GHARAGTERIZATIONS OF VITALI CONDITIONS WITH OVERLAP IN TERMS OF CONVERGENCE OF CLASSES OF AMARTS

ANNIE MILLET AND LOUIS SUCHESTON

In a series of fundamental papers [20], [21], [22], [23], K. Krickeberg introduced 'Vitali' conditions on σ-algebras and showed that they are sufficient for convergence of properly bounded martingales, and supermartingales. It is now known that the conditions $V_{\infty}(=V)$, and V^{\prime} are both sufficient and necessary for convergence of L^{1}-bounded amarts, and ordered amarts (Astbury [1]; [24], [25]); an amart (ordered amart) is a process $\left(X_{t}\right)$ such that the net $\left(E X_{\tau}\right)_{\tau \in T *}$ converges, where T^{*} is the net of simple (ordered) stopping times. We undertake here to similarly characterize the Vitali conditions $V_{p}, 1 \leqq p<\infty$, in terms of convergence of properly defined classes of amarts. (In terms of convergence of L^{∞}-bounded martingales, Krickeberg himself [22] was able to characterize V_{1}.) It is easy to see that the condition V_{∞} can be stated in terms of stopping times as follows: For any adapted family of sets $\left(A_{t}\right)$, the set ess $\lim \sup A_{\iota}$ can be covered up to ϵ by A_{τ}, where τ is a simple stopping time. To obtain an analogous formulation of V_{p} for $p \neq \infty$, we introduce multivalued stopping times, with 'overlap' converging to zero in L^{p}. Essential convergence of L^{1}-bounded 'amarts for M_{p} ' defined in terms of such stopping times, characterizes σ-algebras satisfying V_{p}. Martingales bounded in L^{q} are shown to be amarts for M_{p}, but also other examples are given.

Sections 1 and 2 sketch the theory of amarts for M_{p}, analogous to that of amarts. Section 3 gives extensions to Banach spaces. At the end of the paper it is briefly shown how one can replace L^{p} spaces by Orlicz spaces.

Sections 1 and 2 are independent of other work on amarts. Section 3 depends in part on [24] and [25].

1. Real valued case without Vitali conditions. Let J be a set of indices partially ordered by $\leqq ; s, t$ and u are elements of $J . J$ is a directed set filtering to the right, i.e., such that for each pair t_{1}, t_{2} of elements of J, there exists an element t_{3} of J such that $t_{1} \leqq t_{3}$ and $t_{2} \leqq t_{3}$.

Let (Ω, \mathscr{F}, P) be a probability space. Functions, sets, random variables are considered equal if they are equal almost surely. Let $\left(X_{t}\right)$ be a family of random variables taking values in \bar{R}. The essential supremum of $\left(X_{t}\right)$ is the unique almost surely smallest random variable $e \sup _{t} X_{t}$ such that for every t, $e \sup _{t} X_{t} \geqq X_{t}$ a.s. The essential infimum of $\left(X_{t}\right), e \inf _{t} X_{t}$, is defined by

[^0]$e \inf _{t} X_{t}=-e \sup _{t}\left(-X_{t}\right)$. The essential upper limit of $\left(X_{t}\right), e \lim _{t} \sup X_{t}$, is defined by
$$
e \limsup \sup _{t} X_{t}=e \inf _{s}\left(e \sup _{t \geqq s} X_{t}\right)
$$

The essential lower limit of $\left(X_{t}\right), e \lim _{\inf }^{t} X_{t}$, is defined by

$$
e \liminf _{t} X_{t}=-e \lim \sup _{t}\left(-X_{t}\right)
$$

The family $\left(X_{t}\right)$ is said to converge essentially if $e \lim \sup _{t} X_{t}=e \liminf _{t} X_{t}$; this common value is called the essential limit of $\left(X_{t}\right), e \lim X_{t}$. The stochastic upper limit of $\left(X_{t}\right), s \lim \sup _{t} X_{t}$, is the essential infimum of the set of random variables Y such that $\lim P\left(\left\{Y<X_{t}\right\}\right)=0$. The stochastic lower limit of $\left(X_{t}\right), s \lim \inf _{t} X_{t}$, is defined by $s \lim \inf _{t} X_{t}=-s \lim \sup _{t}\left(-X_{t}\right)$. The family $\left(X_{t}\right)$ is said to converge stochastically, or to converge in probability, if $s \lim \sup _{t} X_{t}=s \lim \inf _{t} X_{t}$; this common value is called the stochastic limit of $\left(X_{t}\right), s \lim X_{t}$. If $\left(A_{t}\right)$ is a directed family of measurable sets, the essential upper limit of $\left(A_{t}\right), e \lim \sup _{t} A_{t}$, is the set such that

$$
1_{e \| \mathrm{m} \mathrm{sup}}^{t} A_{t}=e \lim \sup _{t} 1_{A_{t}} .
$$

A stochastic basis $\left(\mathscr{F}_{t}\right)$ is an increasing family of sub σ-algebras of \mathscr{F} (i.e., for every $\left.s \leqq t, \mathscr{F}_{s} \subset \mathscr{F}_{t}\right)$. A stochastic process $\left(X_{t}\right)$ is a family of random variables $X_{t}: \Omega \rightarrow R$ such that for each t, X_{t} is \mathscr{F}_{t} measurable. The process is called integrable (positive) if for every t, X_{t} is integrable (positive). The process is L^{p}-bounded $(1 \leqq p \leqq \infty)$ if $\sup \left\|X_{t}\right\|_{p}<\infty$, where $\left\|\|_{p}\right.$ is the L^{p} norm. Given a stochastic basis $\left(\mathscr{F}_{t}\right)$, a family of sets $\left(A_{t}\right)$ is adapted if for every $t \in J, A_{t} \in \mathscr{F}_{t}$.

Denote by \mathscr{J} the set of finite subsets of J. An (incomplete) multivalued simple stopping time is a map τ from Ω (from a subset of Ω called $D(\tau)$) to \mathscr{J} such that $R(\tau)=\cup_{\omega \in D(\tau)} \tau(\omega)$ is finite, and such that for every $t \in J$,

$$
\{\tau=t\}=\{\omega \in \Omega \mid t \in \tau(\omega)\} \in \mathscr{F}_{l} .
$$

$R(\tau)$ will be called by extension the range of τ. Denote by $M(I M)$ the set of (incomplete) multivalued simple stopping times. Denote by T the set of simple stopping times, i.e., of elements τ of M such that for every $\omega, \tau(\omega)$ is a singleton of J. Let $\tau \in I M$; the excess function of τ is

$$
e_{\tau}=\sum_{i \in R(\tau)} 1_{\{\tau=t\}}-1_{D(\tau)} .
$$

The overlap of order p of $\tau, 1 \leqq p \leqq \infty$, is $O_{p}(\tau)=\left\|e_{\tau}\right\|_{p}$. If $\left(X_{t}\right)$ is a stochastic process, let

$$
X_{\tau}=\sum_{t \in R(\tau)} 1_{\{\tau=t \mid} X_{t}
$$

If $\left(A_{t}\right)$ is an adapted family of sets, let $A_{\tau}=\bigcup\left(\{\tau=t\} \cap A_{t}\right)$. Let σ and τ be in M; we say that

$$
\sigma \leqq \tau \text { if } \forall s, \forall t,\{\sigma=s\} \cap\{\tau=t\} \neq \emptyset \text { implies that } s \leqq t
$$

(In the case where σ and $\tau \in T$, it is the usual order \leqq.) For the order \leqq, M is a directed set filtering to the right. An integrable stochastic process $\left(X_{t}\right)$ is an amart for M_{p} if the net $\left(E X_{\tau}\right)_{\tau \in M_{p}}$ converges when $\tau \in M$ and $O_{p}(\tau) \rightarrow 0$, i.e., there exists a number L such that for every $\epsilon>0$, there exists $s \in J$ and $\alpha>0$, such that $\tau \in M, \tau \geqq s, O_{p}(\tau)<\alpha$ imply $\left|E X_{\tau}-L\right|<\epsilon$. An amart for M_{∞} is simply called an amart. Throughout this paper, if $1 \leqq p \leqq \infty$ we assume that $1 \leqq q \leqq \infty$ and $1 / p+1 / q=1$.

