
Canad. Math. Bull. Vol. 60 (3), 2017 pp. 510–521
http://dx.doi.org/10.4153/CMB-2016-057-0
©Canadian Mathematical Society 2016

Convex-normal (Pairs of) Polytopes

Christian Haase and Jan Hofmann

Abstract. In 2012, Gubeladze (Adv. Math. 2012) introduced the notion of k-convex-normal poly-
topes to show that integral polytopes all of whose edges are longer than 4d(d + 1) have the integer
decomposition property. In the ûrst part of this paper we show that for lattice polytopes there is
no diòerence between k- and (k + 1)-convex-normality (for k ≥ 3) and improve the bound to
2d(d + 1). In the second part we extend the deûnition to pairs of polytopes. Given two rational
polytopes P and Q, where the normal fan of P is a reûnement of the normal fan of Q, if every
edge eP of P is at least d times as long as the corresponding face (edge or vertex) eQ of Q, then
(P + Q) ∩ Zd = (P ∩ Zd) + (Q ∩ Zd).

1 Introduction

A polytope P has the integer decomposition property (IDP) if for every k ∈ N the
dilation kP = P + ⋅ ⋅ ⋅ + P of P decomposes on the level of lattice points: kP ∩ Zd =
(P ∩ Zd) + ⋅ ⋅ ⋅ + (P ∩ Zd). Polytopes with the IDP turn up in many ûelds of math-
ematics. _e name IDP comes from integer programming. In algebraic geometry
these polytopes correspond to projectively normal embeddings of toric varieties. In
commutative algebra they are called integrally closed.

So it is natural to ask which polytopes have the IDP._ere has been a lot of research
concerning this question in recent years. One way to prove the IDP for a given poly-
tope is to cover it with simpler polytopes known to have the IDP. _e ûrst approach
would be to use the easiest IDP polytopes, namely unimodular simplicies, and try
to show that every polytope with the IDP can be triangulated into unimodular sim-
plices. _is does not work in general; in fact, it already fails in dimension 3 [KS03].
Relaxing triangulations to coverings with unimodular simplices, there is a famous 5-
dimensional polytope with the IDP that does not have such a covering [BG99]. On
the other hand, one very nice positive result is that given a lattice polytope P, if all
edge lengths of P (with respect to the lattice) have a common factor c ≥ d − 1, then P
has the IDP [EW91,LTZ93,BGT97].

_e following conjecture, proposed during a workshop [HHM07], suggests that
this is also true (maybe with a higher bound) in a more generalized setting, where the
edge-lengths can be independent.

Conjecture Simple lattice polytopes with long edges have the integer decomposition
property, where long means some invariant, uniform in the dimension.

_is conjecture was then proved by Gubeladze in the following precise form.
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_eorem ([Gub12]) Let P be a lattice polytope of dimension d. If every edge of P has
lattice length ≥ 4d(d + 1), then P has the integer decomposition property.

He proves this theorem by ûrst introducing the notion of k-convex-normality and
proving that a polytope is k-convex-normal if every edge has lattice length≥ kd(d+1).
_en he shows that 4-convex-normal lattice polytopes have the IDP.

In the ûrst part of this paper we further examine k-convex-normal polytopes and
show that if P is a lattice polytope and k-convex-normal for some k ≥ 3, then P is
also m-convex-normal for all m ≥ 2 (_eorem 2.5). _e lemma used to prove this
theorem also allows us to improve Gubeladze’s bound to 2d(d + 1) (Corollary 2.7).

In the second part of the paper we extend the notion of convex-normal polytopes
to pairs of polytopes. We show that given two polytopes P andQ, the map (Q∩Zd)×
(P ∩Zd) → (Q + P) ∩Zd given by (q, p) ↦ q + p is surjective if the normal fan of P
is a reûnement of the normal fan of Q and every edge of P is at least d times as long
as its corresponding face (edge or vertex) in Q (_eorem 4.2).

2 Convex-normality Revisited

Let P ⊆ Rd be a lattice polytope. _en P has the integer decomposition property (IDP),
if for all k ∈ N and all z ∈ kP ∩Zd , there exist x1 , . . . , xk ∈ P ∩Zd such that

z = x1 + ⋅ ⋅ ⋅ + xk .

