CHARACTERIZATIONS OF VITALI CONDITIONS WITH OVERLAP IN TERMS OF CONVERGENCE OF CLASSES OF AMARTS

ANNIE MILLET AND LOUIS SUCHESTON

In a series of fundamental papers [20], [21], [22], [23], K. Krickeberg introduced 'Vitali' conditions on σ -algebras and showed that they are sufficient for convergence of properly bounded martingales, and supermartingales. It is now known that the conditions V_{∞} (= V), and V' are both sufficient and necessary for convergence of L¹-bounded amarts, and ordered amarts (Astbury [1]; [24], [25]); an amart (ordered amart) is a process (X_t) such that the net $(EX_{\tau})_{\tau \in T*}$ converges, where T^* is the net of simple (ordered) stopping times. We undertake here to similarly characterize the Vitali conditions V_p , $1 \leq p < \infty$, in terms of convergence of properly defined classes of amarts. (In terms of convergence of L^{∞} -bounded martingales, Krickeberg himself [22] was able to characterize V_1 .) It is easy to see that the condition V_{∞} can be stated in terms of stopping times as follows: For any adapted family of sets (A_i) , the set ess lim sup A_t can be covered up to ϵ by A_{τ} , where τ is a simple stopping time. To obtain an analogous formulation of V_p for $p \neq \infty$, we introduce multivalued stopping times, with 'overlap' converging to zero in L^p . Essential convergence of L^1 -bounded 'amarts for M_p ' defined in terms of such stopping times, characterizes σ -algebras satisfying V_p . Martingales bounded in L^q are shown to be amarts for M_p , but also other examples are given.

Sections 1 and 2 sketch the theory of amarts for M_p , analogous to that of amarts. Section 3 gives extensions to Banach spaces. At the end of the paper it is briefly shown how one can replace L^p spaces by Orlicz spaces.

Sections 1 and 2 are independent of other work on amarts. Section 3 depends in part on [24] and [25].

1. Real valued case without Vitali conditions. Let J be a set of indices partially ordered by $\leq ; s, t$ and u are elements of J. J is a *directed set filtering to the right*, i.e., such that for each pair t_1 , t_2 of elements of J, there exists an element t_3 of J such that $t_1 \leq t_3$ and $t_2 \leq t_3$.

Let (Ω, \mathscr{F}, P) be a probability space. Functions, sets, random variables are considered equal if they are equal almost surely. Let (X_t) be a family of random variables taking values in \overline{R} . The *essential supremum* of (X_t) is the unique almost surely smallest random variable $e \sup_t X_t$ such that for every t, $e \sup_t X_t \ge X_t$ a.s. The *essential infimum* of (X_t) , $e \inf_t X_t$, is defined by

Received May 4, 1978. The research of the second author was supported by the National Science Foundation.

 $e \inf_{t} X_{t} = -e \sup_{t} (-X_{t})$. The essential upper limit of (X_{t}) , $e \lim_{t} \sup X_{t}$, is defined by

 $e \limsup_{t \to \infty} X_t = e \inf_{s} (e \sup_{t \ge s} X_t).$

The essential lower limit of (X_t) , e lim inf_t X_t , is defined by

 $e \liminf_{t} X_{t} = -e \limsup_{t} (-X_{t}).$

The family (X_t) is said to converge essentially if $e \limsup_t X_t = e \liminf_t X_t$; this common value is called the essential limit of (X_t) , $e \lim_t X_t$. The stochastic upper limit of (X_t) , $s \limsup_t X_t$, is the essential infimum of the set of random variables Y such that $\lim_t P(\{Y < X_t\}) = 0$. The stochastic lower limit of (X_t) , $s \liminf_t X_t$, is defined by $s \liminf_t X_t = -s \limsup_t (-X_t)$. The family (X_t) is said to converge stochastically, or to converge in probability, if $s \limsup_t X_t = s \liminf_t X_t$; this common value is called the stochastic limit of (X_t) , $s \lim_t X_t$. If (A_t) is a directed family of measurable sets, the essential upper limit of (A_t) , $e \limsup_t A_t$, is the set such that

 $1_{e \lim \sup_{t \to t} A_t} = e \lim \sup_{t} 1_{A_t}$

A stochastic basis (\mathcal{F}_t) is an increasing family of sub σ -algebras of \mathcal{F} (i.e., for every $s \leq t, \mathcal{F}_s \subset \mathcal{F}_t$). A stochastic process (X_t) is a family of random variables $X_t: \Omega \to R$ such that for each t, X_t is \mathcal{F}_t measurable. The process is called *integrable (positive)* if for every t, X_t is integrable (positive). The process is L^p -bounded $(1 \leq p \leq \infty)$ if $\sup ||X_t||_p < \infty$, where $|| ||_p$ is the L^p norm. Given a stochastic basis (\mathcal{F}_t) , a family of sets (A_t) is *adapted* if for every $t \in J, A_t \in \mathcal{F}_t$.

Denote by \mathscr{J} the set of finite subsets of J. An (*incomplete*) multivalued simple stopping time is a map τ from Ω (from a subset of Ω called $D(\tau)$) to \mathscr{J} such that $R(\tau) = \bigcup_{\omega \in D(\tau)} \tau(\omega)$ is finite, and such that for every $t \in J$,

 $\{ \tau = t \} = \{ \omega \in \Omega | t \in \tau(\omega) \} \in \mathscr{F}_t.$

 $R(\tau)$ will be called by extension the *range* of τ . Denote by M(IM) the set of (incomplete) multivalued simple stopping times. Denote by T the set of *simple stopping times*, i.e., of elements τ of M such that for every ω , $\tau(\omega)$ is a singleton of J. Let $\tau \in IM$; the *excess function* of τ is

 $e_{\tau} = \sum_{t \in R(\tau)} \mathbf{1}_{\{\tau=t\}} - \mathbf{1}_{D(\tau)}.$

The overlap of order p of τ , $1 \leq p \leq \infty$, is $O_p(\tau) = ||e_\tau||_p$. If (X_t) is a stochastic process, let

$$X_{\tau} = \sum_{t \in R(\tau)} 1_{\{\tau=t\}} X_{t}.$$

If (A_t) is an adapted family of sets, let $A_{\tau} = \bigcup (\{\tau = t\} \cap A_t)$. Let σ and τ be in M; we say that

$$\sigma \leq \tau$$
 if $\forall s, \forall t, \{\sigma = s\} \cap \{\tau = t\} \neq \emptyset$ implies that $s \leq t$.

