and geG,

= (3(g)h(x).

We study families of affine automorphisms of tori in the next lemma.

LEMMA 1. Suppose IT :E -*B is a smooth principal Tn bundle over a closed manifold
B. Letf:E+3 be a diffeomorphism such that

f(gx) = /3(g)f(x)

for some j8eAut(T") and all x&E, g e T . Let f:B^> be the induced
diffeomorphism.

If (3 is isotopic to a Smale diffeomorphism y and if f is Smale then there is a
C°-small isotopy fs from f0=fto a Smale f\ such that each fs induces f and
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Proof. As /?(/)<= B is O-dimensional, we can find a compact submanifold V<^B
of codimension 0 such that

*(/)<= int(V)

and each component of V is small. Thus the given bundle is trivial over V and we
identify ir~\V) with V x T".

~l V be a neighbourhood of /? (/). Then on W x l " we have

for some smooth $ : W -» 7"1.
Now choose a large positive integer q. Restricting W if necessary, we deform 4>

to </»: W -* T" such that qt{/ =0 by a homotopy of size proportional to 1/q. We
identify q with the covering map q:Tn^2 that sends g to qg. We lift our isotopy
from /3 to y under the covering q to an isotopy from /3 (note that /3 commutes
with q) to some lift yq of -y. This new isotopy also has size proportional to l/q.

Combining the new isotopy of /3 with the homotopy of <f> gives a small isotopy
from /ITT"1 W to fx where

As all the maps in this isotopy induce / over W, we can extend fs to a small
isotopy of E from / to / \ keeping this property.

It follows that

Also

(/(w), qyq(g) + <A(wO) = (/(w), y(qg) +q(A(w)) = (/(w),

Thus under the finite covering

q=idxq:WxTn7=>,f1

is the lift of / x y. As the latter map is Smale, it follows easily that/i is Smale. Finally

fc(/i) = ft(/i|K(/i)) by [3]
= h(f xy\R(f)xR(y)) as q is a finite cover

= A(/lK(/)) + /i(y|K(y)) by [3]

= h(f) + h(y) by [3] again. •

Now suppose a :N/T^> is an Anosov automorphism. For each / we choose a
filtration of maximal length of the torus N'+Ir/NT by invariant tori. This gives
an a-invariant filtration

with Gi simply connected for all i such that each quotient torus GiY/Gi-iT has an
induced Anosov automorphism a*. We call a, the irreducible parts of a (although
they depend on the choice of filtration as well). Then we have

THEOREM 1. Each irreducible part is an irreducible Anosov toral automorphism. If
each irreducible part can be isotoped to an isentropic Smale diffeomorphism then a
admits ISA's.
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Proof. The first statement is clear, as the maximality of our filtration implies that
the linear maps

have irreducible characteristic polynomial over the rationals.
The second statement is shown by induction on the length of the filtration. If

the Anosov automorphism

induced by a admits ISA's, we show that /3;-i also does. As /3m_i is an irreducible
part and /So = d, this will prove the theorem.

We regard E'=N/Y as a bundle over B = N/Gt with fibre F' = GiY/Y, all three
spaces being nilmanifolds. Let y be the restriction of a to Gt. Then K is a
diffeomorphism of E' that satisfies

= y(g)d{x), xeE',geGi.

Hence d preserves fibres, acts on each fibre by an affine automorphism with linear
part y and induces 0t on B.

Let / : B p b e a n ISA for 0h given by our inductive hypothesis. We can lift the
small isotopy from /3, to / to an isotopy F, from d = Fo to some F\ so that

F,(gx) = y(g)F(x)

for all t e [0, l ] , j ce£ ,ge G,.
It follows that F, induces an isotopy F, on N/Gi-iY. Denoting the latter by E, it

is a principal torus bundle over B.Iff = Fi then f:E^> induces f:B^=> and satisfies
the conditions of the lemma. So we can make a small isotopy from / to a Smale
diffeomorphism f\ with

where S is an ISA for the irreducible part dj. Thus

so /i is an ISA for /3,_i. •

We now show

LEMMA 2. Suppose (i, y € Gl (n, Z) both have characteristic polynomialp(x) and that
p(x) is irreducible over the rationals. If 0 can be isotoped to an isentropic Smale
diffeomorphism then so can y.