Every one or two dimensional lattice polytope has the integer decomposition prop-
erty. In dimension three, however, simplices do not need to posses the IDP.
For example P = conv{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} does not have the IDP

as (1, 1, 1) ∈ 2P is not the sum of two lattice points in P.
Given a rational polytope Q with vertex set vert(Q) we set

G(Q) ∶= ⋃
v∈vert(Q)

(v +Zd) ∩ Q;

that is, we base the lattice in one vertex a�er the other and take the union of those
shi�ed lattices inside Q. Note that if Q is a lattice polytope, then G(Q) = Q ∩Zd .
FollowingGubeladze, we call a rational polytope P ⊆ Rd k-convex-normal for some

k ∈ Q, if for all rational c ∈ [2, k]:

(2.1) cP = G((c − 1)P) + P.

Observe that the inclusion ⊇ is always true.

Example 2.1 In Figure 1, where the polytope Q is conv{(0, 0), ( 3
2 , 0), (0,

3
2 )} we

get

G(Q) = {(0, 0), (1, 0), (0, 1), ( 3
2 , 0) , (

1
2 , 0) , (

1
2 , 1) , (0,

3
2) , (0,

1
2) , ( 1,

1
2)} .

_e shapes in the ûgures encode which vertex produced the base point for the
corresponding copy of P and we can see that Q is 2-convex-normal.
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(a) Q (b) Q with G(Q) (c) G(Q) + Q = 2Q

Figure 1. A 2-convex-normal polytope.

(a) P with G(P) (b) G(P) + P /= 2P

Figure 2. A polytope that is not 2-convex-normal.

Example 2.2 An easy example of a polytope which is not even 2-convex-normal
is the 2-dimensional standard simplex P = conv{(0, 0), (1, 0), (0, 1)} as shown in
Figure 2.

Our ûrst lemmahighlights a special behavior ofG(rP)when P is a lattice polytope.

Lemma 2.3 Let P be a lattice polytope and r ∈ Q>0. _en

G(rP) +G(P) ⊆ G((r + 1)P).

Proof Let x = rv + u ∈ G(rP) and y = w + u′ ∈ G(P) with v ,w ∈ vert(P) and
u, u′ , v ,w ∈ Zd . As x ∈ rP and y ∈ P it follows that z = x + y ∈ (r + 1)P and also

z = x + y = rv + u +w + u′ = (r + 1)v + (w − v + u + u′) ∈ vert((r + 1)P) +Zd ,
so z ∈ G((r + 1)P).

_e other inclusion “⊇” does not hold. In fact, G(rP)+G(P) ⊇ G((r + 1)P) holds
for all integral r if and only if P has the integer decomposition property. Now we can
prove themain lemma of this section, concerning equation (2.1), which P must satisfy
to be k-convex-normal.
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Lemma 2.4 Let P be a 2-convex-normal lattice polytope and c > 2. _en

G((c − 2)P) + P = (c − 1)P implies G((c − 1)P) + P = cP.

Proof G((c − 1)P) + P ⊆ cP is always true, hence we only have to show the other
direction cP ⊆ G((c − 1)P) + P:

cP = (c − 1)P + P = (G((c − 2)P) + P) + P = G((c − 2)P) + 2P,

but P is 2-convex-normal so that 2P = G(P) + P and hence:

cP = G((c − 2)P) + 2P = G((c − 2)P) +G(P) + P ⊆ G((c − 1)P) + P,

where the inclusion follows from Lemma 2.3.

Now, given a lattice polytope P, if P satisûes equation (2.1) for c = s − 1, it will also
satisfy the equation for s. In particular, if P satisûes the equation for all rational c in
the interval [2, 3], then P satisûes it for all rational c ≥ 2. _is proves the following
theorem.

_eorem 2.5 Let P be a lattice polytope. If P is 3-convex-normal, then P is also
k-convex-normal for all k ≥ 2.

Let e be the edge of a rational polytope P connecting vertices v and w. By ℓ(e)
we denote the lattice length of e; i.e., let u be the smallest integer vector on the line
spanned by w − v; then e = ku for some k ∈ Q and ℓ(e) ∶= ∣k∣. We also consider
degenerate edges with v = w; in this case we set ℓ(e) = 0. _e previous theorem
together with the lemma that 4-convex-normal polytopes have the integer decompo-
sition property ([Gub12, Lemma 6.2]), implies that a lower bound of ℓ(e) ≥ 3d(d + 1)
for every edge e of P would be enough. But using Lemma 2.4 directly, we can do
better.

Corollary 2.6 Let P be a lattice polytope. If P is 2-convex-normal, then P has the
integer decompositions property.

