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LIMIT POINT CRITERIA FOR DIFFERENTIAL 
EQUATIONS, II 

DON HINTON 

Introduction. We consider here singular differential operators, and for 
convenience the finite singularity is taken to be zero. One operator discussed 
is the operator L defined by 

(0.1) L(y) = (-i)n(qoy(n)Yn) + ( - l r - H ^ " 1 ^ - ^ + . . . + q„y, 

where go > 0 and the coefficients qt are real, locally Lebesgue integrable func
tions defined on an interval (a, b). For a given positive, continuous weight 
function h, conditions are given on the functions qt for which the number of 
linearly independent solutions y of L(y) = \hy (Re X = 0) satisfying 

j h\y\2 < oo 
J a 

is ^ n. These results parallel those of [2] where the singularity is at infinity. 
In fact, the approach used will be to modify the results of [2] so as to obtain 
criteria for finite and infinite singularities from a single framework. This work 
solves a certain deficiency index problem which we now describe. 

Denote the Hilbert space of all complex valued measurable functions y such 
that 

£/*bi2<o) 

by ££<i(h, a, b), and define the quasi-derivatives y[i] (i = 0, . . . , 2n) by: 
y[i] = 3,(0 (t = 0, . . . , n - 1), y[n] = q0y

w, and yn+*l = g<?<*-*> - (y^+'-^y 
(i — 1, . . . , n). A function y is said to be L-admissible provided the quasi-
derivatives y[i] (i = 0, . . . , 2n — 1) exist and are absolutely continuous on 
compact intervals (then L(y) = yVnl). Let 2f be the set of all L-admissible 
y e^2(h;a, b) such that (l/h)L(y) £ £?2(h; a, b), and let T be the restric
tion of (l/h)L to Qf. Denote by «SV the set of all y G £iï which have compact 
support interior to (a, b), and let 7Y be the restriction of T to @Q. Then as in 
[3, § 17.3, 17.4] where h = 1, it may be shown that 7Y is a densely defined 
symmetric operator in oSf2(^; a, b); hence admits a closure T0, and T0* = T 
[3, § 17.4]. 
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The deficiency indices of T0 are (»i, n2) where nv is number m of linearly 
independent solutions in ^2{h\a,b) of L(y) = \hy (X = i for v = 1 and 
X = — i for i; = 2). As in [3, § 14.7, 17.5] where h = 1, it may be shown that 
the number m is actually the same for all non real X, and m ^ n in either of 
the following two cases: a = 0, 6 < oo, and 1/go, qi, . . . , qn are Lebesgue 
integrable on (e, fr) for each e > 0 or — oo < a, b = co, and 1/go, £i, . . . , gw 

are Lebesgue integrable on (a, d) for each d > a. Thus we give conditions 
under which the deficiency indices of T0 are (n, n). The case ri\ = n2 = w is 
called the /im^ ^ow^ case. 

In section 1 the necessary modifications of section 2 of [2] are given, and in 
section 2 these results are applied to a singularity at zero. To derive limit 
point criteria at zero from limit point criteria at infinity, it is necessary to 
consider a more general operator than (0.1). This operator is defined in 
section 1. 

1. Singularities at infinity. Let r, H, pt (i = 0, . . . , n) be real functions 
on a ray [c, oo ) which are Lebesgue integrable on compact intervals. In addi
tion, let r > 0, H > 0, and p0 > 0 satisfy 

(1.0) H, r, and^o are respectively n — 1, n — 1, and n times continuously 
differentiable. 

For a sufficiently differentiable function y, we define the quasi-derivatives 
y M by: 

(y ni = 0 
yin = )ryV-W} i = 1, . . . , n - 1. 

Wo?1""11', * = w, 
(r{^,_n3;t2^-/] _ 3,[<-i]'}, i = w + 1, . . . , 2n - 1. 

The operator 5 is defined by 

S(y) =H-i{pnyM -yV«-v'}. 

A function y is said to be S-admissible provided the quasi-derivatives y[i] 

(i = 0, . . . , 2n — 1) exist and are absolutely continuous on compact sub-
intervals of [c, oo ). For r = 1, S reduces to the familiar case 

(l.i) HS(y) = (-Dn(PoywYn) + (-Dn-l(Pn-iy{n-l)Yn-l) + . . . + A J . 