Proposition 1.1. Let $\left(X_{t}\right)$ be an L^{q}-bounded martingale, then it is an amart for M_{p}. Conversely, if $\left(X_{t}\right)$ is an amart for M_{p} and either an L^{1}-bounded martingale or a positive submartingale, then $\left(X_{t}\right)$ is L^{q}-bounded.

Proof. Let $\left(X_{t}\right)$ be an L^{q}-bounded martingale; then $\left(X_{t}\right)$ is L^{1}-bounded. Let $\sigma \in M$ and let t be bigger than the elements of $R(\sigma)$. Then

$$
E X_{\sigma}=\sum_{s \in R(\sigma)} E\left(1_{\{\sigma=s \mid} X_{s}\right)=\sum_{s \in R(\sigma)} E\left(1_{\{\sigma=s \mid} X_{t}\right)=E X_{t}+E\left(X_{t} e_{\sigma}\right) .
$$

Since $\left|E\left(X_{t} e_{\sigma}\right)\right| \leqq O_{p}(\sigma)$ sup $\left\|X_{t}\right\|_{q}$, the net $\left(E X_{\tau}\right)_{\tau \in M_{p}}$ converges.
Conversely, let $\left(X_{t}\right)$ be an L^{1}-bounded martingale (resp. a positive submartingale) which is an amart for M_{p}. Assume that (X_{t}) is not L^{q}-bounded. In both cases since ($\left\|X_{t}\right\|_{q}$) is an increasing net, there exists an increasing sequence $\left(r_{n}\right)$ such that if $s_{n} \geqq r_{n} \forall n$, then sup $\left\|X_{s_{n}}\right\|_{q}=\infty$. Since $\left(X_{t}\right)$ is an amart for M_{p}, there exists an increasing sequence (t_{n}) of indices, and a sequence $\left(\alpha_{n}\right)$ of numbers such that if $t_{n} \geqq r_{n} \forall n$, and if $\tau \in M$ satisfies $\tau \geqq t_{n}$ and $O_{p}(\tau)<\alpha_{n}$, then

$$
\left|E X_{\tau}-\lim _{\tau \in M_{p}} E X_{\tau}\right| \leqq 2^{-n} .
$$

Denote $Y_{n}=X_{t_{n}}$; the stochastic process $\left(Y_{n}, \mathscr{F}_{t_{n}}\right)$ is an amart for M_{p}, and $\sup \left\|Y_{n}\right\|_{q}=\infty$. Since $\left(Y_{n}\right)$ may be replaced by a subsequence, we may and do assume $\left\|Y_{n}+\right\|_{q}>n^{2} \forall n$. There exists a random variable Z_{n} such that $\left\|Z_{n}\right\|_{p} \leqq 1 / n$, and $E\left(Y_{n}+Z_{n}\right)>n$. One may require that Z_{n} be $\mathscr{F}_{t_{n}}$ measurable, positive, and that the support of Z_{n} be included in the support of $Y_{n}{ }^{+}$. Define S_{n} by $S_{n}=k$ on the set $\left\{k \leqq Z_{n}<k+1\right\}$ for $k \leqq K_{n}$, and $S_{n}=0$ on $\left\{Z_{n} \geqq K_{n}\right\}$. By a proper choice of K_{n} one has $E\left(S_{n} Y_{n}{ }^{+}\right)>n-E Y_{n}{ }^{+}$. Set $\tau(\omega)=\left\{t_{n}, t_{n+1}, \ldots, t_{n+k}\right\}$ for $\omega \in\left\{S_{n}=k\right\} ; \tau \in M, e_{\tau}=S_{n}$, and since for every $t,\{\tau=t\} \in \mathscr{F}_{t_{n}}$,

$$
E X_{\tau}=\sum_{j} E\left(1_{\left\{\tau=t_{n+j}\right\}} X_{t_{n+j}}\right) \geqq \sum_{j} E\left(1_{\left\{\tau=t_{n+j}\right\}} X_{t_{n}}\right)>n-E X_{t_{n}}-.
$$

If $\left(X_{t}\right)$ is an L^{1}-bounded martingale (resp. a positive submartingale), the previous inequality shows that the net $\left(E X_{\tau}\right)_{\tau \in M_{p}}$ is not bounded, which brings a contradiction.

An integrable process $\left(X_{t}\right)$ is a semiamart for M_{p} if there exists $s \in J$ such that the net $\left(E X_{\tau}\right)_{\tau \in M_{p}, \tau \geqq s}$ is bounded.

The amart case of the following result is due to [2], [12], [1].

Theorem 1.2. (a) Let $\left(X_{t}\right)$ be a semiamart for M_{p}. If $\lim \inf E X_{t}{ }^{-}<\infty$ (resp. $\left.\lim \inf E X_{t^{+}}<_{\infty}\right)$, then $\left(X_{t}{ }^{+}\right)\left(\right.$resp. $\left.\left(X_{t}^{-}\right)\right)$is a semiamart for M_{p}.
(b) Let $\left(X_{t}\right)$ be an L^{1}-bounded amart for M_{p}; then $\left(X_{t}{ }^{+}\right),\left(X_{t^{-}}^{-}\right)$and $\left(\left|X_{t}\right|\right)$ are amarts for M_{p}.

Proof. (a) Assume that $\lim \inf E X_{t^{-}}<\infty$; let $\beta \in R, s \in J$ and $\epsilon>0$ be such that if $\tau \in M, \tau \geqq s, O_{p}(\tau) \leqq \epsilon$, then $E X_{t}<\beta$. Let $\sigma \in M, \sigma \geqq s$, $O_{p}(\sigma)<\epsilon$. Choose t bigger than the indices $s \in R(\sigma)$, such that

$$
E X_{t^{-}}^{-}<\lim \inf E X_{t}^{-}+1
$$

Define $\tau \in M$ as follows: for $s \in R(\sigma), s \in \tau(\omega)$ if $\omega \in\{\sigma=s\} \cap\left\{X_{s} \geqq 0\right\}$; let

$$
A=\cup\left(\{\sigma=s\} \cap\left\{X_{s} \geqq 0\right\}\right)
$$

and set $\tau=t$ on A^{c}. Then $O_{p}(\tau) \leqq O_{p}(\sigma), \tau \geqq s$, and if we set $U_{t}=X_{t^{+}}$, then

$$
\begin{aligned}
E U_{\sigma}=\sum_{s \in R(\sigma)} E\left(X_{s} 1_{\left\{\sigma=s \mid \cap\left(X_{s} \geqq 0 \mid\right.\right.}\right)=E X_{\tau}- & E\left(1_{A^{c}} X_{t}\right) \\
& \leqq \beta+\liminf E X_{t}^{-}+1 .
\end{aligned}
$$

(b) Given $\epsilon>0$, choose $s \in J$ and $\alpha>0$ such that if $s \leqq \pi \in M, O_{p}(\pi)$ $<2 \alpha$, then $\left|E X_{s}-E X_{\pi}\right|<\epsilon$. Next using (a) choose $\sigma_{0} \in M$ with $\sigma_{0} \geqq s$ and $O_{p}\left(\sigma_{0}\right)<\alpha$, such that

$$
E\left(U_{\sigma_{0}}\right) \geqq \sup _{\tau \geqq s, 0_{p}(\tau)<\alpha} E U_{\tau}-\epsilon,
$$

where $U_{t}=X_{t}{ }^{+}$. Set $R\left(\sigma_{0}\right)=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$; choose $t \in J$ bigger than the elements of $R\left(\sigma_{0}\right)$. Let $\tau \in M, \tau \geqq t, O_{p}(\tau)<\alpha$; set $R(\tau)=\left\{t_{1}, \ldots, t_{k}\right\}$. Define $\tau^{\prime} \in M$ as follows: Set

$$
A=\cup_{i \leqq n}\left(\left\{\sigma_{0}=s_{i}\right\} \cap\left\{X_{s_{i}}<0\right\}\right) ; A \in \mathscr{F}_{t} .
$$