Proof. As p(x) is irreducible both /? and y are similar over the rationals to the
companion matrix of p(x). So we may regard /8 and y as being restrictions to
invariant lattices Lp, Ly of rational points in an n- dimensional real vector space V
of a linear map P: V^>. The maps /3, y are respectively the action induced by P
on V/Le, V/Ly. Choose q a positive integer so that qLy c Le. Then multiplication
by q induces a covering V/Ly -» V/Lp. We lift the isotopy from /3 to fp (an isentropic
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Smale diffeomorphism) to an isotopy from y to some Smale diffeomorphism fy.
We have

so fy and y are isentropic. D

In summary, we have shown that in order to answer Newhouse's question it suffices
to find for each monic irreducible polynomial p(x)eZ[x] with p(0) = ± l and no
roots on 5 1 a linear toral automorphism d with p(x) as characteristic polynomial
and an isentropic Smale diffeomorphism isotopic to d. The same holds for our
conjecture since the eigenvalues of Da (e) are just the eigenvalues of the irreducible
parts of d.

2. Fitted isentropic maps
To find isentropic approximations to maps on tori, we will construct diffeomorphisms
that are fitted relative to a standard handle decomposition 3€ of T", defined below.

There is a cell complex structure on U with one 0-cell {m} and one l-cell [m, m +1]
for each meZ. The Cartesian nth power defines a cell complex on R" that is
invariant under Z". The associated cell complex on T" = R"/Z" has one p-cell c(I)
for each p element subset / <= { 1 , . . . , n}. If / is the complement of / then

c(I) = {(»!,..., oB)eR"heZ for all/e J}/Z".

Let Up be the e{p) neighbourhood of the p-skeleton where the e(p) decrease
rapidly, p = 0 , 1 , . . . , n. Then

U, -int( \JUq)
\ <7<p /

is the union of Q disjoint p-handles, defining the standard handle decomposition
at OI I .

We assume some familiarity with the notion of fitted diffeomorphism as summar-
ized in the introduction. We have the following criterion for a fitting of a toral
automorphism relative to 5if to be isentropic.

LEMMA 3. Suppose that f:T"^> is fitted for 3€ and isotopic to d:Tn <=>. Let u be the
number of eigenvalues of modulus > 1 for a. Then f and d are isentropic

»L(Gp(/))<L(A"a)

for all p = 1 , . . . , n — 1.
If this holds then L{Gu(f)) = L(Au(f)). If also Aua is irreducible then Gu(f) and

±-^u(f) have the same characteristic polynomial and Gu(f) = \Au(f)\.

Proof. First we observe that Ap(f) represents the action of / on p'th homology.
This holds because 5if has only as many p-handles as the rank of HP{T"; Z).

Secondly, the cup product structure of H*{Tn; Z) gives

H"(Tn;Z) = ApH1(Tn;Z).

Dualizing, Ap(f) is a matrix representation for A"a and so

L(Ap(/)) = L(Apa).
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As|Ap(/)|«Gp(/),wehave

L(Apa)<L(Gp(/))

for all p. Now we use the formulae for h(a) and h(f) from the introduction to
obtain our first two conclusions.

Let Ai , . . . , Au be the eigenvalues of a of modulus >1 . Then Ai • • • Au = A is the
eigenvalue of A "a of largest modulus. Thus

L(Gu(f)) = log\\\,

so Perron-Frobenius theory implies |A| is an eigenvalue of Gu(f). But A eU since
unstable eigenvalues come in conjugate pairs. Thus ±Au(f) and Gu(f) have a
common eigenvalue. If Aua is irreducible, then these matrices must have the same
characteristic polynomial.