The equation 5(y) = \y + m has the vector formulation 

(1.2) Y' = AY+ [0, . . . , 0 , - # m ] r 

where F = (yW, . . . , y2»-1!)2, and 
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I 0 1/r 

A = 

• 

}/A 0 
0 I l/rp0 

Pi | 0 -1/r 

Pn-1 

• 
'-\/r 

- pn-\H 

The Lagrange identity for S is 

S(y)z - yW) = H~l\y, z]' 

where 

0 —' 

(1.3) [y, z] = £ {y[ fls' [ j ] - [ 2 K - i - l ] y * - «-«fi a} 

If S(y) = \y -\- m, then it is easy to verify that the quadratic expression 

yltor-t-UyW (1.4) - (Vy + «)fij + ± bW |2 + S ^.b1" |s = { Z 

holds. Our concern in this section is with the solutions of S(y) = Xy + m 
which are in ^2(H; c, co). 

Much of our analysis will depend on certain a priori bounds on the S-
admissible members of oSf2(H; c, co). To establish these bounds we use a non-
homogeneous version of Theorem 1.1 of [2]. Consider the system of differential 
equations. 

(z) X' = wBX + [0, . . . , 0 , / r , 

where X = (xi, . . . , xm)T is a column vector, / and the entries of the m X m 
matrix B = {bij} are measurable, locally integrable, complex-valued functions 
on [c, co), and w is a positive, continuous function on [cf co). In addition, 
suppose B satisfies 

f 0, if j > i + 1 
Dtl W , ifi = * +1. 

THEOREM A. Suppose X is a solution of (z) and that for some k ^ m, btj is 
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bounded on [c, oo ) for all i ^ k. Let 

I{ = Ii(t) = max i 1, I w\xi\2ds} (i = 1, . . . , m) 

and suppose 7i (oo ) < oo. 
(i) If k < m, then for i = 1, . . . , k, the following order relations hold as 

t —> oo ; 

J. = 0(I<+1(«-i>/«) and \xt\
2 = 0(Ii+S2i-v/2i). 

(ii) If k = m and 

J»oo 

w-x\i \2ds < o o , 

then for i = 1, . . . , m and as t-^co, It = 0(1) and \xi\2 = 0(1). 

The proof of part (i) of Theorem A is identical to the proof of part (i) of 
Theorem 1.1 of [2]. The proof of part (ii) differs from the proof of part (ii) of 
Theorem 1.1 only in the consideration of the integral 

f ' 

which now contains the addition term 

I f(bm-l,m)Xm-l. 

However, 

J /(*m-l,i»)*m-l < (J ^~1 | / i2j \J H*m_i|2j 

= 0(ImJ) = 0(lj). 

The proof now proceeds as that of part (ii) of Theorem 1.1. We refer the reader 
to [2] for the details. 

We assume that p is a positive function with n continuous derivatives. The 
function g is defined by g = (rH)1/2n and we consider the conditions: 

I . I Ai 

(1.5) ^ ^ - = 0(1) a s / ->oo , i = l , . . . , n - L 
Pog 

. An 

(1.6) For some K > 0, - f ^ r 1 < K. 
Pog 

(1.7) ^ = 0 ( l ) a n d ^ r ^ + ^ + J ^ i l = 0 ( l ) a s / - o o . 
tg g L P g Po J 

Jioo An— 2 
iB-—dt = aa. 

e rpo 
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(1.9) As *-> oo, 

[gP*n-2/rpo]a) = Oig'+ip^-v/r'+ip'o), j = 1, . . . , n - 1, 
and 

[p4n/po]a) = Od'p^'/r'Po), j = 1, . . . , ». 

(1.10) For j = 1, . . . , n - 1, r<'> = 0(gj/rj'lp2j) as * -> oo. 

Note that in (1.9) and (1.10), the order relations are equalities for j = 0. The 
vector spaces 2^ ^i(X), and F2(X) are defined by 

^s = {y\y is 5-admissible and y £ ^\(H; c, oo )}, 

^i(X) = {y\S(y) = X^andy e&2(H;c,oo)}, 

F2(X) = {z\S(z) = Xsandz Ç i f 2 ( i f ; c, 00 )}. 