For every $i \leqq n, s_{i} \in \tau^{\prime}(\omega)$ if $\omega \in\left\{\sigma_{0}=s_{i}\right\} \cap\left\{X_{s_{i}}<0\right\}$. For every $j \leqq k$, $t_{j} \in \tau^{\prime}(\omega)$ if $\omega \in\left\{\tau=t_{j}\right\} \cap A^{c}$. Then $e_{\tau^{\prime}} \leqq e_{\sigma_{0}}+e_{\tau}$, and $\tau^{\prime} \geqq s$. Furthermore,

$$
\begin{aligned}
& U_{\sigma 0}-U_{\tau}=\sum_{i \leqq n} 1_{\left\{\sigma_{0}=s i\right]} \cap\left\{X_{s i \geqq 0} X_{s i}-\sum_{j \leqq k} 1_{\{\tau=t, j]} \cap\left\{X_{t j \geqq 0 \mid} X_{t_{j}}\right.\right. \\
& =\sum_{i \leqq n} 1_{\left\{\sigma_{0}=s i\right.} X_{s i}-\sum_{i \leqq n} 1_{\left\{\sigma_{0}=s_{i}\right]} \cap\left\{X_{s i}<0\right\} X_{s_{i}} \\
& -\sum_{j \leqq k} 1_{\left\{\tau=t_{j}\right]} \cap\left\{X_{t j \leqq}{ }^{0} X_{t_{j}}\right. \\
& =X_{\sigma_{0}}-X_{\tau^{\prime}}-1_{A} \sum_{j \leqq k} 1_{\left\{\tau=t_{j}\right]} \cap\left\{X_{t j} \geqq 0\right\}{ }^{2} X_{t_{j}} \\
& +1_{A^{c}} \sum_{j \leqq k} 1_{\left\{\tau=t_{j}\right] \cap\left\{X_{t j<0]}\right.} X_{t_{j}} \leqq X_{\sigma_{0}}-X_{\tau^{\prime}} .
\end{aligned}
$$

Hence $E U_{\sigma_{0}}-E U_{\tau} \leqq 2 \epsilon$. From the definition of $\sigma_{0}, E U_{\sigma_{0}} \geqq E U_{\tau}-\epsilon$, and therefore

$$
\left|E_{\sigma_{0}}-E U_{\tau}\right| \leqq 2 \epsilon
$$

A similar proof shows that $\left(X_{t}^{-}\right)$is an amart for M_{p}, and since $\left|X_{t}\right|=X_{t}^{+}$ $+X_{t^{-}},\left(\left|X_{t}\right|\right)$ is an amart for M_{p}.

The amart case of the following result is due to [12].
Theorem 1.3. (Riesz decomposition of amarts for M_{p}). Let (X_{t}) be an amart for M_{p}. Then X_{t} can be uniquely written as $X_{t}=Y_{t}+Z_{t}$, where $\left(Y_{t}\right)$ is a martingale and an amart for M_{p}, and $\left(\left|Z_{t}\right|\right)$ is an amart for M_{p} which converges to 0 in L^{1}.

Proof. Fix $s \in J$; let $A \in \mathscr{F}_{s}$ and $s^{\prime} \geqq s$. Given $\sigma, \tau \in M, \sigma \geqq s^{\prime}, \tau \geqq s^{\prime}$, define σ^{\prime} and τ^{\prime} as follows: Let $t \in J$ be bigger than all the elements of $R(\sigma)$ and $R(\tau)$; set $\sigma^{\prime}=\sigma$ and $\tau^{\prime}=\tau$ on $A, \sigma^{\prime}=\tau^{\prime}=t$ on A^{c}. Since $\sigma^{\prime} \geqq s^{\prime}$, $\tau^{\prime} \geqq s^{\prime}, e_{\sigma^{\prime}} \leqq e_{\sigma}, e_{\tau^{\prime}} \leqq e_{\tau}$, and since

$$
\left|E\left(1_{A} X_{\sigma}-1_{A} X_{\tau}\right)\right|=\left|E\left(X_{\sigma^{\prime}}-X_{\tau^{\prime}}\right)\right|,
$$

the net $\left(E\left(1_{A} X_{\tau}\right)\right)_{\tau \in M_{p}}$ is Cauchy uniformly in $A \in \mathscr{F}_{s}$. Hence the net $\left(E\left[1_{A} X_{\tau}\right]\right)_{\tau \in M_{p}}$ converges to $\mu_{s}(A)$ uniformly in $A \in \mathscr{F}_{s}$, and μ_{s} is finitely additive on \mathscr{F}_{s}. Let $A_{n} \searrow \emptyset, A_{n} \in \mathscr{F}_{s}$; given $\epsilon>0$, there exists s^{\prime} such that for every n,

$$
\left|\mu_{s}\left(A_{n}\right)\right| \leqq \epsilon+\left|E\left(1_{A_{n}} X_{s^{\prime}}\right)\right|
$$

Hence there exists n such that $\left|\mu_{s}\left(A_{n}\right)\right|<2 \epsilon$, so that μ_{s} is σ-additive on \mathscr{F}_{s}, and absolutely continuous with respect to P. Let Y_{s} be the Radon-Nikodym derivative of μ_{s} with respect to P; clearly $\left(Y_{s}\right)$ is a martingale. Let $\tau \in M$, $\tau \geqq s$, and denote $R(\tau)=\left\{t_{1}, \ldots, t_{n}\right\}$. Given $\epsilon>0$, choose $u_{1} \leqq \ldots \leqq u_{n}$, such that for every $i \leqq n, u_{i} \geqq t_{i}$, and

$$
\left|E\left[1_{\left\{\tau=t_{i}\right]}\left(Y_{t_{i}}-X_{u_{i}}\right)\right]\right| \leqq \epsilon / n
$$

Define $\pi \in M$ as follows: for every $i \leqq n,\left\{\pi=u_{i}\right\}=\left\{\tau=t_{i}\right\}$; then $e_{\pi}=e_{\tau}$ and $\pi \geqq s$. Furthermore,

$$
\begin{aligned}
& E Y_{\tau}=\sum_{i \leqq n} E\left(1_{\{\tau=t i]} X_{u_{i}}\right)+\sum_{i \leqq n} E\left[1_{\{\tau=t i]}\left(Y_{t_{i}}-X_{u_{i}}\right)\right] \\
&=E X_{\pi}+\sum_{i \leqq n} E\left[1_{\left\{\tau=t_{i}\right]}\left(Y_{t_{i}}-X_{u_{i}}\right)\right]
\end{aligned}
$$

Hence $\left|E Y_{\tau}-E X_{\pi}\right| \leqq \epsilon$, which proves that $\lim _{\tau \in M_{p}} E Y_{\tau}=\lim _{\tau \in M_{p}} E X_{\tau}$. For every t, set $Z_{t}=X_{t}-Y_{t}$. Since $E\left[1_{A}\left(X_{t}-Y_{t}\right)\right]$ converges to 0 uniformly in $A \in \mathscr{F}_{t}, Z_{t}$ converges to 0 in L^{1}. Since $\left(Z_{t}\right)$ is an amart for $M_{p},\left(\left|Z_{t}\right|\right)$ also is by Theorem 1.2.

Theorem 1.4. Let $\left(X_{\iota}\right)$ be an L^{1}-bounded amart for M_{p}. Then the net $\left(X_{\tau}\right)_{\tau \in M_{p}}$ converges stochastically.

