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Abstract

Let K be a complete discrete valuation field of characteristic zero with residue field kK of characteristic
p > 0. Let L/K be a finite Galois extension with Galois group G = Gal(L/K) and suppose that the induced
extension of residue fields kL/kK is separable. Let Wn(·) denote the ring of p-typical Witt vectors of
length n. Hesselholt [‘Galois cohomology of Witt vectors of algebraic integers’, Math. Proc. Cambridge
Philos. Soc. 137(3) (2004), 551–557] conjectured that the pro-abelian group {H1(G,Wn(OL))}n≥1 is
isomorphic to zero. Hogadi and Pisolkar [‘On the cohomology of Witt vectors of p-adic integers and a
conjecture of Hesselholt’, J. Number Theory 131(10) (2011), 1797–1807] have recently provided a proof
of this conjecture. In this paper, we provide a simplified version of the original proof which avoids many
of the calculations present in that version.
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1. Literature review

Let K be a complete discrete valuation field of characteristic zero with residue field
kK of characteristic p > 0. Let L/K be a finite Galois extension with Galois group G =

Gal(L/K) and suppose that the induced extension of residue fields kL/kK is separable.
Let Wn(·) denote the ring of p-typical Witt vectors of length n. In Hesselholt’s
paper [1] it is conjectured that the pro-abelian group {H1(G,Wn(OL))}n≥1 is isomorphic
to zero, and the conjecture is reduced to the case where L/K is a totally ramified cyclic
extension of degree p. Let σ be a generator of G and let t := vL(σ(πL) − πL) − 1 denote
the ramification break (see [3, Ch. V, Section 3]) in the ramification filtration of G.
Recall that t does not depend on the choice of generator σ.

Hesselholt shows his conjecture holds for extensions with t > eK/(p − 1). Hogadi
and Pisolkar have recently provided a proof of the conjecture for all Galois extensions
(see [2]). In this paper, we provide a simplified version of the original proof which
avoids many of the calculations present in that version. First let us recall some lemmas
from [1].
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L 1.1. For all a ∈ OL, vK(tr(a)) ≥ (vL(a) + t(p − 1))/p.

P. We know that a ∈ pvL(a)
L , so from [3, Ch. V, Section 3, Lemma 4], we have

tr(a) = π
b((t+1)(p−1)+vL(a))/pc
K b for some b ∈ OK . Now taking K-valuations gives the

desired result. �

L 1.2. For all a ∈ OL, vK(tr(ap) − tr(a)p) = vK(p) + vL(a).

P. This follows by expanding tr(ap) − tr(a)p using the multinomial formula and
grouping the resulting expression into summands with distinct valuations. See the
proof of [1, Lemma 2.2] for details. �

Next, we provide an alternative elementary proof of [1, Lemma 2.4].

L 1.3. Suppose that a ∈ Otr=0
L represents a nonzero class in Otr=0

L /((σ − 1)OL).
Then vL(a) ≤ t − 1.

P. For each 0 ≤ µ ≤ p − 1, define xµ =
∏

0≤i<µ σ
i(πL). It is clear that vL(xµ) = µ.

Suppose that
a0x0 + a1x1 + · · · + ap−1xp−1 = 0

for some a0, a1, . . . , ap−1 ∈ K. The summands on the left have distinct L-valuations
modulo p and thus distinct L-valuations, implying that each summand must be zero by
the nonarchimedean property. Hence the xµ are linearly independent over K and thus
span L over K. Now recall that ker(tr)/((σ − 1)L) = H1(G, L) = 0 (see [3, Ch. VIII,
Section 4] and [3, Ch. X, Section 1, Proposition 1]). Hence Otr=0

L ⊆ (σ − 1)L, so we
can write

a = b1(σ − 1)x1 + b2(σ − 1)x2 + · · · + bp−1(σ − 1)xp−1

for some b1, b2, . . . , bp−1 ∈ K. It is clear from the definition of xµ that πLσ(xµ) =

xµσµ(πL) for each 1 ≤ µ ≤ p − 1 so that

vL((σ − 1)xµ) = vL

( (σµ − 1)πL

πL
· xµ

)
= t + µ,

implying that the summands on the right have distinct L-valuations modulo p, and thus
distinct L-valuations. Since a < (σ − 1)OL by hypothesis, we must have bµ′ < OK for
some µ′ so that vL(bµ′(σ − 1)xµ′) ≤ −p + t + µ′ ≤ −p + t + (p − 1) for this µ′. Hence
by the nonarchimedean property, we conclude that vL(a) ≤ t − 1, as required. �

L 1.4. Let m ≥ 1 be an integer and suppose that the map

Rm
∗ : H1(G,Wm+n(OL))→ H1(G,Wn(OL))

is equal to zero, for n = 1. Then the same is true for all n ≥ 1.

P. This follows from the long exact sequence of cohomology. See the proof of [1,
Lemma 1.1] for details. �
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2. Proof of Hesselholt’s conjecture

Recall that, for each n ≥ 0, the Witt polynomial is

Wn(X0, X1, . . . , Xn) = Xpn

0 + pXpn−1

1 + · · · + pnXn =

n∑
i=0

piXpn−i

i .