1034

(In the case where σ and $\tau \in T$, it is the usual order \leq .) For the order \leq , M is a directed set filtering to the right. An integrable stochastic process (X_t) is an *amart for* M_p if the net $(EX_\tau)_{\tau \in M_p}$ converges when $\tau \in M$ and $O_p(\tau) \to 0$, i.e., there exists a number L such that for every $\epsilon > 0$, there exists $s \in J$ and $\alpha > 0$, such that $\tau \in M$, $\tau \geq s$, $O_p(\tau) < \alpha$ imply $|EX_\tau - L| < \epsilon$. An amart for M_∞ is simply called an *amart*. Throughout this paper, if $1 \leq p \leq \infty$ we assume that $1 \leq q \leq \infty$ and 1/p + 1/q = 1.

PROPOSITION 1.1. Let (X_t) be an L^q -bounded martingale, then it is an amart for M_p . Conversely, if (X_t) is an amart for M_p and either an L^1 -bounded martingale or a positive submartingale, then (X_t) is L^q -bounded.

Proof. Let (X_t) be an L^q -bounded martingale; then (X_t) is L^1 -bounded. Let $\sigma \in M$ and let t be bigger than the elements of $R(\sigma)$. Then

$$EX_{\sigma} = \sum_{s \in R(\sigma)} E(1_{\{\sigma=s\}}X_s) = \sum_{s \in R(\sigma)} E(1_{\{\sigma=s\}}X_t) = EX_t + E(X_te_{\sigma}).$$

Since $|E(X_{t}e_{\sigma})| \leq O_{p}(\sigma) \sup ||X_{t}||_{q}$, the net $(EX_{\tau})_{\tau \in M_{p}}$ converges.

Conversely, let (X_t) be an L^1 -bounded martingale (resp. a positive submartingale) which is an amart for M_p . Assume that (X_t) is not L^q -bounded. In both cases since $(||X_t||_q)$ is an increasing net, there exists an increasing sequence (r_n) such that if $s_n \ge r_n \forall n$, then $\sup ||X_{s_n}||_q = \infty$. Since (X_t) is an amart for M_p , there exists an increasing sequence (t_n) of indices, and a sequence (α_n) of numbers such that if $t_n \ge r_n \forall n$, and if $\tau \in M$ satisfies $\tau \ge t_n$ and $O_p(\tau) < \alpha_n$, then

$$|EX_{\tau} - \lim_{\tau \in M_p} EX_{\tau}| \leq 2^{-n}.$$

Denote $Y_n = X_{in}$; the stochastic process (Y_n, \mathscr{F}_{in}) is an amart for M_p , and sup $||Y_n||_q = \infty$. Since (Y_n) may be replaced by a subsequence, we may and do assume $||Y_n^+||_q > n^2 \forall n$. There exists a random variable Z_n such that $||Z_n||_p \leq 1/n$, and $E(Y_n^+Z_n) > n$. One may require that Z_n be \mathscr{F}_{in} measurable, positive, and that the support of Z_n be included in the support of Y_n^+ . Define S_n by $S_n = k$ on the set $\{k \leq Z_n < k + 1\}$ for $k \leq K_n$, and $S_n = 0$ on $\{Z_n \geq K_n\}$. By a proper choice of K_n one has $E(S_nY_n^+) > n - EY_n^+$. Set $\tau(\omega) = \{t_n, t_{n+1}, \ldots, t_{n+k}\}$ for $\omega \in \{S_n = k\}$; $\tau \in M$, $e_{\tau} = S_n$, and since for every t, $\{\tau = t\} \in \mathscr{F}_{in}$,

$$EX_{\tau} = \sum_{j} E(1_{\{\tau = t_{n+j}\}} X_{t_{n+j}}) \geq \sum_{j} E(1_{\{\tau = t_{n+j}\}} X_{t_n}) > n - EX_{t_n}^{-}.$$

If (X_t) is an L^1 -bounded martingale (resp. a positive submartingale), the previous inequality shows that the net $(EX_{\tau})_{\tau \in M_p}$ is not bounded, which brings a contradiction.

An integrable process (X_i) is a *semiamart for* M_p if there exists $s \in J$ such that the net $(EX_{\tau})_{\tau \in M_p, \tau \geq s}$ is bounded.

The amart case of the following result is due to [2], [12], [1].

THEOREM 1.2. (a) Let (X_t) be a semiamart for M_p . If $\liminf EX_t^- < \infty$ (resp. $\liminf EX_t^+ < \infty$), then (X_t^+) (resp. (X_t^-)) is a semiamart for M_p .

(b) Let (X_t) be an L¹-bounded amart for M_p ; then (X_t^+) , (X_t^-) and $(|X_t|)$ are amarts for M_p .

Proof. (a) Assume that $\liminf EX_t^- < \infty$; let $\beta \in R$, $s \in J$ and $\epsilon > 0$ be such that if $\tau \in M$, $\tau \geq s$, $O_p(\tau) \leq \epsilon$, then $EX_t < \beta$. Let $\sigma \in M$, $\sigma \geq s$, $O_p(\sigma) < \epsilon$. Choose t bigger than the indices $s \in R(\sigma)$, such that

 $EX_{t} - < \lim \inf EX_{t} - + 1.$

Define $\tau \in M$ as follows: for $s \in R(\sigma)$, $s \in \tau(\omega)$ if $\omega \in \{\sigma = s\} \cap \{X_s \ge 0\}$; let

$$A = \bigcup \left(\{ \sigma = s \} \cap \{ X_s \ge 0 \} \right)$$

and set $\tau = t$ on A^c . Then $O_p(\tau) \leq O_p(\sigma)$, $\tau \geq s$, and if we set $U_t = X_t^+$, then

$$EU_{\sigma} = \sum_{s \in R(\sigma)} E(X_s \mathbf{1}_{\{\sigma=s\}} \cap \{X_s \ge 0\}) = EX_{\tau} - E(\mathbf{1}_A c X_t)$$
$$\leq \beta + \lim \inf EX_t - 1.$$

(b) Given $\epsilon > 0$, choose $s \in J$ and $\alpha > 0$ such that if $s \leq \pi \in M$, $O_p(\pi) < 2\alpha$, then $|EX_s - EX_{\pi}| < \epsilon$. Next using (a) choose $\sigma_0 \in M$ with $\sigma_0 \geq s$ and $O_p(\sigma_0) < \alpha$, such that

$$E(U_{\sigma_0}) \geq \sup_{\tau \geq s, \theta_p(\tau) < \alpha} EU_{\tau} - \epsilon,$$

where $U_t = X_t^+$. Set $R(\sigma_0) = \{s_1, s_2, \ldots, s_n\}$; choose $t \in J$ bigger than the elements of $R(\sigma_0)$. Let $\tau \in M$, $\tau \ge t$, $O_p(\tau) < \alpha$; set $R(\tau) = \{t_1, \ldots, t_k\}$. Define $\tau' \in M$ as follows: Set

$$A = \bigcup_{i \leq n} (\{\sigma_0 = s_i\} \cap \{X_{s_i} < 0\}); A \in \mathscr{F}_i.$$