Finally since A "a is irreducible over the rationals, |AU(/)| is irreducible as a
non-negative matrix. Since

L{Gu{f))=L(\Au(f)\),
we must have

Gu{f) = \Au{f)\. •
The preceding lemma shows that an isentropic fitting relative to the standard handle
decomposition is severely constrained in the unstable dimension. The proof also
shows that A0(f) is the exterior power A"A1(f) if one properly orders and orients
the p- handles of W.

We will construct fitted diffeomorphisms by composing the simple ones of the
following lemma.

LEMMA 4. Let y be an elementary matrix with diagonal entries 1 and one off-diagonal
entry ± 1 other than 0. Then y can be fitted for '% with \AP \ = Gp.

The same holds for y a signed permutation matrix.

Proof. In the first case, we can reorder and reorient our basis so that

y = 8xl,8 = (l j).

Fit 5, as in figure 1, by spreading the shearing in a non-linear way. Crossing with
the identity map and perturbing gives the desired fitting for y.

FIGURE 1. Fitting 5.
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In the second case, we can approximate y by a fitted map with A i = y.
In each case, the geometric intersection matrices only have entries 0 and 1, so

Gp = |Ap|forallp. •

To illustrate the use of these lemmas, let n = 2. Let

I 1 I 0 /0 1\
= (i oJ' a n d

i-\ 0\

0 - 1 /

We fit each yf by /, so that G\(f) = ±y,, as in lemma 4.
Let a be an integer and b = ± 1 and suppose that

has no roots on S1. If b = +1 then |a |>3 and if b = - 1 then a ^ 0 . Let a = ±\ be
the sign of a. It b = - 1 we let a =oT3yia| and if 6 = +1 we let a = o-y2y'ia'~2. It is
easy to see that the characteristic polynomial of a is p(x).

We define a fitted diffeomorphism/ isotopic to d by replacing yf by/, throughout.
As geometric intersection matrices multiply under composition, G\{f) = ±a so that
/ and d are isentropic (lemma 3). By § 1, all Anosov automorphisms of T2 have
ISA's. So we have recovered, without use of the DA construction, the results for
T2 mentioned in the introduction.

3. Results in dimensions three and four
We now present our examples on T3 and T4.

THEOREM 2. There is a constant k>0 so that any automorphism d of T3 that
preserves the orientations of its stable and unstable manifolds and that has no
eigenvalues in the annulus

e-k<\z\<ek

admits ISA's.

Proof. By § 1, it will suffice to show that some Anosov automorphism /3 with the
same characteristic polynomial

admits an isentropic fitting/ relative to the standard handle decomposition of T3.
As then /"* is fitted for the dual handle decomposition, we may suppose by passing
to inverses that u = 1.

Thus p(x) has one root A > 0 outside the unit disk and two roots jit, v inside. We
have A =eh » 1 and \fi\, \v\« 1. As A = A +/x +v and B = A/x +kv+fiv, we have
A » l and |B/A |« l .

First suppose B < 0. Then we take

0 =
1

0
0

-B
1

A

0
0
1

1

0
0

0
1

0

1

0

0

0
1

0

1

0
1

1

0

0

0
1
0

0
1
1

It is easy to see that (3 has p (x) as characteristic polynomial. Fit each factor using
lemma 4 and compose to obtain a fitted diffeomorphism / isotopic to /3 with
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Gi{f) = (3. Taking inverse transposes of the factors, then absolute values and
multiplying gives G2(f). One can check that the characteristic polynomial q(x) of
G2 is x3+Bx2-Ax-l. We have q{l)<0 so q has exactly one root £e(l,oo). As

q(\) = (A+B){\2-\)>0,A>£.

Thus h(f) = log A = /t(/3) so we are done in this case.
Thus we may suppose B > 0. Let v =A-\, C = v-B>0 and

0
1

0

0
0
1

1

0
0

1

0
0

1
1
0

0

0
1

1

0
0

0
1
0

0
1
1

1

0
0

1
1
0

0
0
1

0
1

0

0

V

1

1

c
1

this time. Using lemma 4 on each factor, we produce a fitted diffeomorphism / in
the isotopy class of /?. As above, one shows that the characteristic polynomial of
G2{f) is

q(x)=xi-Bx2-Ax-\,

and that the roots of q(x) have modulus <A. As G\(f) = (3 has p(x) as characteristic
polynomial, / and /3 are isentropic. •

We obtain the following partial solution to Newhouse's problem in dimension three.