Proof. Assume at first that $\left(X_{t}\right)$ is an L^{∞}-bounded amart for M_{p}. Define by induction $\left(\alpha_{n}\right), \alpha_{1}>\alpha_{2}>\ldots, \alpha_{n} \rightarrow 0$, and an increasing sequence of indices $\left(s_{n}\right)$ such that if $\sigma \in M, \sigma \geqq s_{n}, O_{p}(\sigma) \leqq \alpha_{n}$, then $\left|E X_{\sigma}-L\right| \leqq 1 / n$, where L denotes the limit of $\left(E X_{\tau}\right)_{\tau \in M_{p}}$. Set $\beta_{n}=\alpha_{n}-\alpha_{n+1}$; let (σ_{n}) be an increasing
sequence of elements of M, such that $\sigma_{n} \geqq s_{n}, O_{p}\left(\sigma_{n}\right) \leqq \beta_{n}$, and such that there exists an increasing sequence of indices $\left(t_{n}\right), \sigma_{n} \leqq t_{n} \leqq \sigma_{n+1}$ for all n. Set $V=\lim \inf X_{\sigma_{n}}, W=\lim \sup X_{\sigma_{n}}$. Given $\epsilon>0$, choose K_{0} such that $1 / K_{0}<\epsilon$. Given any $\delta, 0<\delta<\alpha_{K 0}$, there exists an index t_{k} and two $\mathscr{F}_{t_{0}}$ measurable random variables V^{\prime} and W^{\prime} such that

$$
P\left(\left\{\left|V-V^{\prime}\right|>\delta\right\}\right)<\delta, P\left(\left\{\left|W-W^{\prime}\right|>\delta\right\}\right)<\delta .
$$

We also assume that $\alpha_{k} \leqq \delta$ and $k>K_{0}$. Choose $k^{\prime} \geqq k$ such that

$$
P\left(\cup_{k \leqq n \leqq k^{\prime}}\left\{\left|X_{\sigma_{n}}-V^{\prime}\right|<2 \delta\right\}\right) \geqq 1-2 \delta .
$$

Set

$$
A=\cup_{k \leqq n \leqq k^{\prime}} \cup_{t \in R\left(\sigma_{n}\right)}\left[\left\{\sigma_{n}=t\right\} \cap\left\{\left|X_{t}-V^{\prime}\right|<2 \delta\right\}\right] .
$$

For each $n, k \leqq n \leqq k^{\prime}$, the cardinality of $\sigma_{n}(\omega)$ is strictly larger than 1 for $\omega \in B_{n} ; 1_{B_{n}} \leqq e_{\sigma_{n}}$, so that $P\left(B_{n}\right) \leqq\left\|e_{\sigma_{n}}\right\|_{1} \leqq O_{p}\left(\sigma_{n}\right) \leqq \beta_{n}$. Hence

$$
P(A) \geqq 1-2 \delta-\sum_{k \leqq n} \beta_{n} \geqq 1-2 \delta-\alpha_{n} \geqq 1-3 \delta
$$

Set for each $n, k \leqq n \leqq k^{\prime}$,

$$
\begin{aligned}
A_{n}= & \left\lfloor\cup _ { t \in R (\sigma _ { n }) } \left(\left\{\sigma_{n}=t\right\} \cap\right.\right. \\
& \left.\left.\left\{\left|X_{t}-V^{\prime}\right|<2 \delta\right\}\right)\right] \\
& \cap\left[\cap_{k \leqq j \leqq n-1} \bigcap_{s \in R\left(\sigma_{j}\right)}\left\{\left|X_{s}-V^{\prime}\right| \geqq 2 \delta\right\}\right] .
\end{aligned}
$$

Define $\tau \in M$ as follows: For every $\omega \in A_{n}, k \leqq n \leqq k^{\prime}$, let $t \in \tau(\omega)$ if $\omega \in\left\{\sigma_{n}=t\right\} \cap\left\{\left|X_{t}-V^{\prime}\right|<2 \delta\right\}$, and set $\tau=t_{k^{\prime}+1}$ on A^{c}. Hence

$$
s_{k} \leqq \tau, e_{\tau} \leqq \sum_{k \leqq n \leqq k^{\prime}} e_{\sigma_{n}}
$$

so that $O_{p}(\tau) \leqq \alpha_{k}$, and $\tau(\omega)$ has a cardinality strictly larger than 1 on a set of probability less than δ. Since $P\left(\left\{\left|X_{\tau}-V^{\prime}\right|<2 \delta\right\}\right) \geqq 1-4 \delta$,

$$
\left|E X_{\tau}-E V^{\prime}\right| \leqq 2 \delta+8 \delta \sup \left\|X_{t}\right\|_{\infty}
$$

In a similar way we define $\tau^{\prime} \in M, O_{p}\left(\tau^{\prime}\right) \leqq \alpha_{k}, s_{k} \leqq \tau^{\prime}$, such that

$$
\left|E X_{\tau^{\prime}}-E W^{\prime}\right| \leqq 2 \delta+8 \delta \sup \left\|X_{t}\right\|_{\infty}
$$

Since $\left|E X_{\tau}-E X_{\tau^{\prime}}\right| \leqq 2 / K_{0}$, we have

$$
|E W-E V| \leqq 2 \epsilon+\delta\left(6+18 \sup \left\|X_{i}\right\|_{\infty}\right)
$$

Since ϵ and δ are arbitrarily small, $V=W$ a.s. Hence the sequence $X_{\sigma_{n}}$ converges stochastically, which proves that the net X_{τ} converges stochastically when $\tau \in M, O_{p}(\tau) \rightarrow 0$. Let $\left(X_{t}\right)$ be an L^{1}-bounded amart for M_{p}, and assume that the net $\left(X_{\tau}\right)_{\tau \in M_{\nu}}$ does not converge stochastically. If $s \lim _{\tau \in M_{p}} X_{\tau}$ $=\infty$ (resp. $-\infty$) on a set of positive measure, then $s \lim X_{t}=\infty$ (resp. $-\infty$) on this set. Hence by Fatou's lemma there exists $a<b$ such that

$$
P\left(\left\{s \lim _{\tau \in M_{p}} \inf X_{\tau}<a<b<s \lim \sup _{\tau \in M_{p}} X_{\tau}\right\}\right)>0 .
$$

Set $X_{t}{ }^{\prime}=(a-1) \vee\left[X_{t} \wedge(b+1)\right]$; by Theorem $1.2\left(X_{t}{ }^{\prime}\right)$ is an L^{∞} bounded amart for M_{p}. The argument above shows that $\left(X_{\tau}{ }^{\prime}\right)_{\tau \in M_{p}}$ converges stochastically. Since for every $\tau \in M, X_{\tau}{ }^{\prime}=(a-1) \vee\left[X_{\tau} \wedge(b+1)\right]$ on a set of probability larger than $1-O_{p}(\tau)$, the net

$$
\left((a-1) \vee\left[X_{\tau} \wedge(b+1)\right]\right)_{\tau \in M_{p}}
$$

converges stochastically, which brings a contradiction.
2. Real valued case: convergence with Vitali conditions. A stochastic basis $\left(\mathscr{F}_{t}\right)$ satisfies the Vitali condition V_{p} if for every adapted family of sets $\left(A_{t}\right)$ and for every $\epsilon>0$, there exists $\tau \in I M$ such that $O_{p}(\tau)<\epsilon$ (overlap limitation), $P\left(e \lim \sup A_{t} \backslash A_{\tau}\right)<\epsilon$ (deficiency of covering limitation), and for every $t \in R(\tau),\{\tau=t\} \subset A_{t}$. (It is easy to see that one gets an equivalent formulation by replacing the condition $P\left(e \lim \sup A_{t} \backslash A_{\tau}\right)<\epsilon$ with $P\left(e \lim \sup A_{t}\right)-P\left(A_{\tau}\right)<\epsilon$. This definition is equivalent to the one given in [23]. It generalizes the definition of $V=V_{\infty}$ given in [24], [25].) In this section we characterize V_{p} in terms of essential convergence of amarts for M_{p}, and give an example of an amart for M_{p} which converges essentially.

The following theorem is a generalization of Krickeberg's results [20], [22], and of Astbury's result [1].

Theorem 2.1. Let p be fixed, $1 \leqq p \leqq \infty$. Let $\left(\mathscr{F}_{t}\right)$ be a stochastic basis; the following conditions are equivalent:
(1) $\left(\mathscr{F}_{t}\right)$ satisfies the Vitali condition V_{p}.
(2) For any process $\left(X_{t}\right)$, the stochastic convergence of the net $\left(X_{\tau}\right)_{\tau \in M_{p}}$ implies the essential convergence of X_{t}.
(3) Every L^{1}-bounded amart for M_{p} converges essentially.
(4) Every amart for M_{p} of the form $\left(1_{A_{t}}\right)$ with $\lim P\left(A_{\imath}\right)=0$, converges essentially to 0 .