For every $i \leq n$, $s_i \in \tau'(\omega)$ if $\omega \in \{\sigma_0 = s_i\} \cap \{X_{s_i} < 0\}$. For every $j \leq k$, $t_j \in \tau'(\omega)$ if $\omega \in \{\tau = t_j\} \cap A^c$. Then $e_{\tau'} \leq e_{\sigma_0} + e_{\tau}$, and $\tau' \geq s$. Furthermore,

$$\begin{aligned} U_{\sigma_0} - U_{\tau} &= \sum_{i \leq n} 1_{\{\sigma_0 = s_i\}} \cap \{x_{si} \geq 0\} X_{si} - \sum_{j \leq k} 1_{\{\tau = t_j\}} \cap \{x_{t_j \geq 0}\} X_{t_j} \\ &= \sum_{i \leq n} 1_{\{\sigma_0 = s_i\}} X_{si} - \sum_{i \leq n} 1_{\{\sigma_0 = s_i\}} \cap \{x_{si} < 0\} X_{si} \\ &- \sum_{j \leq k} 1_{\{\tau = t_j\}} \cap \{x_{t_j \geq 0}\} X_{t_j} \\ &= X_{\sigma_0} - X_{\tau'} - 1_A \sum_{j \leq k} 1_{\{\tau = t_j\}} \cap \{x_{t_j \geq 0}\} X_{t_j} \\ &+ 1_A c \sum_{j \leq k} 1_{\{\tau = t_j\}} \cap \{x_{t_j < 0}\} X_{t_j} \leq X_{\sigma_0} - X_{\tau'}. \end{aligned}$$

Hence $EU_{\sigma_0} - EU_{\tau} \leq 2\epsilon$. From the definition of σ_0 , $EU_{\sigma_0} \geq EU_{\tau} - \epsilon$, and therefore

$$|E_{\sigma_0} - EU_{\tau}| \leq 2\epsilon$$

A similar proof shows that (X_t^-) is an amart for M_p , and since $|X_t| = X_t^+ + X_t^-$, $(|X_t|)$ is an amart for M_p .

The amart case of the following result is due to [12].

THEOREM 1.3. (Riesz decomposition of amarts for M_p). Let (X_t) be an amart for M_p . Then X_t can be uniquely written as $X_t = Y_t + Z_t$, where (Y_t) is a martingale and an amart for M_p , and $(|Z_t|)$ is an amart for M_p which converges to 0 in L^1 .

Proof. Fix $s \in J$; let $A \in \mathscr{F}_s$ and $s' \geq s$. Given $\sigma, \tau \in M, \sigma \geq s', \tau \geq s'$, define σ' and τ' as follows: Let $t \in J$ be bigger than all the elements of $R(\sigma)$ and $R(\tau)$; set $\sigma' = \sigma$ and $\tau' = \tau$ on $A, \sigma' = \tau' = t$ on A^e . Since $\sigma' \geq s'$, $\tau' \geq s', e_{\sigma'} \leq e_{\sigma}, e_{\tau'} \leq e_{\tau}$, and since

$$|E(1_{A}X_{\sigma} - 1_{A}X_{\tau})| = |E(X_{\sigma'} - X_{\tau'})|,$$

the net $(E(1_AX_{\tau}))_{\tau \in M_p}$ is Cauchy uniformly in $A \in \mathscr{F}_s$. Hence the net $(E[1_AX_{\tau}])_{\tau \in M_p}$ converges to $\mu_s(A)$ uniformly in $A \in \mathscr{F}_s$, and μ_s is finitely additive on \mathscr{F}_s . Let $A_n \searrow \emptyset$, $A_n \in \mathscr{F}_s$; given $\epsilon > 0$, there exists s' such that for every n,

$$|\mu_s(A_n)| \leq \epsilon + |E(1_{A_n}X_{s'})|.$$

Hence there exists n such that $|\mu_s(A_n)| < 2\epsilon$, so that μ_s is σ -additive on \mathscr{F}_s , and absolutely continuous with respect to P. Let Y_s be the Radon-Nikodym derivative of μ_s with respect to P; clearly (Y_s) is a martingale. Let $\tau \in M$, $\tau \geq s$, and denote $R(\tau) = \{t_1, \ldots, t_n\}$. Given $\epsilon > 0$, choose $u_1 \leq \ldots \leq u_n$, such that for every $i \leq n$, $u_i \geq t_i$, and

 $|E[1_{\{\tau=t_i\}}(Y_{t_i}-X_{u_i})]| \leq \epsilon/n.$

Define $\pi \in M$ as follows: for every $i \leq n$, $\{\pi = u_i\} = \{\tau = t_i\}$; then $e_{\pi} = e_{\tau}$ and $\pi \geq s$. Furthermore,

$$EY_{\tau} = \sum_{i \leq n} E(\mathbf{1}_{\{\tau=t_i\}} X_{u_i}) + \sum_{i \leq n} E[\mathbf{1}_{\{\tau=t_i\}} (Y_{t_i} - X_{u_i})]$$

= $EX_{\pi} + \sum_{i \leq n} E[\mathbf{1}_{\{\tau=t_i\}} (Y_{t_i} - X_{u_i})].$

Hence $|EY_{\tau} - EX_{\pi}| \leq \epsilon$, which proves that $\lim_{\tau \in M_p} EY_{\tau} = \lim_{\tau \in M_p} EX_{\tau}$. For every *t*, set $Z_t = X_t - Y_t$. Since $E[1_A(X_t - Y_t)]$ converges to 0 uniformly in $A \in \mathscr{F}_t$, Z_t converges to 0 in L^1 . Since (Z_t) is an amart for M_p , $(|Z_t|)$ also is by Theorem 1.2.

THEOREM 1.4. Let (X_i) be an L¹-bounded amart for M_p . Then the net $(X_{\tau})_{\tau \in M_p}$ converges stochastically.