In order to apply Theorem A, we transform the equation (1.2) by X = MY 
where M is the diagonal matrix 

( a-n 2w+l a_2rc+l An—I \ 
nr J* 1 <T « « - 1 3 a-w+1 2n- l g P g P I 

M = diagonal ) g p, g p,...,g p ,^—7 , . . . , - 7 ^ ( 

with a = (2w — l ) / 2 . The vector X satisfies 

(1.11) Xf = (g/rp2)BX + [0, . . . , 0, - r ^ p ^ S w / j o ] ' 

where B = {rp2/g)[MAM~l + M'M'1]. Calculations show B = \btj) satisfies 
biti+i = ± 1 , bu is bounded (by (1.7)), 

bn+i>n+i-i = rpiPAi/p0g
u (i = 1, . . . , n - 1), 

bin,! = r(Pn — ^H)pAn/pGg2n, and otherwise b^ = 0. The integral relations 
between X = (xi, . . . , x2n)

T and Y are 

(1.12) ( g / r p 2 ) N s d 5 = <• ' / , 4 

.4 2(n-*+l) 

- 7 — b [ i - 1 ] l 2 ^ , * = i , . . . , « , 
i -4 2(/i- i+l) 

fi—^-5 b h ~ 1 ] | 2 ^ , i = n + 1, . . . , 2*. 

For Lemma 1.1 below we need the functions G& and Hk which for fixed t are 
defined for c S s ^ t. Their definitions are: 

[ 4w-2 "1 

Gk(s) = — [rGk-i], k = 1, . . . , n - 1, 

aW-i{<i-w£g}. 
Ht(s) = £ [ r H U ] , * = 1 , . . . , » - 1 . 
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A property of Gk which follows from (1.7), (1.9), and CI.10) that we shall need 
is that for some ckj 

( i+l+k 4 n - 2 - 2 f c - 2 ; \ 
2 fjTT^ j , j = 0 , . . . , n - * - l , 

where the constant in (1.13) is independent of t. 
For k = 0 in (1.13), 1 S j S n — 1 (for k = j = 0 we may take c00 = 1), 

and from (1.7), (1.9), and s S t, 

c-o,«=s(i)|Sa-5/«r-|;[^] 
3 / 1 F - " + 1 4w-2 -2 M ~| \ 

~ L r<+1£o J ( S ) h °\ sg(s) J 

-4-Hr M 
and the constant in the order relation is independent of t. 

Assuming now (1.13) holds for some &, 0 S k < n — 1, we have by applica
tion of (1.10) that 

7k+1
u) = (rGk)

u+l\ j = 0,...,n 

- f M 
_ v ni I S P 

M+l+fc ^4w-2-2fc-2w 

( „j+k+2 4w-4 -2 fc -2 j \ 

g ^ ) • 

and again the constant in the order relation is independent of /. This induction 
establishes (1.13), and in a similar manner we may show there are constants 
dkj such that 

j+k+l 4n—2j—2k—2 

(1.14) \Hk
U)\ < dkj

g j ^ , j = 0, . . . , n - k - 1, 

and the constant djk is independent of /. For a later integration by parts, we 
note that Gk(t) = Hk(t) = 0 for k = 0, . . . , n - 2. 

LEMMA 1.1. Suppose conditions (1.0), (1.5), (1.7), (1.9), and (1.10) hold and 
assume y and z are nontrivial members of 2)'#. Let 

s*t 4n s*t An 

Ji = Ji(f) = -fa \yM\2 and Jt = Mt) = j-i \z™\\ 
Jc rpo Jc rpo 
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Then for i = n, . . . , 2n — 1, 

w I f>. *wG»ds l * 0([JiJtY) ast^co 

for all j , k such that i + j + k — 2« — 1, awrf 

(ii) {'ylt]yu]Hkds 0(7: (2»-l) /2n ) as t->co 

for all j , k such that i+j + k = 2n — 1. 