Proof. (1) \Rightarrow (2). Denote $X_{\infty}=s \lim _{\tau \in M_{\nu}} X_{\tau}$, let $a>0$, and set

$$
A=e \lim \sup \left\{\left|X_{t}-X_{\infty}\right|>a\right\}
$$

Given $\epsilon, 0<\epsilon<a / 3$, there exists $s \in J, X \in \mathscr{F}_{s}$ such that $P\left(\left\{\left|X_{\infty}-X\right|>\epsilon\right\}\right)$ $\leqq \epsilon$. Choose $s^{\prime} \geqq s$ and $\alpha, 0<\alpha<\epsilon$ such that if $s^{\prime} \leqq \tau \in M$ and $O_{p}(\tau) \leqq \alpha$, then $P\left(\left\{\left|X_{\tau}-X_{\infty}\right| \geqq \epsilon\right\}\right) \leqq \epsilon$. For every $t \in J$, set $A_{t}=\left\{\left|X_{t}-X\right|>a-\epsilon\right\}$ if $t \geqq s^{\prime}$, and $A_{t}=\emptyset$ otherwise; then

$$
P\left(e \lim \sup A_{t}\right) \geqq P(A)-\epsilon .
$$

By the Vitali condition V_{p}, we can define $\sigma \in I M, \sigma \geqq s^{\prime}, O_{p}(\sigma)<\alpha$, such that

$$
P\left(e \lim \sup A_{\iota} \backslash A_{\sigma}\right)<\epsilon
$$

and $\{\sigma=u\} \subset A_{u}$ for every $u \in R(\sigma)$. Furthermore, since $A_{\sigma} \subset$ $\left\{\left|X_{\sigma}-X\right|>a-\epsilon\right\} \cup$ support e_{σ}, and P (support $\left.e_{\sigma}\right) \leqq\left\|e_{\sigma}\right\|_{p}<\alpha$, we have

$$
\begin{array}{r}
P(A)-2 \epsilon \leqq P\left(e \lim \sup A_{t}\right)-\epsilon \leqq P\left(A_{\sigma}\right) \leqq P\left(\left\{\left|X_{\sigma}-X\right|>a-\epsilon\right\}\right) \\
+\alpha \leqq P\left(\left\{\left|X_{\sigma}-X_{\infty}\right|>a-2 \epsilon\right\}\right)+2 \epsilon \leqq 3 \epsilon .
\end{array}
$$

Since this inequality holds for every $\epsilon>0, P(A)=0$ and $e \lim X_{t}=X_{\infty}$.
$(2) \Rightarrow(3)$. Let $\left(X_{t}\right)$ be an L^{1}-bounded amart for M_{p}; by Theorem 1.4 the net $\left(X_{\tau}\right)_{\tau \in M_{\nu}}$ converges stochastically. Hence if (2) holds $\left(X_{t}\right)$ converges essentially.
$(3) \Rightarrow(4)$. This implication is obvious.
$(4) \Rightarrow(1)$. A similar argument appears in $[\mathbf{1}]$.
Let $\left(A_{t}\right)$ be an adapted family of sets and let $A=e \lim \sup A_{t}$. Set

$$
\Lambda=\left\{\tau \in I M \mid \forall t \in R(\tau),\{\tau=t\} \subset A_{t}\right\}
$$

Define by induction two sequences $\left(\tau_{k}\right)$ in Λ and $\left(r_{k}\right)$ in R as follows:

$$
r_{0}=\sup \left\{P[D(\tau)] \mid \tau \in \Lambda, O_{p}(\tau)<1\right\}
$$

τ_{1} is any element of Λ such that $O_{p}\left(\tau_{1}\right)<1$ and $P\left[D\left(\tau_{1}\right)\right] \geqq r_{0} / 2$; set

$$
r_{1}=\sup \left\{P\left[D(\tau) \backslash D\left(\tau_{1}\right)\right] \mid \tau \in \Lambda, O_{p}(\tau)<1 / 2, D(\tau) \supset D\left(\tau_{1}\right)\right\}
$$

If τ_{k-1} and r_{k-1} have been defined, τ_{k} is any element of Λ such that $O_{p}\left(\tau_{k}\right)<1 / k$, $D\left(\tau_{k}\right) \supset D\left(\tau_{k-1}\right)$, and $P\left[D\left(\tau_{k}\right) \backslash D\left(\tau_{k-1}\right)\right] \geqq r_{k-1} / 2$. Set

$$
r_{k}=\sup \left\{P\left[D(\tau) \backslash D\left(\tau_{k}\right)\right] \mid \tau \in \Lambda, O_{p}(\tau)<1 / k+1, D(\tau) \supset D\left(\tau_{k}\right)\right\}
$$

Let $\tau \in \Lambda, O_{p}(\tau)<1 /(k+1), D(\tau) \supset D\left(\tau_{k}\right)$; then

$$
r_{k-1} \geqq P\left[D(\tau) \backslash D\left(\tau_{k}\right)\right]+P\left[D\left(\tau_{k}\right) \backslash D\left(\tau_{k-1}\right)\right] \geqq P\left[D(\tau) \backslash D\left(\tau_{k}\right)\right]+r_{k-1} / 2
$$

Hence $r_{k} \leqq r_{k-1} / 2$. Set

$$
C_{t}=A_{t} \backslash \cup_{u \leqq t} \cup_{k \in N}\left\{\tau_{k}=u\right\}, X_{t}=1_{C_{t}} .
$$

Let $k \in N$, and choose $t^{\prime} \in J$ such that t^{\prime} is larger than all the elements of $\bigcup_{j \leqq k} R\left(\tau_{j}\right)$. Let $\tau \in M, \tau \geqq t^{\prime}, O_{p}(\tau)<1 / k-O_{p}\left(\tau_{k}\right)$. Define $\sigma \in M$ as follows: $\sigma=\tau_{k}$ on $D\left(\tau_{k}\right), t \in \sigma(\omega)$ if $\omega \in\{\tau=t\} \cap C_{t}$ for $t \in R(\tau)$. Then $\sigma \in \Lambda . D(\sigma) \supset D\left(\tau_{k-1}\right), e_{\sigma} \leqq e_{\tau_{k}}+e_{\tau}$; hence

$$
P\left[D(\sigma) \backslash D\left(\tau_{k-1}\right)\right] \leqq r_{k-1} \leqq 2^{-k+1} .
$$

Furthermore, since

$$
X_{\tau}=\sum_{t \in R(\tau)} 1_{C t \cap\{\tau=t \mid} \leqq 1_{D(\tau) \backslash D(\tau k)}+e_{\tau}
$$

$E\left(X_{\tau}\right) \leqq 2^{-k+1}+k^{-1}$. Hence $\left(X_{t}\right)$ is an amart for M_{p} which converges essentially to 0 under the assumption (4). Hence if $B=\cup D\left(\tau_{k}\right)$,
$A \backslash B \subset e \lim \sup \left(A_{t} \backslash B\right) \subset e \lim \sup C_{t}$.
Hence $P(A \backslash B)=0$; since $D\left(\tau_{k}\right)$ increases to B, given $\epsilon>0$ there exists k such that $O_{p}\left(\tau_{k}\right)<\epsilon$, and
$P\left(e \lim \sup A_{t} \backslash D\left(\tau_{k}\right)\right)=P\left(e \lim \sup A_{t} \backslash A_{\tau_{k}}\right)<\epsilon$.
Example. Let J be a family of finite (countable) measurable partitions of (Ω, \mathscr{F}, P), and order J by refinement (i.e., $s \leqq t$ if every atom of s is a union
of atoms of t). Assume that $\sup \{P(A) \mid A \in t\}$ converges to 0 , and for every t let \mathscr{F}_{t} be the σ-algebra generated by t. Let Q be a measure of density X with respect to $P, X \in L^{q}, 1<q \leqq \infty$. Let f and g be real functions having derivatives at $0, g^{\prime}(0) \neq 0$, such that $f(0)=g(0)=0$, and set

$$
X_{t}=\sum_{A \in t} \frac{f[Q(A)]}{g[P(A)]} 1_{A} .
$$

$\left(X_{t}\right)$ is an amart for M_{p}. In the classical case where $\Omega=[0,1]^{n}$ with the Borel σ-algebra and Lebesgue measure, and where J is the family of finite (countable) partitions of $[0,1]^{n}$ into parallepipeds, $\left(\mathscr{F}_{t}\right)$ satisfies the Vitali conditions V_{p} for $1 \leqq p<\infty$ if $n>1$, and $\left(\mathscr{F}_{t}\right)$ satisfies V_{∞} if $n=1$ (see [22] p. 298). Then if $1<q \leqq \infty,\left(X_{\iota}\right)$ converges essentially to $\left(f^{\prime}(0) / g^{\prime}(0)\right) X$.