Proof. Assume at first that (X_t) is an L^{∞} -bounded amart for M_p . Define by induction (α_n) , $\alpha_1 > \alpha_2 > \ldots$, $\alpha_n \to 0$, and an increasing sequence of indices (s_n) such that if $\sigma \in M$, $\sigma \geq s_n$, $O_p(\sigma) \leq \alpha_n$, then $|EX_{\sigma} - L| \leq 1/n$, where L denotes the limit of $(EX_{\tau})_{\tau \in M_p}$. Set $\beta_n = \alpha_n - \alpha_{n+1}$; let (σ_n) be an increasing

sequence of elements of M, such that $\sigma_n \geq s_n$, $O_p(\sigma_n) \leq \beta_n$, and such that there exists an increasing sequence of indices (t_n) , $\sigma_n \leq t_n \leq \sigma_{n+1}$ for all n. Set $V = \liminf X_{\sigma_n}$, $W = \limsup X_{\sigma_n}$. Given $\epsilon > 0$, choose K_0 such that $1/K_0 < \epsilon$. Given any δ , $0 < \delta < \alpha_{K_0}$, there exists an index t_k and two \mathscr{F}_{t_c} measurable random variables V' and W' such that

$$P(\{|V - V'| > \delta\}) < \delta, P(\{|W - W'| > \delta\}) < \delta.$$

We also assume that $\alpha_k \leq \delta$ and $k > K_0$. Choose $k' \geq k$ such that

$$P(\bigcup_{k\leq n\leq k'}\{|X_{\sigma_n}-V'|<2\delta\})\geq 1-2\delta.$$

Set

$$A = \bigcup_{k \leq n \leq k'} \bigcup_{t \in R(\sigma_n)} [\{\sigma_n = t\} \cap \{|X_t - V'| < 2\delta\}].$$

For each $n, k \leq n \leq k'$, the cardinality of $\sigma_n(\omega)$ is strictly larger than 1 for $\omega \in B_n$; $\mathbf{1}_{B_n} \leq e_{\sigma_n}$, so that $P(B_n) \leq ||e_{\sigma_n}||_1 \leq O_p(\sigma_n) \leq \beta_n$. Hence

$$P(A) \ge 1 - 2\delta - \sum_{k \le n} \beta_n \ge 1 - 2\delta - \alpha_n \ge 1 - 3\delta.$$

Set for each $n, k \leq n \leq k'$,

$$A_n = \left[\bigcup_{t \in R(\sigma_n)} \left(\{ \sigma_n = t \} \cap \{ | X_t - V'| < 2\delta \} \right) \right] \\ \cap \left[\bigcap_{k \leq j \leq n-1} \bigcap_{s \in R(\sigma_j)} \{ | X_s - V'| \geq 2\delta \} \right].$$

Define $\tau \in M$ as follows: For every $\omega \in A_n$, $k \leq n \leq k'$, let $t \in \tau(\omega)$ if $\omega \in \{\sigma_n = t\} \cap \{|X_t - V'| < 2\delta\}$, and set $\tau = t_{k'+1}$ on A^c . Hence

 $s_k \leq \tau, e_\tau \leq \sum_{k \leq n \leq k'} e_{\sigma_n}$

so that $O_p(\tau) \leq \alpha_k$, and $\tau(\omega)$ has a cardinality strictly larger than 1 on a set of probability less than δ . Since $P(\{|X_{\tau} - V'| < 2\delta\}) \geq 1 - 4\delta$,

 $|EX_{\tau} - EV'| \leq 2\delta + 8\delta \sup ||X_t||_{\infty}.$

In a similar way we define $\tau' \in M$, $O_p(\tau') \leq \alpha_k$, $s_k \leq \tau'$, such that

$$|EX_{\tau'} - EW'| \leq 2\delta + 8\delta \sup ||X_t||_{\infty}.$$

Since $|EX_{\tau} - EX_{\tau'}| \leq 2/K_0$, we have

$$|EW - EV| \leq 2\epsilon + \delta(6 + 18 \sup ||X_t||_{\infty}).$$

Since ϵ and δ are arbitrarily small, V = W a.s. Hence the sequence X_{σ_n} converges stochastically, which proves that the net X_{τ} converges stochastically when $\tau \in M$, $O_p(\tau) \to 0$. Let (X_t) be an L^1 -bounded amart for M_p , and assume that the net $(X_{\tau})_{\tau \in M_p}$ does not converge stochastically. If $s \lim_{\tau \in M_p} X_{\tau} = \infty$ (resp. $-\infty$) on a set of positive measure, then $s \lim X_t = \infty$ (resp. $-\infty$) on this set. Hence by Fatou's lemma there exists a < b such that

$$P(\{s \lim_{\tau \in M_p} \inf X_{\tau} < a < b < s \lim \sup_{\tau \in M_p} X_{\tau}\}) > 0.$$

1038

Set $X'_t = (a-1) \vee [X_t \wedge (b+1)]$; by Theorem 1.2 (X'_t) is an L^{∞} bounded amart for M_p . The argument above shows that $(X'_{\tau})_{\tau \in M_p}$ converges stochastically. Since for every $\tau \in M$, $X'_{\tau} = (a-1) \vee [X_{\tau} \wedge (b+1)]$ on a set of probability larger than $1 - O_p(\tau)$, the net

 $((a-1) \vee [X_{\tau} \wedge (b+1)])_{\tau \in M_p}$

converges stochastically, which brings a contradiction.

2. Real valued case: convergence with Vitali conditions. A stochastic basis (\mathscr{F}_t) satisfies the *Vitali condition* V_p if for every adapted family of sets (A_t) and for every $\epsilon > 0$, there exists $\tau \in IM$ such that $O_p(\tau) < \epsilon$ (overlap limitation), $P(e \lim \sup A_t \setminus A_\tau) < \epsilon$ (deficiency of covering limitation), and for every $t \in R(\tau), \{\tau = t\} \subset A_t$. (It is easy to see that one gets an equivalent formulation by replacing the condition $P(e \limsup A_t \setminus A_\tau) < \epsilon$ with $P(e \limsup A_t) - P(A_\tau) < \epsilon$. This definition is equivalent to the one given in [23]. It generalizes the definition of $V = V_{\infty}$ given in [24], [25].) In this section we characterize V_p in terms of essential convergence of amarts for M_p , and give an example of an amart for M_p which converges essentially.

The following theorem is a generalization of Krickeberg's results [20], [22], and of Astbury's result [1].

THEOREM 2.1. Let p be fixed, $1 \leq p \leq \infty$. Let (\mathcal{F}_i) be a stochastic basis; the following conditions are equivalent:

(1) (\mathcal{F}_{i}) satisfies the Vitali condition V_{p} .

(2) For any process (X_i) , the stochastic convergence of the net $(X_{\tau})_{\tau \in M_p}$ implies the essential convergence of X_i .

(3) Every L¹-bounded amart for M_p converges essentially.

(4) Every amart for M_p of the form (1_{A_t}) with $\lim P(A_t) = 0$, converges essentially to 0.