Proof. Applying part (i) of Theorem A to (1.11), we have from (1.12) that 
for 1 g i g n (note that g2n/r = H), 

r*t 4Î-4 2 ( B + 1 - { ) s*t „ 

<U6) J «—*; |y"-"|*& - J] A |*,| & 

=4I>-'T"*) 
= 0(/i (w-1) /w) = 0 ( 7 0 , 

and similarly for z and 1 ^ i ^ », 

J
*t 4i—4 2(n+l—0 

£ — * - — i*1*-11!*^ = o(/2
(B-1,/re) = o ( / 2 ) . 

Consider now (i). With j + k = » — 1, it follows from (1.13) that 

(1.17) j JV* ]SwGtffc| < J ' \y[n]z[i]\0 ( 

At?» 

k+1 4n-2-2fc 
g P 

rpo 
ds 

ln]\P g i M 
1 2 

r i)-
Since j ^ » — 1, and application of the Cauchy inequality and (1.16) to the 
right hand side of (1.17) establishes (i) for i = n. 

Assume now (i) holds for some i, n 5£ i < 2n — 1 and that (i + 1) + 
7 + * = 2n - 1. Then 

(1.18) f ,H+UsbJ / ""^"f t * = f H/> 
I C 

= I rpi+i^y 

,[2»—i—il r<j ' , - i i ] 
y \su'Gkds i+l-nj 

l*n-i-»-UlGkds + 0 ( 1 ) 

+ f\[i]{rz[1]Gk\'ds 

Since {rs^G*}' = z[j+l]Gk + z^G^+i, the induction hypothesis applies to the 
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last integral on the right hand side of (1.18). From (1.5), (1.13), and i + 1 + 
j + k = 2n — 1 we obtain 

ÏÛ+1-n) 1̂  2 I T I 
P rpo I 

I 2(2n-i-l)(i+l-n) *i„n-i \ 

-o(« ^ , y — i | . ^ - H w | ) . 

Hence an application of the Cauchy inequality, (1.15), and (1.16) yields that 
the first integral on the right hand side of (1.18) is 0([ / i / 2 ] 1 / 2 ) . This inductive 
step completes the proof of part (i). Part (ii) follows from a similar inductive 
argument. 

LEMMA 1.2. Suppose (1.0) holds, y £ &s, and S(y) = \y + m with Re X = 0 
and (pAnm/p0) G &\(H\ c, oo ). 

(i) If (1.5), (1.6), (1.7), (1.9), and (1.10) hold, then 

J
»oo 4f-4 2(n-i+l) 

— g - — \yli~1] \2ds<™, * = i », 
C I 

J
»oo 4w 

• ^ b w l 2 ^ < o o , 
c rpo 

and for i = 1, . . . , n, 

(1.21) |g(2«+i-2^)/2p2i-i:y[t-i]| = 0 ( 1 ) ast->oo. 

(ii) 7/ (1.5) awd (1.7) hold, and (1.6) w replaced by \(pn - H)pmr/p0
2n\ ^ K 

(K > 0), then in addition to (1.19) and (1.21) we have for i = n + 1, . . . , 2n, 

r4 i -4 2(n- t+l) 

e—fpT— \yli-1]\2ds< co 

and 

(1.23) |g(2n+i-2i)/2p2*-i:y[i~i]/^0| = 0 ( 1 ) ast->oo. 

Proof. I t is sufficient to have y ^ 0, and from (1.15), (1.19) will follow from 
(1.20). Let Ji be as in Lemma 1.1. From (1.4) and an integration by parts, 

(1.24) J [ - (Xy + w)flj + ̂ - + £ ^ - ^ [ < ï J (1 - s/ty^/pàds 

= 0(1) - f £ y ^ ^ y f f . C ^ . 

By part (ii) of Lemma 1.1, the right hand side of this equation is 0(Ji ( 2 n-1 ) / ( 2 n )). 
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Also by (1.5) and (1.15) for 1 g i ^ n - 1, 

J V . b ' Y a - s/tn^/p^ds = o {fe^Ç^ \y[i]fds) 

= o{jfn-1)ln) = o(y1
<2re-1,/2''). 

By (1.6), and (pinm/p0) G J?z(H; c, oo) , there is a X i > 0 such t ha t 

Re J " [(-\H + pn)\y\2 - mHy](l - s/t)n(pin/p0)ds > -KL 

Using these inequalities in (1.24) gives 

f (p47^o2)buT(i - s/tfds = o(/i(2w-1)/2w). 