Indeed, set

$$
Y_{t}=\frac{f^{\prime}(0)}{g^{\prime}(0)}\left[\sum_{A \in t} \frac{Q(A)}{P(A)} 1_{A}\right] .
$$

$\left(Y_{t}\right)$ is an L^{q}-bounded martingale:

$$
E\left|Y_{t}\right|^{q} \leqq \frac{\left|f^{\prime}(0)\right|^{q}}{\left|g^{\prime}(0)\right|^{q}} \sum_{A \in t} \frac{\left(E\left[\left|1_{A} X\right|\right]\right)^{q}}{P(A)^{q}} P(A) \leqq\left|f^{\prime}(0)\right|^{q}\left|g^{\prime}(0)\right|^{-q}| | X \|_{q}^{q} .
$$

Hence $\left(Y_{t}\right)$ is an amart for M_{p}. Set $Z_{t}=X_{t}-Y_{t}$; let $f(x)=x f^{\prime}(0)+x F(x)$, $g(x)=x g^{\prime}(0)+x G(x)$, with $\lim _{x \rightarrow 0} F(x)=\lim _{x \rightarrow 0} G(x)=0$. Given $\epsilon, 0<$ $\epsilon<\left|g^{\prime}(0)\right|$, choose α such that $|x|<\alpha$ implies $|F(x)|<\epsilon$ and $|G(x)|<\epsilon$. Choose s such that for every $A \in s, P(A)<\alpha$ and $|Q|(A)<\alpha$. For $t \geqq s$,

$$
\left|Z_{t}\right| \leqq \sum_{A \in t} \frac{\epsilon\left[\left|f^{\prime}(0)\right|+\left|g^{\prime}(0)\right|\right]}{\left|g^{\prime}(0)\right|\left[\left|g^{\prime}(0)\right|-\epsilon\right]} \frac{|Q(A)|}{P(A)} 1_{A} .
$$

Hence if $\tau \in M, \tau \geqq s$, then

$$
E\left|Z_{\tau}\right| \leqq \frac{\epsilon\left[\left|f^{\prime}(0)\right|+\left|g^{\prime}(0)\right|\right]}{\left|g^{\prime}(0)\right|\left[\left|g^{\prime}(0)\right|-\epsilon\right]}\left[|Q|\left([0,1]^{n}\right)+\left.\|X\|\right|_{q} O_{p}(\tau)\right] .
$$

3. Banach-valued case. We now assume that the random variables X_{t} take values in a Banach space \mathscr{E}, are strongly measurable and Pettis integrable. Other definitions remain the same. Amarts for M_{p} are defined by the convergence of $\left(E X_{\tau}\right)_{\tau \in M_{p}}$ in the norm topology.

The case $J=N$ of the following result for amarts is due to [13]; see also [1].
Theorem 3.1. Suppose that the Banach space \mathscr{E} has the Radon-Nikodym property. Let $\left(X_{t}\right)$ be an \mathscr{E}-valued amart for M_{p} such that $\lim \inf E\left|X_{t}\right|<\infty$. Then X_{t} can be uniquely written as $X_{t}=Y_{t}+Z_{t}$, where $\left(Y_{t}\right)$ is a martingale and an amart for M_{p}, and $\left(Z_{t}\right)$ is an amart for M_{p} which converges to zero in Pettis norm.

Proof. Recall that the norm defined on the set of random variables measurable with respect to \mathscr{F}_{s} as $\|X\|_{p_{e}}=\sup _{A \in \mathscr{F}_{s}}\left|E\left(1_{A} X\right)\right|$, is equivalent with the Pettis norm. The argument given in the proof of Theorem 1.3 above extends to the Banach-valued case, showing that $\left(E\left[1_{A} X_{\tau}\right]\right)_{\tau \in M_{p}}$ converges uniformly in $A \in \mathscr{F}_{s}$; hence $\left(X_{\tau}\right)_{\tau \in M_{p}}$ is Cauchy in Pettis norm. In general this does not imply convergence, but μ_{s} defined by $\mu_{s}(A)=\lim E\left(1_{A} X_{t}\right)$, $A \in \mathscr{F}_{s}$, is of bounded variation because of the assumption $\lim \inf E\left|X_{t}\right|<\infty$, and is countably additive because $E\left(1_{A} X_{t}\right)$ converges uniformly in $A \in \mathscr{F}$. (cf. the proof of Theorem 1.2). Since \mathscr{E} has the Radon-Nikodym property, there exists a random variable $Y_{s} \in L^{1}(\mathscr{E})$ such that for every $A \in \mathscr{F}_{\text {s }}$, $\mu_{s}(A)=E\left(1_{A} Y_{s}\right) .\left(Y_{s}\right)$ is easily seen to be a martingale. Set $Z_{t}=X_{t}-Y_{t}$; the argument given above in the real-valued case shows that $\left(Y_{t}\right)$ and hence $\left(Z_{t}\right)$ are amarts for M_{p}, and Z_{t} converges to zero in Pettis norm.

We say that $X_{\text {, converges weakly essentially }}$ if there exists a random variable X_{∞} such that $e \lim f\left(X_{t}\right)=f\left(X_{\infty}\right)$ for every $f \in \mathscr{E}^{\prime}$. It should be pointed out that in the case $J=N$ this need not imply weak almost sure convergence, which holds under more stringent assumptions (cf. [7], [5]).

Theorem 3.2. Let $\left(\mathscr{F}_{t}\right)$ satisfy V_{p} and let \mathscr{E} have the Radon-Nikodym property. Then an L^{1}-bounded amart for M_{p} converges weakly essentially.

Proof. Applying Theorem 3.1, write $X_{t}=Y_{t}+Z_{t}$. For each $f \in \mathscr{E}^{\prime \prime}$, $f\left(Z_{t}\right)$ is a real-valued L^{1}-bounded amart for M_{p}, which converges essentially by Theorem 2.1, necessarily to zero. Hence Z_{t} converges weakly essentially to zero. It remains to discuss the convergence of the martingale $\left(Y_{t}\right)$. For each $f \in \mathscr{E}^{\prime}, f\left(Y_{t}\right)$ is an L^{1}-bounded amart for M_{p}, and hence converges essentially to a random variable depending on f, say R_{f}. At the same time, for every increasing sequence (τ_{n}) in $T,\left(Y_{\tau_{n}}\right)$ is an L^{1}-bounded martingale which converges by Chatterji's theorem ([8]; see e.g. [27], p. 112) almost surely, hence stochastically in the norm topology. Since the stochastic convergence is defined by a complete metric, this implies that $\left(Y_{\tau}\right)_{\tau \in T}$ converges stochastically, say to Y_{∞}. Therefore for each $f \in \mathscr{E}^{\prime}, f\left(Y_{t}\right)$ converges stochastically to $f\left(Y_{\infty}\right)=$ R_{f}. Thus X_{t} converges weakly essentially to Y_{∞}.

For L^{q}-bounded martingales, a stronger result is obtained. We at first prove the following maximal inequality:

Lemma 3.3. If $X \in L^{q}(\mathscr{E})$ and if $\left(\mathscr{F}_{t}\right)$ satisfies V_{p}, then given any $a>0$, $P\left[e \lim \sup \left\{\left|E^{\mathscr{F}} X X\right|>a\right\}\right] \leqq(1 / a) E|X|$.

Proof. Set $A_{t}=\left\{E^{\mathscr{F}}|X|>a\right\}, A=e \lim \sup A_{t}$, and let $\epsilon>0$; there exists $\tau \in I M$, such that for every $t,\{\tau=t\} \subset A_{\imath}, P(A \backslash D(\tau)) \leqq \epsilon$, and $O_{p}(\tau) \leqq \epsilon$. Then

$$
\begin{aligned}
& a[P(A)-\epsilon] \leqq \sum_{t \in R(\tau)} E\left[1_{(\tau=t)} E^{\mathscr{F}} t|X|\right] \leqq E|X|+O_{p}(\tau)\|X\|_{q} \\
& \leqq E|X|+\epsilon\|X\|_{q},
\end{aligned}
$$

which gives the maximal inequality when ϵ approaches 0 .