Proof. (1) \Rightarrow (2). Denote $X_{\infty} = s \lim_{\tau \in M_p} X_{\tau}$, let a > 0, and set $A = e \lim \sup \{ |X_t - X_{\infty}| > a \}.$

Given ϵ , $0 < \epsilon < a/3$, there exists $s \in J, X \in \mathscr{F}_s$ such that $P(\{|X_{\infty} - X| > \epsilon\}) \leq \epsilon$. Choose $s' \geq s$ and α , $0 < \alpha < \epsilon$ such that if $s' \leq \tau \in M$ and $O_p(\tau) \leq \alpha$, then $P(\{|X_{\tau} - X_{\infty}| \geq \epsilon\}) \leq \epsilon$. For every $t \in J$, set $A_t = \{|X_t - X| > a - \epsilon\}$ if $t \geq s'$, and $A_t = \emptyset$ otherwise; then

 $P(e \limsup A_t) \ge P(A) - \epsilon.$

By the Vitali condition V_p , we can define $\sigma \in IM$, $\sigma \geq s'$, $O_p(\sigma) < \alpha$, such that

 $P(e \limsup A_i \setminus A_{\sigma}) < \epsilon,$

and $\{\sigma = u\} \subset A_u$ for every $u \in R(\sigma)$. Furthermore, since $A_{\sigma} \subset \{|X_{\sigma} - X| > a - \epsilon\} \cup$ support e_{σ} , and P(support $e_{\sigma}) \leq ||e_{\sigma}||_{p} < \alpha$, we have

$$P(A) - 2\epsilon \leq P(e \limsup A_i) - \epsilon \leq P(A_{\sigma}) \leq P(\{|X_{\sigma} - X| > a - \epsilon\}) + \alpha \leq P(\{|X_{\sigma} - X_{\omega}| > a - 2\epsilon\}) + 2\epsilon \leq 3\epsilon.$$

Since this inequality holds for every $\epsilon > 0$, P(A) = 0 and $e \lim X_t = X_{\infty}$.

 $(2) \Rightarrow (3)$. Let (X_i) be an L^1 -bounded amart for M_p ; by Theorem 1.4 the net $(X_\tau)_{\tau \in M_p}$ converges stochastically. Hence if (2) holds (X_i) converges essentially.

 $(3) \Rightarrow (4)$. This implication is obvious.

(4) \Rightarrow (1). A similar argument appears in [1].

Let (A_t) be an adapted family of sets and let $A = e \lim \sup A_t$. Set

$$\Lambda = \{ \tau \in IM | \forall t \in R(\tau), \{ \tau = t \} \subset A_t \}.$$

Define by induction two sequences (τ_k) in Λ and (r_k) in R as follows:

 $r_0 = \sup \{P[D(\tau)] | \tau \in \Lambda, O_p(\tau) < 1\}.$

 τ_1 is any element of Λ such that $O_p(\tau_1) < 1$ and $P[D(\tau_1)] \geq r_0/2$; set

 $r_1 = \sup \{ P[D(\tau) \setminus D(\tau_1)] | \tau \in \Lambda, O_p(\tau) < 1/2, D(\tau) \supset D(\tau_1) \}.$

If τ_{k-1} and r_{k-1} have been defined, τ_k is any element of Λ such that $O_p(\tau_k) < 1/k$, $D(\tau_k) \supset D(\tau_{k-1})$, and $P[D(\tau_k) \setminus D(\tau_{k-1})] \ge r_{k-1}/2$. Set

$$r_k = \sup \{ P[D(\tau) \setminus D(\tau_k)] | \tau \in \Lambda, O_p(\tau) < 1/k + 1, D(\tau) \supset D(\tau_k) \}.$$

Let $\tau \in \Lambda$, $O_p(\tau) < 1/(k+1)$, $D(\tau) \supset D(\tau_k)$; then

$$r_{k-1} \ge P[D(\tau) \setminus D(\tau_k)] + P[D(\tau_k) \setminus D(\tau_{k-1})] \ge P[D(\tau) \setminus D(\tau_k)] + r_{k-1}/2.$$

Hence $r_k \leq r_{k-1}/2$. Set

$$C_t = A_t \setminus \bigcup_{u \leq t} \bigcup_{k \in \mathbb{N}} \{\tau_k = u\}, X_t = 1_{C_t}$$

Let $k \in N$, and choose $t' \in J$ such that t' is larger than all the elements of $\bigcup_{j \leq k} R(\tau_j)$. Let $\tau \in M$, $\tau \geq t'$, $O_p(\tau) < 1/k - O_p(\tau_k)$. Define $\sigma \in M$ as follows: $\sigma = \tau_k$ on $D(\tau_k)$, $t \in \sigma(\omega)$ if $\omega \in \{\tau = t\} \cap C_t$ for $t \in R(\tau)$. Then $\sigma \in \Lambda$. $D(\sigma) \supset D(\tau_{k-1})$, $e_\sigma \leq e_{\tau_k} + e_{\tau}$; hence

$$P[D(\sigma) \setminus D(\tau_{k-1})] \leq r_{k-1} \leq 2^{-k+1}.$$

Furthermore, since

$$X_{\tau} = \sum_{t \in R(\tau)} \mathbf{1}_{C_t \cap \{\tau=t\}} \leq \mathbf{1}_{D(\sigma) \setminus D(\tau_k)} + e_{\tau},$$

 $E(X_{\tau}) \leq 2^{-k+1} + k^{-1}$. Hence (X_t) is an amart for M_p which converges essentially to 0 under the assumption (4). Hence if $B = \bigcup D(\tau_k)$,

 $A \setminus B \subset e \limsup (A_t \setminus B) \subset e \limsup C_t.$

Hence $P(A \setminus B) = 0$; since $D(\tau_k)$ increases to B, given $\epsilon > 0$ there exists k such that $O_p(\tau_k) < \epsilon$, and

 $P(e \limsup A_t \setminus D(\tau_k)) = P(e \limsup A_t \setminus A_{\tau_k}) < \epsilon.$

Example. Let J be a family of finite (countable) measurable partitions of (Ω, \mathcal{F}, P) , and order J by refinement (i.e., $s \leq t$ if every atom of s is a union

of atoms of t). Assume that sup $\{P(A)|A \in t\}$ converges to 0, and for every t let \mathscr{F}_t be the σ -algebra generated by t. Let Q be a measure of density X with respect to $P, X \in L^q, 1 < q \leq \infty$. Let f and g be real functions having derivatives at 0, $g'(0) \neq 0$, such that f(0) = g(0) = 0, and set

$$X_t = \sum_{A \in t} \frac{f[Q(A)]}{g[P(A)]} \mathbf{1}_A.$$

 (X_t) is an amart for M_p . In the classical case where $\Omega = [0, 1]^n$ with the Borel σ -algebra and Lebesgue measure, and where J is the family of finite (countable) partitions of $[0, 1]^n$ into parallepipeds, (\mathscr{F}_t) satisfies the Vitali conditions V_p for $1 \leq p < \infty$ if n > 1, and (\mathscr{F}_t) satisfies V_{∞} if n = 1 (see [**22**] p. 298). Then if $1 < q \leq \infty$, (X_t) converges essentially to (f'(0)/g'(0))X.