Proof As P is 2-convex-normal, using Lemma 2.4 repeatedly we know that kP =
G((k − 1)P) + P for all k ∈ N. Now given z ∈ kP ∩ Zd for some k ∈ N, we know that
z = x + y with y ∈ P, x ∈ G((k − 1)P) = (k − 1)P ∩ Zd and therefore y ∈ P ∩ Zd . By
induction we can ûnd x1 , . . . , xk−1 ∈ P ∩Zd such that x = x1 + ⋅ ⋅ ⋅ + xk−1.

Gubeladze [Gub12,_eorem 1.2] proves that given a polytope P, if every edge of P
has at least lattice length kd(d + 1), then P is k-convex-normal. Combining this with
the previous corollary yields the improved bound we promised in the introduction.

Corollary 2.7 Let P be a lattice polytope. If for every edge e of P the lattice length
ℓ(e) ≥ 2d(d + 1), then P has the integer decomposition property.

3 Convex-normality for Pairs of Polytopes

In this section we extend the above deûnitions and results to pairs of polytopes.
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Deûnition 3.1 A pair of rational polytopes (Q , P) is called convex-normal if

Q + P = G(Q) + P.

Note that we only have to show Q + P ⊆ G(Q) + P as the other inclusion is al-
ways true, since G(Q) ⊂ Q. Furthermore, this notion is invariant under indepen-
dent translations of P and Q by rational vectors. A small calculation shows that
G(Q −w) = G(Q) −w. Hence, we can set two vertices v ∈ vert(P) and w ∈ vert(Q)
to 0. In these terms a single polytope P is k-convex-normal if for all rational c ∈ [2, k]
the pairs ((c − 1)P, P) are convex-normal.

Example 3.2 As seen in Example 2.1, the pair (1.5⋅∆2 , 1.5⋅∆2) is convex-normal and
the pair (∆2 , ∆2) is not. More generally, P is 2-convex-normal if and only if (P, P) is
convex-normal.

Example 3.3 Convex-normality is not symmetric. When we set

P = conv(0 1 0 1
0 0 1 1) and Q = conv(0 1 0 1

0 0 0.7 0.7) ,

Figure 3 illustrates that G(Q) + P = Q + P but G(P) + Q /= P + Q.

(a) P (b) Q (c) P + Q

(d) G(P) + Q /= P + Q (e) G(Q) + P = Q + P

Figure 3. Convex-normality of pairs is not symmetric.

_e second deûnition we need is an extension of the integer decomposition prop-
erty to pairs of polytopes.
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Deûnition 3.4 A pair of polytopes (Q , P) has the integer decomposition property
(IDP), if the map

(Q ∩Zd) × (P ∩Zd) Ð→ (Q + P) ∩Zd
(q , p) z→ q + p

is surjective, that is, if (P + Q) ∩Zd = (P ∩Zd) + (Q ∩Zd).

If the pairs (P, nP) have the integer decomposition property for all n ∈ N, then P
is a lattice polytope and has it as well.

_e pair (∆2 , ∆2) from the example above has the integer decomposition property,
so we see that pairs of polytopes with the IDP are not always convex-normal. But the
converse implication is true.

Lemma 3.5 Let P be a polytope and let Q be a lattice polytope such that (Q , P) is
convex-normal. _en (Q , P) has the integer decomposition property.

Proof As (Q , P) is convex-normal, we know that Q + P = G(Q) + P.
As Q is a lattice polytope, we have G(Q) = Q ∩Zd , and hence

(Q + P) ∩Zd = (G(Q) + P) ∩Zd = ((Q ∩Zd) + P) ∩Zd

= (Q ∩Zd) + (P ∩Zd).

In the remainder of this paper we will prove a suõcient condition, based on edge
lengths, for a pair (Q , P) to be convex-normal.

Given a polytope P, if F is a face of P we write F ≺ P. For every nonempty face F
of P there exists a linear functional cF , such that c tFx is maximal over P if and only if
x ∈ F. We also say that cF deûnes the face F. _e set

CF = { c ∶ {z ∶ max
x∈P

c tx = c tz} ⊇ F}

is a polyhedral cone. _e normal fan N(P) of P is the collection of these cones over
all nonempty faces of P. _e correspondence F ←→ CF is an inclusion reversing
bijection; i.e., given two faces F , F′ ≺ P, then F ⊆ F′ if and only if CF′ ⊆ CF .

In the above examples P andQ had the same normal fan. If we drop this condition,
there are pairs of polytopes with arbitrarily long edges lacking the integer decompo-
sition property and not being convex-normal.