Theorem 3.4. Let $\left(\mathscr{F}_{t}\right)$ satisfy the Vitali condition V_{p}, let \mathscr{E} be a Banach space with the Radon-Nikodym property, and let $\left(X_{t}\right)$ be an L^{q}-bounded \mathscr{E} valued martingale. Then X_{1} converges essentially in the norm topology.

Proof. We prove that the net $\left(X_{\tau}\right)_{\tau \in M_{p}}$ converges stochastically in the norm topology of \mathscr{E}, and then apply the implication (1) $\Rightarrow(2)$ in Theorem 2.1, which extends to Banach-valued X_{t} without change of proof.

First in the case $p=\infty$ one shows, as in the proof of Theorem 3.2, that $\left(X_{\tau}\right)_{\tau \in T}$ converges stochastically; it follows that X_{t} converges essentially. Assume now that $1 \leqq p<\infty$; an L^{q}-bounded martingale is uniformly integrable, therefore it admits a representation $X_{t}=E^{\mathscr{F}}{ }_{t} X$, with $X \in L^{q}\left[\cup \mathscr{F}_{t}\right)$ (cf. [18]; [27], p. 113). Let Λ be the vector space of functions $X \in L^{q}$, measurable with respect to some $\mathscr{F}_{s}, s \in J . \Lambda$ is dense in $L^{q}\left(\cup \mathscr{F}_{t}\right)$, and for $X \in \Lambda, E^{\mathscr{F}} t X$ obviously converges essentially to X. Let X be in $L^{q}\left(\cup \mathscr{F}_{t}\right)$, $Y \in \Lambda$; then for every $t \in J$,

$$
\left|E^{\mathscr{F} t} t X-X\right| \leqq E^{\mathscr{F}} t|X-Y|+\left|E^{\mathscr{F}} t Y-Y\right|+|Y-X| .
$$

Hence

$$
e \lim \sup \left|E^{\mathscr{F}} t X-X\right| \leqq e \lim \sup E^{\mathscr{F}} t|X-Y|+|X-Y| .
$$

Let $a>0$; given $\epsilon>0$, choose $Y \in \Lambda$ such that $\|X-Y\|_{q}<\epsilon$. Lemma 3.3 yields that under V_{p},

$$
\begin{aligned}
P\left[e \lim \sup \left\{\left|E^{\mathscr{F}} t X-X\right|>a\right\}\right] & \leqq P\left[e \lim \sup \left\{E^{\mathscr{F}} t|X-Y|>a / 2\right]\right. \\
& +P[|X-Y|>a / 2] \leqq 2 / a\left[E|X-Y|+\|X-Y\|_{q}\right] \leqq 4 \epsilon / a .
\end{aligned}
$$

Since a and ϵ are arbitrary, it follows that $e \lim E^{\mathscr{T}} X=X$.
Our final result concerns the behavior of \mathscr{E}-valued pramarts under the condition V_{∞}. Pramarts, introduced in [24], are defined by the property

$$
s \lim _{\sigma \leqq \tau, \sigma, \tau \in T}\left|X_{\sigma}-E^{\mathscr{F}_{\sigma}} X_{\tau}\right|=0 .
$$

Recall that $M_{\infty}=T$, and stopping times now considered are single-valued. If $\left(X_{t}\right)$ is a real-valued amart, it is a pramart; however, this implication fails in every infinite-dimensional Banach space [24], [25]. Banach-valued pramarts, unlike amarts, converge strongly. Pramarts (or mils: cf. [24] and [26]) such that $\sup \left|X_{t}\right| \in L^{1}$ can be shown to be A. Bellow's uniform amarts (cf. [4], [16]).

Theorem 3.5. Let $\left(\mathscr{F}_{t}\right)$ satisfy V_{∞}, and let \mathscr{E} have the Radon-Nikodym property. A pramart (X_{t}) converges essentially in the norm topology if either (a) or (b) holds:
(a) $\left(\left|X_{t}\right|\right)$ is uniformly integrable.
(b) $\left(X_{t}\right)$ is of class (B), i.e., $\sup _{\tau \in T} E\left|X_{\tau}\right|<\infty$.

Proof. (a) From the pramart property of $\left(X_{t}\right)$, the net $\left(\left|E^{\mathscr{F}_{s}} X_{t}-X_{s}\right|\right)_{s \leqq t}$ of real-valued random variables converges to 0 in probability. Since this net is
uniformly integrable (because $\left|X_{t}\right|$ is), it converges to 0 in L^{1}. If $s_{0} \leqq s \leqq t$,

$$
\left|E^{\mathscr{F} s_{0}} X_{t}-E^{\mathscr{F} s_{0}} X_{s}\right|=\left|E^{\mathscr{F} s_{0}}\left(E^{\mathscr{F}} s X_{t}-X_{s}\right)\right| ;
$$

hence for a fixed s_{0} the net

$$
\left(E^{\mathscr{F} s_{0}} X_{t}\right)_{t \geq s_{0}}
$$

is Cauchy in $L^{1}(\mathscr{E})$, and converges to a Bochner integrable random variable $Y_{s_{0}},\left(Y_{s}\right)_{s \in J}$ is an L^{1}-bounded martingale, and if we set $Z_{s}=X_{s}-Y_{s},\left(Z_{s}\right)$ is a pramart such that $\lim E\left|Z_{s}\right|=0$ (a similar argument appears in [1]). Now observe that if $\left(Z_{t}\right)$ is any pramart, then $\left(\left|Z_{t}\right|\right)$ is necessarily a real-valued subpramart, i.e., satisfies

$$
s \lim _{\tau \geqq \sigma \rightarrow \infty} \sup \left[\left|Z_{\sigma}\right|-E^{\mathscr{J}_{\sigma}}\left|Z_{\tau}\right|\right] \leqq 0
$$

Indeed, if $\sigma \leqq \tau, \sigma, \tau \in T$, then for every $\epsilon>0$

$$
\begin{aligned}
&\left.P\left[\left\{\left|Z_{\sigma}\right|-E^{\mathscr{F}} \sigma\left|Z_{\tau}\right|>\epsilon\right\}\right]>\epsilon\right] \leqq P\left[\left\{\left|Z_{\sigma}\right|-\left|E^{\mathscr{F}_{\sigma}} Z_{\tau}\right|>\epsilon\right\}\right] \\
& \leqq P\left[\left\{\left|Z_{\sigma}-E^{\mathscr{F}_{\sigma}} Z_{\tau}\right|>\epsilon\right\}\right] .
\end{aligned}
$$

Since under V_{∞} an L^{1}-bounded subpramart converges essentially [24], $[\mathbf{2 5}], \lim E\left|Z_{s}\right|=0$ implies that $e \lim Z_{s}=0$. Also Y_{s} converges essentially by Theorem 3.3 with $p=\infty$. Hence X_{t} converges essentially.
(b) Consider at first a pramart of class $(B)\left(X_{n}\right)_{n \in N}$. Let $\lambda>0$ be given; set $A=\bigcup\left\{\left|X_{n}\right|>\lambda\right\}$, and define $\sigma(\omega)=\inf \left\{n| | X_{n} \mid>\lambda\right\}$ if $\omega \in A$, and $\sigma(\omega)=\infty$ if $\omega \in A^{c}$. Then σ is a possibly infinite stopping time. Set $X_{n}{ }^{\prime}=X_{n \Lambda \sigma}$. Theorem 2.4 [24], valid also in the Banach-valued case, shows that $\left(X_{n}{ }^{\prime}\right)$ is a pramart. By Fatou's lemma,

$$
E\left(1_{A}\left|X_{\sigma}\right|\right) \leqq \lim \inf E\left(1_{A}\left|X_{n \Lambda \sigma}\right|\right) \leqq \sup _{\tau \in T} E\left|X_{\tau}\right|
$$

Thus $E\left(\sup \left|X_{n}{ }^{\prime}\right|\right)<\lambda+\sup _{\sigma \in T} E\left|X_{\sigma}\right|$. Furthermore,

$$
P(A) \leqq \lambda^{-1} \sup _{\tau \in T} E\left|X_{\tau}\right|
$$

(see [7]), and on $A^{c}, X_{n}=X_{n}{ }^{\prime}$ for every n. Hence to prove that X_{n} converges a.s. in the norm topology, it suffices to show that $X_{n}{ }^{\prime}$ does. Since sup $\left|X_{n}{ }^{\prime}\right|$ is integrable, this follows from part (a).