Indeed, set

$$Y_{t} = \frac{f'(0)}{g'(0)} \left[\sum_{A \in t} \frac{Q(A)}{P(A)} \mathbf{1}_{A} \right].$$

 (Y_t) is an L^q -bounded martingale:

$$E|Y_t|^q \leq \frac{|f'(0)|^q}{|g'(0)|^q} \sum_{A \in t} \frac{(E[|1_A X|])^q}{P(A)^q} P(A) \leq |f'(0)|^q |g'(0)|^{-q} ||X||_q^q.$$

Hence (Y_t) is an amart for M_p . Set $Z_t = X_t - Y_t$; let f(x) = xf'(0) + xF(x), g(x) = xg'(0) + xG(x), with $\lim_{x\to 0} F(x) = \lim_{x\to 0} G(x) = 0$. Given ϵ , $0 < \epsilon < |g'(0)|$, choose α such that $|x| < \alpha$ implies $|F(x)| < \epsilon$ and $|G(x)| < \epsilon$. Choose s such that for every $A \in s$, $P(A) < \alpha$ and $|Q|(A) < \alpha$. For $t \ge s$,

$$|Z_t| \leq \sum_{A \in t} \frac{\epsilon[|f'(0)| + |g'(0)|]}{|g'(0)|[|g'(0)| - \epsilon]} \frac{|Q(A)|}{P(A)} \mathbf{1}_A.$$

Hence if $\tau \in M$, $\tau \geq s$, then

$$E|Z_{\tau}| \leq \frac{\epsilon[|f'(0)| + |g'(0)|]}{|g'(0)|[|g'(0)| - \epsilon]} [|Q|([0, 1]^{n}) + ||X||_{q}O_{p}(\tau)].$$

3. Banach-valued case. We now assume that the random variables X_t take values in a Banach space \mathscr{C} , are strongly measurable and Pettis integrable. Other definitions remain the same. Amarts for M_p are defined by the convergence of $(EX_{\tau})_{\tau \in M_p}$ in the norm topology.

The case J = N of the following result for amarts is due to [13]; see also [1].

THEOREM 3.1. Suppose that the Banach space \mathscr{E} has the Radon-Nikodym property. Let (X_t) be an \mathscr{E} -valued amart for M_p such that $\liminf E|X_t| < \infty$. Then X_t can be uniquely written as $X_t = Y_t + Z_t$, where (Y_t) is a martingale and an amart for M_p , and (Z_t) is an amart for M_p which converges to zero in Pettis norm. *Proof.* Recall that the norm defined on the set of random variables measurable with respect to \mathscr{F}_s as $||X||_{pe} = \sup_{A \in \mathscr{F}_s} |E(1_A X)|$, is equivalent with the Pettis norm. The argument given in the proof of Theorem 1.3 above extends to the Banach-valued case, showing that $(E[1_A X_\tau])_{\tau \in M_p}$ converges uniformly in $A \in \mathscr{F}_s$; hence $(X_\tau)_{\tau \in M_p}$ is Cauchy in Pettis norm. In general this does not imply convergence, but μ_s defined by $\mu_s(A) = \lim_{t \in \mathcal{F}_s} E(1_A X_t)$, $A \in \mathscr{F}_s$, is of bounded variation because of the assumption lim inf $E|X_t| < \infty$, and is countably additive because $E(1_A X_t)$ converges uniformly in $A \in \mathscr{F}_s$ (cf. the proof of Theorem 1.2). Since \mathscr{E} has the Radon-Nikodym property, there exists a random variable $Y_s \in L^1(\mathscr{E})$ such that for every $A \in \mathscr{F}_s$, $\mu_s(A) = E(1_A Y_s)$. (Y_s) is easily seen to be a martingale. Set $Z_t = X_t - Y_t$; the argument given above in the real-valued case shows that (Y_t) and hence (Z_t) are amarts for M_p , and Z_t converges to zero in Pettis norm.

We say that X_t converges weakly essentially if there exists a random variable X_{∞} such that $e \lim f(X_t) = f(X_{\infty})$ for every $f \in \mathscr{E}'$. It should be pointed out that in the case J = N this need not imply weak almost sure convergence, which holds under more stringent assumptions (cf. [7], [5]).

THEOREM 3.2. Let (\mathcal{F}_t) satisfy V_p and let \mathscr{E} have the Radon-Nikodym property. Then an L¹-bounded amart for M_p converges weakly essentially.

Proof. Applying Theorem 3.1, write $X_t = Y_t + Z_t$. For each $f \in \mathscr{E}'$, $f(Z_t)$ is a real-valued L^1 -bounded amart for M_p , which converges essentially by Theorem 2.1, necessarily to zero. Hence Z_t converges weakly essentially to zero. It remains to discuss the convergence of the martingale (Y_t) . For each $f \in \mathscr{E}', f(Y_t)$ is an L^1 -bounded amart for M_p , and hence converges essentially to a random variable depending on f, say R_f . At the same time, for every increasing sequence (τ_n) in T, (Y_{τ_n}) is an L^1 -bounded martingale which converges by Chatterji's theorem ([8]; see e.g. [27], p. 112) almost surely, hence stochastically in the norm topology. Since the stochastic convergence is defined by a complete metric, this implies that $(Y_\tau)_{\tau \in T}$ converges stochastically, say to Y_{∞} . Therefore for each $f \in \mathscr{E}', f(Y_t)$ converges stochastically to $f(Y_{\infty}) = R_f$. Thus X_t converges weakly essentially to Y_{∞} .

For L^q -bounded martingales, a stronger result is obtained. We at first prove the following maximal inequality:

LEMMA 3.3. If $X \in L^q(\mathscr{E})$ and if (\mathscr{F}_i) satisfies V_p , then given any a > 0, $P[e \limsup \{|E^{\mathscr{F}_i}X| > a\}] \leq (1/a)E|X|$.

Proof. Set $A_t = \{E^{\mathscr{F}_t} | X| > a\}, A = e \lim \sup A_t$, and let $\epsilon > 0$; there exists $\tau \in IM$, such that for every $t, \{\tau = t\} \subset A_t, P(A \setminus D(\tau)) \leq \epsilon$, and $O_p(\tau) \leq \epsilon$. Then

$$a[P(A) - \epsilon] \leq \sum_{t \in R(\tau)} E[\mathbf{1}_{\{\tau=t\}} E^{\mathscr{F}_t} |X|] \leq E|X| + O_p(\tau) ||X||_q$$
$$\leq E|X| + \epsilon ||X||_q,$$

which gives the maximal inequality when ϵ approaches 0.

THEOREM 3.4. Let (\mathcal{F}_{l}) satisfy the Vitali condition V_{p} , let \mathscr{E} be a Banach space with the Radon-Nikodym property, and let (X_{l}) be an L^{q} -bounded \mathscr{E} -valued martingale. Then X_{l} converges essentially in the norm topology.

Proof. We prove that the net $(X_{\tau})_{\tau \in M_p}$ converges stochastically in the norm topology of \mathscr{E} , and then apply the implication $(1) \Rightarrow (2)$ in Theorem 2.1, which extends to Banach-valued X_t without change of proof.