Applying Lemma 2.3 of [2] with F = p4n\y[n]\2/rp0
2 now yields J i ( o o ) < oo. 

Applying pa r t (i) of Theorem A to the system (1.11) and using 

/•oo 

J (g/rp2)\xn+1\
2ds = Ji(co) < oo 

gives \xt\ = 0 ( 1 ) as / —> oo for Î = 1, . . . , n. From the t ransformation 
X = MY, this gives (1.21). 

For the proof of pa r t (ii), we need only note t h a t with B as in (1.11), pa r t (ii) 
of Theorem A applies to give for i = 1, . . . , 2n, 

/•oo 

I (g/rp2)\%i\2ds < oo and \xt\ = 0 (1 ) ast-^co. 

Lemma 1.2 has a number of conclusions independent of our use of it. 
A straightforward application is to consider (1.1) with p0 = 1 and H = 1. 
Choosing p = 1, we may conclude tha t if the coefficients in (1.1) are bounded, 
then [S(y) — Xy] and y both in «if 2 (1 ; c, co ) implies t ha t 

J " b U ~ 1 ] | 2 ^ < °° and \y[i-1]\ = 0 ( 1 ) as / -> oo 

for i = 1, . . . , 2n. T h e reader may compare this with the lemmas in [1, pp . 
1425 and 1428]. 

For the equat ion (H = 1) 

(1.25) (-iyy2w) +py = o, 

Lemma 1.2 applies with p = tA provided A ^ 1/2. Hence we m a y conclude 
t h a t if -p(t) ^ K/tAnA(K > 0 ) , then an i f 2 (1 ; c, oo ) solution y of (1.25) also 
satisfies for i = 0, . . . , n — 1, 

(1.26) J V ' V 0 ! ^ < °° and t(U+1)A\yU)\ = 0 ( 1 ) a s / - > o o ; 
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while if \p(t)\ ^ K/tmA, then (1.26) holds for i = 0, . . . , 2n - 1. In this case 
(1.26) also holds for i = 2n since ^4n+1)A\y(2n)\ = tAnA\p\tA\y\ and t8nA\y^\2 = 
/8wA|£|2|;y|2. 

THEOREM 1.1 Suppose conditions (1.0) and (1.5)—(1.10) /w/d and Re X = 0. 
Then dim Fi(X) = dim F2(X) ^ w mï/& equality for X 7e 0. 

Proof. The correspondence 3; —> J is one-one from Fi(X) onto F2(X); thus 
dim Fi(X) = dim F2(X). Suppose to the contrary that dim Fi(X) > n. Then 
the proof of Lemma 2.1 of [2] applies to yield a y G Vi(\) and 2 G F2(X) such 
that \y, z] = 1. From (1.3) then follows 

(1.27) f (1 - s/t)n-1(gP
i''-2/rPo)ds 

= f z &[ v**--11 - y ^ ^ K i - s/tri(gP
4*-i/rp0)ds. 

*JC Z'=0 

By part (i) of Lemma 1.1 (with k = 0), the right hand side of (1.27) is 
0([Ji /2]1 / 2) , where J i and J\ are as in Lemma 1.1. By Lemma 1.2, Jx(oo ) < 00 
and J2(oo) < 00 ; thus the right hand side of (1.27) is bounded independent 
of /. This is a contradiction to (1.8) and the inequality is proved. The equality 
follows from our earlier remark that dim Vi(\) ^ n if X is not real. 

COROLLARY 1.1. Suppose S is as in (1.1), H = t8, and p0 = P (rj ̂  2n + ô). 
If Re X = 0, \pt\ = 0 ( f ) ( U i g » - 1), -£„(*) ^ ^ » (X > 0), where 

7i = [U + r)(4n - 4i - 2) + 4iô]/(4» - 2) (i = 1, . . . , n), 

//ze?z dim Fi(X) ^ w m£fe equality for Â ^ 0 . 

Proof. It may be verified that conditions (1.5)—(1.10) hold with p = /A, 
A = (7, - 1 - 5/2»)/(4« - 2). 