Example 3.6 Set

Q = conv(0 1 0
0 k 1) and P = conv(0 −l −(l − 1)

0 1 1 ) ,

see Figure 4.
If we look at (nQ , nP), then the edges of both nQ and nP all have lattice length n

and there are O(n4) lattice points in (nP ∩Z2) + (nQ ∩Z2), but k ⋅ l ⋅O(n2) lattice
points in nP + nQ. Hence for k, l ≫ n, the pair (nQ , nP) neither has the integer
decomposition property nor is it convex-normal.
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Figure 4. Q + P and G(Q) + P for n = 1, k = 2 and l = 3.

For a pair (Q , P) of polytopes to be convex-normal, it is not enough if both poly-
topes have the integer decomposition property, are k-convex-normal, or have long
edges. _e examples suggest that we need a condition on the normal fans of P and Q,
and in fact that is what we need.

Given two d-polytopes Q and P, if N(P) is a reûnement of N(Q), then for every
cone C ∈ N(P) there exists a cone D ∈ N(Q) s.t. C ⊆ D. In this case we can deûne
a map Φ′∶N(P) → N(Q), where Φ′(C) is deûned as the smallest cone in N(Q)
containingC. _ismap preserves inclusions and has a correspondingmapΦ∶L(P) →
L(Q) on the face lattices of P and Q, taking a face F ≺ P with corresponding cone
CF to the face G ≺ Q with corresponding cone CG = Φ′(CF).

Example 3.7 In Figure 5 we illustrate the map with

P = conv(0 3 3 2 −1 −1
0 0 −2 −3 −3 −1) and Q = conv(0 2 2 0

0 0 −2 −2) .

For example, the edge e from (−1,−1) to (0, 0) in P corresponds to the vertex (0, 0)
in Q, i.e., Φ(e) = (0, 0), because e corresponds to cone (−1

1 ) ∈ N(P) and the smallest
cone of N(Q) containing it is cone( −1 0

0 1 ) , which is the normal cone belonging to
(0, 0) in Q.

4 A Sufficient Condition for Convex-normality of (Q , P)
Now that we have all the tools lined up, we can start the proof with the following
lemma, which is the base case for our induction.

Lemma 4.1 Let P = [0, q] and Q = [0,m] be intervals with q ≥ min{1,m}; then
(Q , P) is convex-normal.

Proof Set l ∶= ⌊m⌋. If l ≥ 1, then q ≥ 1 and

Q + P = [0, q +m] = (
l
⋃
i=0

i + [0, q]) ∪m + [0, q] ⊆ G(Q) + P.
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e

(a) P&N(P) (b) Q&N(Q)

Figure 5. Each face of P corresponds to a face of Q.

If l < 1, then q ≥ l and:
Q + P = (0 + P) ∪ (m + P).

Now we can prove the main result.

_eorem 4.2 Let P and Q be rational d-polytopes such thatN(P) is a reûnement of
N(Q) and such that ℓ(eP) ≥ d ⋅ ℓ(eQ) for every edge eP ≺ P and corresponding face
(edge or vertex) eQ = Φ(eP) ≺ Q. _en (Q , P) is convex-normal.

Proof Lemma 4.1 took care of the base case, hence let P and Q be d-polytopes with
d ≥ 2.

Step 1: Subdividing Q + P:
Without loss of generality we assume 0 ∈ vert(P) and 0 = Φ(0) ∈ vert(Q) and

start by subdividing Q + P by assigning weights/heights to the vertices of P and Q.
Vertices of Q and the vertex 0 of P get height 0 and all the other vertices of P get
height 1. We use those heights to deûne new polytopes P′ and Q′ in Rd+1 as follows:

Q′ ∶= conv{(w , 0) ∶ w ∈ vert(Q)},
P′ ∶= conv((0, 0) ∪ {(u, 1) ∶ u ∈ vert(P)/{v}}) .

_en the projection of P′ + Q′ onto the ûrst d coordinates is P + Q and the lower
boundary of P′ + Q′ induces a subdivision of P + Q into the following pieces:

0 + Q and FQ + (conv(0, FP))
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for faces FQ ≺ Q and faces FP ≺ P, with 0 /∈ FP and Φ(FP) = FQ . Compare Figure 6.

(a) P (b) Q

Figure 6. Q + P subdivided into 0 + Q and FQ + (conv(0, FP)).