Fix any m ≥ 0. Let

p−1∑
i=0

(Xi,0, Xi,1, . . . , Xi,m) = (z0, z1, . . . , zm)

where on the left we have a sum of Witt vectors. Then we know that each zn is a
polynomial in Z[{Xi, j}0≤i≤p−1,0≤ j≤n] with no constant term (see [3, Ch. II, Section 6,
Theorem 6]). By construction of Witt vector addition (see [3, Ch. II, Section 6,
Theorem 7]),

p−1∑
i=0

Wn(Xi,0, Xi,1, . . . , Xi,n) = Wn(z0, z1, . . . , zn)

for each 0 ≤ n ≤ m. Now using the expression for the Witt polynomial Wn and dividing
through by pn yields

fn +

p−1∑
i=0

Xi,n − zn = 0 (2.1)

where

fn =
1
pn

( p−1∑
i=0

Xpn

i,0 − zpn

0

)
+

1
pn−1

( p−1∑
i=0

Xpn−1

i,1 − zpn−1

1

)
+ · · · +

1
p

( p−1∑
i=0

Xp
i,n−1 − zp

n−1

)
. (2.2)

Now for any 1 ≤ n ≤ m, we may add and subtract (1/p)(− fn−1)p to obtain

fn = gn−2 +
1
p

( p−1∑
i=0

Xp
i,n−1 − zp

n−1 − (− fn−1)p
)

(2.3)

where

gn−2 =
1
pn

( p−1∑
i=0

Xpn

i,0 − zpn

0

)
+ · · · +

1
p2

( p−1∑
i=0

Xp2

i,n−2 − zp2

n−2

)
+

1
p

(− fn−1)p. (2.4)

L 2.1. Suppose that (a0, a1, . . . , am) ∈Wm+1(OL). Then

vL(gn−2|Xi, j=σi(a j)) ≥ p2 ·min{vL(a j) : 0 ≤ j ≤ n − 2}

for each 2 ≤ n ≤ m.
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P. From (2.1) and (2.2) we know that fn is a polynomial in Z[{Xi, j}0≤i≤p−1,0≤ j≤n−1]
with no constant term, and each monomial of fn has degree at least p. From (2.1)
we know that

∑p−1
i=0 Xi,n−1 = zn−1 − fn−1, implying that

∑p−1
i=0 Xp

i,n−1 ≡ zp
n−1 + (− fn−1)p

(mod p), so in view of (2.3) we see that gn−2 has integer coefficients. Thus from (2.4)
we know that gn−2 is a polynomial in Z[{Xi, j}0≤i≤p−1,0≤ j≤n−2] with no constant term, and
each monomial of gn−2 has degree at least p2. Hence, recalling that vL(σi(a j)) = vL(a j)
(see [3, Ch. II, Section 2, Corollary 3]), and using the properties of valuations, it is
clear that we have the desired inequality. �

L 2.2. Suppose that (a0, a1, . . . , am) ∈Wm+1(OL)tr=0. Then

vL(an−1) ≥min
{vL(an) + t(p − 1)

p
, t(p − 1)

}
for each 1 ≤ n ≤ m.

P. Since (a0, a1, . . . , am) ∈Wm+1(OL)tr=0, by definition of the zn we can take
zn = 0 for 0 ≤ n ≤ m and Xi, j = σi(a j). Then from (2.1) we see that − fn = tr(an) for
each n, and hence (2.3) reduces to

tr(ap
n−1) − tr(an−1)p

p
= −tr(an) − gn−2|Xi, j=σi(a j).

Taking K-valuations of both sides of this equation and then applying Lemmas 1.2
and 1.1 gives

vL(an−1) ≥min
{vL(an) + t(p − 1)

p
, vK(gn−2|Xi, j=σi(a j))

}
. (2.5)

Since f0 = 0 by (2.2), we see that g−1 = 0 by (2.4). Hence taking n = 1 in (2.5), we see
that the claim holds for n = 1. Now for the inductive step let N ≥ 2 and suppose that
the claim holds for all 1 ≤ n ≤ N − 1. Then we have

vL(aN−1) ≥ min
{vL(aN) + t(p − 1)

p
,

1
p
· vL(gN−2|Xi, j=σi(a j))

}
≥ min

{vL(aN) + t(p − 1)
p

,
1
p
· p2 ·min{vL(an−1) : 1 ≤ n ≤ N − 1}

}
≥ min

{vL(aN) + t(p − 1)
p

,
1
p
· p2 ·

t(p − 1)
p

}
where the first inequality follows from (2.5), the second by Lemma 2.1, and the third
by the induction hypothesis. This completes the inductive step and the proof of the
lemma. �

By Lemma 1.4, and recalling that

H1(G,Wm+1(OL)) =
Wm+1(OL)tr=0

(σ − 1)Wm+1(OL)
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(see [3, Ch. VIII, Section 4]), the following proposition (a generalisation of
[1, Proposition 2.5]) proves Hesselholt’s conjecture.

P 2.3. The map

Rm
∗ :

Wm+1(OL)tr=0

(σ − 1)Wm+1(OL)
→

Otr=0
L

(σ − 1)OL
, (a0, a1, . . . , am) 7→ a0

is equal to zero, provided that pm > t.

P. Suppose that (a0, a1, . . . , am) ∈Wm+1(OL)tr=0. Note that vL(an) > t − pn

implies that

vL(an−1) ≥min
{vL(an) + t(p − 1)

p
, t(p − 1)

}
>

(t − pn) + t(p − 1)
p

= t − pn−1.

Since vL(am) > t − pm by hypothesis, we see that vL(a0) > t − p0 by downward
induction. Thus by Lemma 1.3 we see that a0 must represent the zero class in
Otr=0

L /((σ − 1)OL). �
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