First in the case $p = \infty$ one shows, as in the proof of Theorem 3.2, that $(X_\tau)_{\tau \in T}$ converges stochastically; it follows that X_t converges essentially. Assume now that $1 \leq p < \infty$; an L^q -bounded martingale is uniformly integrable, therefore it admits a representation $X_t = E^{\mathscr{F}_t}X$, with $X \in L^q[\bigcup \mathscr{F}_t]$ (cf. [18]; [27], p. 113). Let Λ be the vector space of functions $X \in L^q$, measurable with respect to some \mathscr{F}_s , $s \in J$. Λ is dense in $L^q(\bigcup \mathscr{F}_t)$, and for $X \in \Lambda$, $E^{\mathscr{F}_t}X$ obviously converges essentially to X. Let X be in $L^q(\bigcup \mathscr{F}_t)$, $Y \in \Lambda$; then for every $t \in J$,

$$|E^{\mathscr{F}}X - X| \leq E^{\mathscr{F}}|X - Y| + |E^{\mathscr{F}}Y - Y| + |Y - X|.$$

Hence

 $e \lim \sup |E^{\mathscr{F}} X - X| \leq e \lim \sup E^{\mathscr{F}} |X - Y| + |X - Y|.$

Let a > 0; given $\epsilon > 0$, choose $Y \in \Lambda$ such that $||X - Y||_q < \epsilon$. Lemma 3.3 yields that under V_p ,

$$P[e \limsup \{ |E^{\mathscr{F}} X - X| > a \}] \leq P[e \limsup \{ E^{\mathscr{F}} |X - Y| > a/2]$$

+ $P[|X - Y| > a/2] \leq 2/a[E|X - Y| + ||X - Y||_q] \leq 4\epsilon/a.$

Since a and ϵ are arbitrary, it follows that $e \lim E^{\mathscr{F}} X = X$.

Our final result concerns the behavior of \mathscr{E} -valued pramarts under the condition V_{∞} . *Pramarts*, introduced in [24], are defined by the property

$$s \lim_{\sigma \leq \tau, \sigma, \tau \in T} |X_{\sigma} - E^{\mathscr{F}\sigma} X_{\tau}| = 0.$$

Recall that $M_{\infty} = T$, and stopping times now considered are single-valued. If (X_t) is a real-valued amart, it is a pramart; however, this implication fails in every infinite-dimensional Banach space [24], [25]. Banach-valued pramarts, unlike amarts, converge strongly. Pramarts (or *mils*: cf. [24] and [26]) such that $\sup |X_t| \in L^1$ can be shown to be A. Bellow's uniform amarts (cf. [4], [16]).

THEOREM 3.5. Let (\mathcal{F}_t) satisfy V_{∞} , and let \mathscr{E} have the Radon-Nikodym property. A pramart (X_t) converges essentially in the norm topology if either (a) or (b) holds:

(a) $(|X_i|)$ is uniformly integrable.

(b) (X_t) is of class (B), i.e., $\sup_{\tau \in T} E|X_{\tau}| < \infty$.

Proof. (a) From the pramart property of (X_t) , the net $(|E^{\mathscr{F}}X_t - X_s|)_{s \leq t}$ of real-valued random variables converges to 0 in probability. Since this net is

uniformly integrable (because $|X_t|$ is), it converges to 0 in L^1 . If $s_0 \leq s \leq t$,

$$|E^{\mathscr{F}_{s_{0}}}X_{t} - E^{\mathscr{F}_{s_{0}}}X_{s}| = |E^{\mathscr{F}_{s_{0}}}(E^{\mathscr{F}_{s}}X_{t} - X_{s})|;$$

hence for a fixed s_0 the net

 $(E^{\mathscr{F}_{s_0}}X_t)_{t\geq s_0}$

is Cauchy in $L^1(\mathscr{C})$, and converges to a Bochner integrable random variable Y_{s_0} , $(Y_s)_{s \in J}$ is an L^1 -bounded martingale, and if we set $Z_s = X_s - Y_s$, (Z_s) is a pramart such that $\lim E|Z_s| = 0$ (a similar argument appears in [1]). Now observe that if (Z_t) is any pramart, then $(|Z_t|)$ is necessarily a real-valued subpramart, i.e., satisfies

$$s \lim_{\tau \ge \sigma \to \infty} \sup \left[|Z_{\sigma}| - E^{\mathscr{F}_{\sigma}} |Z_{\tau}| \right] \le 0.$$

Indeed, if $\sigma \leq \tau$, σ , $\tau \in T$, then for every $\epsilon > 0$

$$P[\{|Z_{\sigma}| - E^{\mathscr{F}_{\sigma}}|Z_{\tau}| > \epsilon\}] > \epsilon] \leq P[\{|Z_{\sigma}| - |E^{\mathscr{F}_{\sigma}}Z_{\tau}| > \epsilon\}]$$
$$\leq P[\{|Z_{\sigma} - E^{\mathscr{F}_{\sigma}}Z_{\tau}| > \epsilon\}].$$

Since under V_{∞} an L^1 -bounded subpramart converges essentially [24], [25], $\lim E|Z_s| = 0$ implies that $e \lim Z_s = 0$. Also Y_s converges essentially by Theorem 3.3 with $p = \infty$. Hence X_t converges essentially.

(b) Consider at first a pramart of class (B) $(X_n)_{n \in N}$. Let $\lambda > 0$ be given; set $A = \bigcup \{ |X_n| > \lambda \}$, and define $\sigma(\omega) = \inf \{ n \mid |X_n| > \lambda \}$ if $\omega \in A$, and $\sigma(\omega) = \infty$ if $\omega \in A^c$. Then σ is a possibly infinite stopping time. Set $X_n' = X_{n\Lambda\sigma}$. Theorem 2.4 [24], valid also in the Banach-valued case, shows that (X_n') is a pramart. By Fatou's lemma,

 $E(\mathbf{1}_A|X_{\sigma}|) \leq \liminf E(\mathbf{1}_A|X_{n\Lambda\sigma}|) \leq \sup_{\tau \in T} E|X_{\tau}|.$

Thus $E(\sup |X_n'|) < \lambda + \sup_{\sigma \in T} E|X_{\sigma}|$. Furthermore,

 $P(A) \leq \lambda^{-1} \sup_{\tau \in T} E|X_{\tau}|$

(see [7]), and on A^{c} , $X_{n} = X_{n}'$ for every *n*. Hence to prove that X_{n} converges a.s. in the norm topology, it suffices to show that X_{n}' does. Since sup $|X_{n}'|$ is integrable, this follows from part (a).