Another decomposition of P + Q we will be using is the following:

I ∶= ( d − 1
d

)P + Q and B ∶= (P + Q) ∖ I,

where I stands for the “inner” part of P + Q and B stands for the “boundary” part of
P + Q; see Figure 7.

In the next step we will be using our ûrst subdivision to cover the boundary part.
We will then show that covering I is easy because it lies in 0 + P.

Step 2.1: Covering B:
Let x ∈ B; then x /∈ Q, and hence we can ûnd facets FP ≺ P and FQ ≺ Q such

that x ∈ FQ + (conv(0, FP)) coming from our subdivision in Step 1. Hence, x can
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(a) ( d−1d ) P (b) Q

Figure 7. Q + P divided into I and B.

be written as x = q + µp, with q ∈ FQ ≺ Q, p ∈ FP ≺ P and 0 ≤ d−1
d ≤ µ ≤ 1. _en

z ∶= q+ d−1
d p is contained in d−1

d FP+FQ . Furthermore, (FQ , d−1
d FP) is convex-normal

by induction, as N( d−1
d FP) is a reûnement ofN(FQ) , and given edges eFQ ≺ FQ and

d−1
d eFP ≺

d−1
d FP (⇔ eFP ≺ FP), we have

ℓ( d − 1
d
eFP) = ( d − 1

d
) ℓ(eFP) ≥ ( d − 1

d
) ⋅ dℓ(eFQ ) = (d − 1)ℓ(eFQ ).

Hence we can ûnd a point g ∈ G(FQ) such that z ∈ g + d−1
d FP , and since p ∈ FP ⊆

conv(0, FP), we get x ∈ g + conv(0, FP) ⊆ g + P, as illustrated in Figure 8.

Step 2.2: Covering I:
Now we are le� with covering the points in the inner part I of P + Q. We claim

that I ⊆ P, which implies I ⊆ 0 + P ⊆ G(Q) + P. First we reformulate the problem by
using that I = ( d−1

d )P + Q ⊆ P is equivalent to Q ⊆ 1
d P.

To show the latter, suppose Q /⊆ 1
d P; then there exists a vertex u of Q that does not

lie in 1
d P. _is implies that there exists a functional c such that c tu = b and c tx < b for
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p + q

z
x

q
g + d−1

d FPg

Figure 8. Covering B using induction.

all x ∈ 1
d P. When we use the simplex method to maximize c over 1

d P starting in 0, we
get amonotone edge path from 0 to an optimal vertex u′. AsN( 1

d P) is a reûnement of
N(Q), we have an inclusion-preserving map L( 1

d P) → L(Q) between the two face
lattices. Using this map, we get a corresponding edge path in Q, which also ends in
an optimal vertex u′′, as c ∈ Cu′ ⊆ Cu′′ . But as every edge in 1

d P is at least as long as
the corresponding face (edge or vertex) in Q, we have

c tu′ ≥ c tu′′ = c tu ☇.
Hence no vertex of Q is lying outside of 1

d P, so that Q ⊆ 1
d P, which ûnishes our

proof.

_eorem 4.2 requires Q to be a lot smaller than P. But in conjunction with the
following lemma, it can be used in certain cases where Q is allowed to be big.

Lemma 4.3 Let P be a rational polytope and Q be a lattice polytope, with

Q = Q1 + ⋅ ⋅ ⋅ + Qs

where the Q i are lattice polytopes such that the pairs (Q i , P) are convex-normal for all i.
(For example, they could satisfy the conditions of the previous theorem.) _en (Q , P) is
convex-normal.

Proof As (Q i , P) are convex-normal, we get
Q + P = (Q1 + ⋅ ⋅ ⋅ + Qs) + P

= G(Q1) + ⋅ ⋅ ⋅ +G(Qs) + P
⊆ G(Q1 + ⋅ ⋅ ⋅ + Qs) + P
= G(Q) + P,
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where the second equality is true because the Minkowski sum is commutative and
associative, and the inclusion is true because the Q i are lattice polytopes.

In particular, if Q is a lattice polytope and (Q , P) is convex-normal, then (kQ , P)
is convex-normal for all k ∈ N. Putting together Lemma 3.5, _eorem 4.2, and
Lemma 4.3 we get the following corollary.

Corollary 4.4 Let P and Q be rational polytopes, where N(P) is a reûnement of
N(Q). If Q has a decomposition into lattice polytopes Q = Q1 + ⋅ ⋅ ⋅ +Qs and every edge
of P is at least d times as long as the corresponding edge in Q i for all i, then (Q , P) has
the integer decomposition property.
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