Let $\left(X_{t}\right)$ be a pramart of class (B). Choose a sequence of indices $\left(s_{n}\right)$ such that $s_{n} \leqq \sigma \leqq \tau$ implies

$$
P\left(\left\{\left|X_{\sigma}-E^{\mathscr{F}_{\sigma}} X_{\tau}\right|>1 / n\right\}\right)<1 / n,
$$

and let $\left(\sigma_{n}\right)$ be an increasing sequence of elements of T, such that $s_{n} \leqq \sigma_{n}$ for all n. Set $X_{n}{ }^{\prime}=X_{\sigma_{n}}$, and $\mathscr{G}_{n}=\mathscr{F}_{\sigma_{n}} ;\left(X_{n}{ }^{\prime}, \mathscr{G}_{n}\right)$ is a pramart of class (B). Hence $X_{n}{ }^{\prime}$ converges a.s. and stochastically in the norm topology. Therefore $\left(X_{\tau}\right)_{\tau \in T}$ converges stochastically in the norm topology. If $\left(\mathscr{F}_{t}\right)$ satisfies V_{∞}, we deduce the strong essential convergence of X_{t}.

Finally, we observe how our results extend to Orlicz spaces. Let us first recall some properties of Orlicz spaces (see [27], Appendix).

Let $\varphi: R^{+} \rightarrow R^{+}$be an increasing left-continuous function which is zero at the origin, such that $\lim _{s \rightarrow \infty} \varphi(s)=\infty$. Let ψ be the function inverse to φ, i.e., defined by $\psi(u)=\sup \{s \mid \varphi(s)<u\}$ for every $u>0$. Let Φ (resp. Ψ) be the indefinite integral of φ (resp. ψ), i.e.,

$$
\Phi(t)=\int_{0}^{t} \varphi(s) d s
$$

Φ is said to be conjugate to Ψ. Let L^{Φ} be the set of random variables for which there exists a number $a>0$ such that $E\left[\Phi\left(a^{-1}|X|\right)\right] \leqq 1$, and set

$$
\|X\|_{\Phi}=\inf \left\{a \mid a>0, E\left[\Phi\left(a^{-1}|X|\right)\right] \leqq 1\right\}
$$

The normed vector space L^{Φ} is a Banach space. There exists a constant $c>0$ such that $c\|X\|_{1} \leqq\|X\|_{\Phi}$ for every random variable X of L^{Φ}. Furthermore, if Φ and Ψ are conjugate Young functions, for every pair $X \in L^{\Phi}$, $Y \in L^{\Psi}$, the product $X Y$ is integrable and satisfies the inequality $\|X Y\|_{1} \leqq$ $2\|X\|_{\Phi}\|Y\|_{\Psi} . \Phi$ satisfies Δ_{2} if $\sup \Phi(2 t) / \Phi(t)<\infty$.

An integrable stochastic process $\left(X_{t}\right)$ is an amart for M_{Φ} if the net $\left(E X_{\tau}\right)_{\tau \in M_{\Phi}}$ converges when $\tau \in M$ and $O_{\Phi}(\tau)=\left\|e_{\tau}\right\|_{\Phi} \rightarrow 0$. A stochastic basis $\left(\mathscr{F}_{t}\right)$ satisfies the Vitali condition V_{Ψ} if for every adapted family of sets $\left(A_{t}\right)$ and for every $\epsilon>0$, there exists $\tau \in I M$ such that $O_{\Psi}(\tau)<\epsilon, P\left(e \lim \sup A_{t} \backslash\right.$ $\left.A_{\tau}\right)<\epsilon$, and for every $t \in R(\tau),\{\tau=t\} \subset A_{t}$.

It is easy to see that the statements and proofs of the theorems remain the same if the real L^{p} and L^{q} spaces are replaced by Orlicz spaces L^{Φ} and L^{Φ}, and Φ satisfies the condition Δ_{2}.

References

1. K. Astbury, On Amarts and other topics, Ph.D. Dissertation, Ohio State University, (1976). Also Amarts indexed by directed sets, Ann. Prob., 6 (1978), 267-278.
2. D. G. Austin, G. A. Edgar and A. Ionescu Tulcea, Pointwise convergence in terms of expectations, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 30 (1974), 17-26.
3. J. R. Baxter, Pointwise in terms of weak convergence, Proc. Amer. Math. Soc. 46, (1974), 395-398.
4. A. Bellow, Les amarts uniformes, C. R. Acad. Sci. Paris, 284 Série A, 1295-1298.
5. A. Brunel and L. Sucheston, Sur les amarts à valeurs vectorielles, C. R. Acad. Sci. Paris, 283 Série A, 1037-1040.
6. R. V. Chacon, A stopped proof of convergence, Adv. in Math. 14 (1974), 365-368.
7. R. V. Chacon and L. Sucheston, On convergence of vector-valued asymptotic martingales, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 33 (1975), 55-59.
8. S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem, Math. Scand. 22 (1968), 21-41.
9. J. Dieudonné, Sur un théorème de Jessen, Fund. Math. 37 (1950), 242-248.
10. J. L. Doob, Stochastic procésses (Wiley, New York, 1953).
11. A. Dvoretzky, On stopping times directed convergence, Bull. Amer. Math. Soc. 82, No. 2 (1976), 347-349.
12. G. A. Edgar, and L. Sucheston, Amarts: A class of asymptotic martingales, J. Multivariate Anal. 6 (1976), 193-221; 572-591.
13. The Riesz decomposition for vector-valued amarts, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 36 (1976), 85-92.
14. - On vector-valued amarts and dimension of Banach spaces, Zeit. Wahrscheinlichkeitstheorie verw. Gebiete 39 (1977), 213-216.
15. Martingales in the limit and amarts, Proc. Amer. Math. Soc. 67 (1977), 315-320.
16. N. Ghoussoub and L. Sucheston, A Refinement of the Riesz decomposition for Amarts and semiamarts, J. Multivariate Analysis, 8 (1978), 146-150.
17. C. A. Hayes and C. Y. Pauc, Derivations and martingales (Springer-Verlag, New York, 1970).
18. L. L. Helms, Mean coniergence of martingales, Trans. Amer. Math. Soc. 87 (1958), 439-446.
19. U. Krengel and L. Sucheston, Semiamarts and finite values, Bull. Amer. Math. Soc. 8.3, 745-747. See also Advances Prob. 4 (1978), 197-265.
20. K. Krickeberg, Convergence of martingales with a directed index set, Trans. Amer. Math. Soc. 83 (1956), 313-337.
21. -_ Stochastische Konvergenz von Semimartingalen, Math. Z. 66 (1957), 470-486.
22. - Notwendige Konvergenzbedingungen bei Martingalen und verwandten Prozessen, Transactions of the Second Prague conference on information theory, statistical decision functions, random processes [Prague, 1959], (1960) 279-305, Prague, Publishing House of the Czechoslovak Academy of Sciences.
23. K. Krickeberg and C. Pauc, Martingales et dérivation, Bull. Soc. Math. France 91 (1963), 455-544.
24. A. Millet and L. Sucheston, Classes d'amarts filtrants et conditions de Vitali, C. R. Acad. Sci. Paris, 286 Série A, 835-837.
25. - Convergence of classes of amarts indexed by directed sets, Can. J. Math., to appear.
26. A. G. Mucci, Another Martingale convergence theorem, Pacific J. Math. 64 (1976), 539-541.
27. J. Neveu, Discrete parameter martingales (North Holland, Amsterdam, 1975).

Ohio State University, Columbus, Ohio

[^0]: Received May 4, 1978. The research of the second author was supported by the National Science Foundation.