COROLLARY. For any Anosov diffeomorphism A in dimension three, some iterate
of A admits ISA's.

Proof. By [9] A is conjugate to an automorphism of T3. The preceding theorem
then applies to some iterate. •

We now give an Anosov automorphism of T4 with no real eigenvalues that has an
isentropic fitting and so, by § 1, admits ISA's.

Let vi,... ,v4 be the standard basis for R4. Let TT be the signed permutation
matrix sending

Let /3 fix v2, v-i, u4 and let

/3(l>i) = V i + l)2 ~V4.

Then let a = (3 v be the companion matrix of

p(x) = x*-dx3+dx-l.

For the basis vt A V» i <;, of A2R4 the matrices A2TT, A2/3 are non-negative. Fitting
# and J3 in the obvious way defines a fitting / for a.

Computing Gx(f) and G3(f) we find that they have the same characteristic
polynomial

As G2(f) = A2(a), its eigenvalues are the products of the pairs of distinct eigenvalues
of a, i.e. of distinct roots of p(x).

If x = A is a root of p(x) then y = A -A"1 is a root of r(y) = y2-dy +2. If we
choose d = 2 then r has 1 + / as a root. Thus the roots of p(x) are A, A, A"1, A"1

where |A | > 1 and A - A ~' = 1 + i. The largest positive root of q(t) is 14- V2, and one

https://doi.org/10.1017/S0143385700001498 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001498


182 D. Fried

can easily show A A > 1 + \ll. Thus our example is the companion matrix of x 4 - 2x3 +
2x + l.

4. A possible counterexample
We present here an isotopy class on T3 for which the methods of the preceding
sections cannot produce an isentropic fitting. This is possibly a counterexample to
the conjecture of Shub mentioned in the introduction.

A handle structure on a connected closed 3-manifold determines a Heegard
splitting into the 0- and 1-handles on the one hand and the 2- and 3-handles on
the other. We call the genus of these handlebodies the genus of the handle
decomposition. For T3 the least genus of a handle decomposition is clearly 3: three
1-handles are needed to generate Hi and the standard handle structure has genus
3. We present an isotopy class that has no fitted representative for a genus 3 handle
decomposition of least entropy.

Our example was suggested by a remarkable theorem [13]: If a monic integral
polynomial is not reciprocal then it has roots whose product has modulus >0 where
0 is the positive root of p(x) = x3-x - 1 . In our setting, this means that a toral
automorphism with p(x) as characteristic polynomial has very low entropy and so
ought to be difficult to fit isentropically. Indeed,

THEOREM 3. / / a:T3+z has characteristic polynomial p(x) as above, then any
diffeomorphism f homotopic to a that is fitted for a genus 3-handle decomposition
of T3 satisfies h(f)>h(K).

Proof. Suppose h (/) < h (a). We show that the 1-handles can be ordered and oriented
so A =Ai(f) is the companion matrix of p(x). It is easy to see then in this case
A2A contradicts lemma 3.

Let G = Giif). Lemma 3 implies G = |A| has the same characteristic polynomial
as A, namely p(x). As G has trace 0 we find A,, = 0 for all /. Also G and A have
determinant 1 so there must be an off-diagonal zero entry. Reordering the basis,
we may suppose the A2i = 0. We then have A23A31Al2 = 1 and by reorienting the
1-handles we may take these three entries to be +1. Taking the remaining coefficient
of the characteristic polynomial into account, we find that Ai3, A32 are 0 and 1 in
some order. Now reorder the basis if needed. •

It would be most interesting to know if any isentropic fitting of d exists. Mailer's
thesis should be helpful here [7]. By theorem 2 all sufficiently high iterates of d
have ISA's. In any case, the preceding theorem and the ergodic counterexamples
of [6] explain why we made our conjecture only for sufficiently hyperbolic
automorphisms.

This search was partially supported by the National Science Foundation.
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