For ( — 1)W3/(2W> + py = \Hy Corollary 1.1 yields the limit point condition 
at infinity (H = t*) if -p{t) S X^(i+*)/(2»-i)< The 2nd order equation 
(Py')' + py = ^Hy is in the limit point condition at infinity (H = t5) if 
V ^ 2 + ô and £(/) ^ Kt2+2d~v. This reduces to the well-known criterion 
£ (0 S Kt2 for 3/" + py with H = 1. We note that Corollary 1.1 requires that 
po can not be too large with respect to the weight function H. 

Corollary 1.1 indicates that with a large weight function H, the coefficients 
pi (i = 1, . . . , n) also may be large and preserve the inequality dim Vi(\) ^ n. 
This conclusion parallels the work of Walker [4], where the asymptotic 
behavior of solutions of S(y) = X;y is given for a large weight function H. 

2. Singularities at zero. We return now to equation (0.1) where a = 0. 
Let the coefficients qt be as before and assume also 1/go, <Zi, . . • , qn are 
Lebesgue integrable on (e, b) for each e > 0. Let h be a positive function (0, b). 
The quasi-derivatives y[i] are defined as in the introduction. The equation 
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L(y) = \hy has the vector formulation ¥' = A Y where Y = (yW, . . . ,<y[2»-i])r 

and A is analogous to A in section 2. We transform F by Z(t) = — F ( l / / ) ; 
then Z satisfies (1.2) where r = t\ p0(t) = q0(l/t), H(t) = ( l / / 2 ) ^ ( l / 0 , 
m = 0, and pt{t) = (l/t2)qt{l/t) for i = 1, . . . , ». 

If zi denotes the first component of Z, then 

Pi?(/)|2l(/)|
2<& = Pft(*)b(*)|f<k; 

hence dim Fi(X) is the number of linearly independent solutions y of L(y) = 
Xhy in &2(h;0,b). 

THEOREM 2.1. Suppose q0 and h have n and n — 1 continuous derivatives, 
respectively and there is a positive n times continuously differentiable function a on 
(0, b) such that the following conditions hold. 

(2.1) ^ - ^ = 0(1) ass->0, i = l , . . . , n - l . 

(2.2) For some K > 0, -3£— < K. 
qoh 

(2.3) ^ = 0(D «** ̂ [ï9 + ïf + 1f] = 0(l) ass-,0. 
Co 

nb 7 l/2n_4n-2 

'o go 

(2.5) i ^ - > 0 , 

ûfo = 00 

r 27 l/2n An—2 , -, ^ / 2 7 ( j+l ) /2n 4n-2-2j / \ • i i 

^ j M ' o- /go] = 0(5 Aw o- Vgo), 7 = 1, . . . , n - 1, 

and 

~i Win/qo] = 0(^/2V"-27<?o), j = 1 n. 

27&e» //ze number of linearly independent ££\{h\ 0, b) solutions y of L(y) = Xhy 
(Re X = 0) is ^n with equality for X 9e 0. 

Proof. Let p(/) = c ( l / 0 . Then calculations show that (1.5)-(1.9) follow 
from (2.1)-(2.5) respectively. Since r = t2, condition (1.10) reduces to 
showing 

/ = 0(Mp) a n d l = 0(^p) aŝ oo. 

However, both of these order relations follow from a2/sh1/2n = 0(1) as 5 —» 0 
which follows from (2.3). Thus Theorem 1.1 applies and the proof is complete. 
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COROLLARY 2.1. If h = s8, q0 = s" (v ^ 2n + ô), Re X = 0, \qx\ = 0(y") 

a5 5 -> 0 (1 g i ^ w - 1), -3n(0 S Ks^n(K > 0), wAere 

yi = [U + rj(4:n - M - 2) + 4iô]/(4» - 2) (i = 1, . . . , n), 

then the equation L(y) = \hy has at most n linearly independent solutions in 
^ 2 ( A ; 0 , 6 ) . 

Proof. If a is chosen by a = sA, A = (rj — 1 — h/2n)/{4n — 2), then 
conditions (2.1)-(2.5) hold. 

Application of Corollary 2.1 to {s^y'Y + qy yields the limit point condition 
at 0 (H = s8) if n ^ 2 + Ô and q ^ i£s2+20-". For i ï s 1, this requires 77 ̂  2 
and thus no criterion for y" + 53/ is obtained. Similar restrictions are imposed 
on higher order equations. 
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