Let (X_t) be a pramart of class (B). Choose a sequence of indices (s_n) such that $s_n \leq \sigma \leq \tau$ implies

 $P(\{|X_{\sigma} - E^{\mathcal{F}_{\sigma}}X_{\tau}| > 1/n\}) < 1/n,$

and let (σ_n) be an increasing sequence of elements of T, such that $s_n \leq \sigma_n$ for all n. Set $X'_n = X_{\sigma_n}$, and $\mathscr{G}_n = \mathscr{F}_{\sigma_n}$; (X'_n, \mathscr{G}_n) is a pramart of class (B). Hence X'_n converges a.s. and stochastically in the norm topology. Therefore $(X_{\tau})_{\tau \in T}$ converges stochastically in the norm topology. If (\mathscr{F}_t) satisfies V_{∞} , we deduce the strong essential convergence of X_t .

1044

Finally, we observe how our results extend to Orlicz spaces. Let us first recall some properties of Orlicz spaces (see [27], Appendix).

Let $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ be an increasing left-continuous function which is zero at the origin, such that $\lim_{s\to\infty}\varphi(s) = \infty$. Let ψ be the function inverse to φ , i.e., defined by $\psi(u) = \sup \{s \mid \varphi(s) < u\}$ for every u > 0. Let Φ (resp. Ψ) be the indefinite integral of φ (resp. ψ), i.e.,

$$\Phi(t) = \int_0^t \varphi(s) \, ds.$$

 Φ is said to be conjugate to Ψ . Let L^{Φ} be the set of random variables for which there exists a number a > 0 such that $E[\Phi(a^{-1}|X|)] \leq 1$, and set

$$||X||_{\Phi} = \inf \{a \mid a > 0, E[\Phi(a^{-1}|X|)] \le 1\}.$$

The normed vector space L^{Φ} is a Banach space. There exists a constant c > 0 such that $c \|X\|_1 \leq \|X\|_{\Phi}$ for every random variable X of L^{Φ} . Furthermore, if Φ and Ψ are conjugate Young functions, for every pair $X \in L^{\Phi}$, $Y \in L^{\Psi}$, the product XY is integrable and satisfies the inequality $\|XY\|_1 \leq 2\|X\|_{\Phi} \|Y\|_{\Psi}$. Φ satisfies Δ_2 if $\sup \Phi(2t)/\Phi(t) < \infty$.

An integrable stochastic process (X_i) is an amart for M_{Φ} if the net $(EX_{\tau})_{\tau \in M_{\Phi}}$ converges when $\tau \in M$ and $O_{\Phi}(\tau) = ||e_{\tau}||_{\Phi} \to 0$. A stochastic basis (\mathscr{F}_i) satisfies the Vitali condition V_{Ψ} if for every adapted family of sets (A_i) and for every $\epsilon > 0$, there exists $\tau \in IM$ such that $O_{\Psi}(\tau) < \epsilon$, $P(e \lim \sup A_i \setminus A_{\tau}) < \epsilon$, and for every $t \in R(\tau)$, $\{\tau = t\} \subset A_i$.

It is easy to see that the statements and proofs of the theorems remain the same if the real L^p and L^q spaces are replaced by Orlicz spaces L^{Φ} and L^{Φ} , and Φ satisfies the condition Δ_2 .

References

- 1. K. Astbury, On Amarts and other topics, Ph.D. Dissertation, Ohio State University, (1976). Also Amarts indexed by directed sets, Ann. Prob., 6 (1978), 267-278.
- D. G. Austin, G. A. Edgar and A. Ionescu Tulcea, Pointwise convergence in terms of expectations, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 30 (1974), 17-26.
- 3. J. R. Baxter, *Pointwise in terms of weak convergence*, Proc. Amer. Math. Soc. 46, (1974), 395–398.
- 4. A. Bellow, Les amarts uniformes, C. R. Acad. Sci. Paris, 284 Série A, 1295-1298.
- A. Brunel and L. Sucheston, Sur les amarts à valeurs vectorielles, C. R. Acad. Sci. Paris, 283 Série A, 1037–1040.
- 6. R. V. Chacon, A stopped proof of convergence, Adv. in Math. 14 (1974), 365-368.
- 7. R. V. Chacon and L. Sucheston, On convergence of vector-valued asymptotic martingales, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 33 (1975), 55-59.
- 8. S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem, Math. Scand. 22 (1968), 21-41.
- 9. J. Dieudonné, Sur un théorème de Jessen, Fund. Math. 37 (1950), 242-248.
- 10. J. L. Doob, Stochastic processes (Wiley, New York, 1953).
- 11. A. Dvoretzky, On stopping times directed convergence, Bull. Amer. Math. Soc. 82, No. 2 (1976), 347-349.

A. MILLET AND L. SUCHESTON

- 12. G. A. Edgar, and L. Sucheston, Amarts: A class of asymptotic martingales, J. Multivariate Anal. 6 (1976), 193-221; 572-591.
- 13. The Riesz decomposition for vector-valued amarts, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 36 (1976), 85–92.
- On vector-valued amarts and dimension of Banach spaces, Zeit. Wahrscheinlichkeitstheorie verw. Gebiete 39 (1977), 213-216.
- 15. Martingales in the limit and amarts, Proc. Amer. Math. Soc. 67 (1977), 315-320.
- 16. N. Ghoussoub and L. Sucheston, A Refinement of the Riesz decomposition for Amarts and semiamarts, J. Multivariate Analysis, 8 (1978), 146-150.
- 17. C. A. Hayes and C. Y. Pauc, *Derivations and martingales* (Springer-Verlag, New York, 1970).
- 18. L. L. Helms, Mean convergence of martingales, Trans. Amer. Math. Soc. 87 (1958), 439-446.
- U. Krengel and L. Sucheston, Semiamarts and finite values, Bull. Amer. Math. Soc. 83, 745–747. See also Advances Prob. 4 (1978), 197–265.
- K. Krickeberg, Convergence of martingales with a directed index set, Trans. Amer. Math. Soc. 83 (1956), 313–337.
- 21. Stochastische Konvergenz von Semimartingalen, Math. Z. 66 (1957), 470-486.
- 22. Notwendige Konvergenzbedingungen bei Martingalen und verwandten Prozessen, Transactions of the Second Prague conference on information theory, statistical decision functions, random processes [Prague, 1959], (1960) 279–305, Prague, Publishing House of the Czechoslovak Academy of Sciences.
- K. Krickeberg and C. Pauc, Martingales et dérivation, Bull. Soc. Math. France 91 (1963), 455-544.
- A. Millet and L. Sucheston, Classes d'amarts filtrants et conditions de Vitali, C. R. Acad. Sci. Paris, 286 Série A, 835–837.
- 25. Convergence of classes of amarts indexed by directed sets, Can. J. Math., to appear.
- 26. A. G. Mucci, Another Martingale convergence theorem, Pacific J. Math. 64 (1976), 539-541.
- 27. J. Neveu, Discrete parameter martingales (North Holland, Amsterdam, 1975).

Ohio State University, Columbus, Ohio