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Abstract. Magnetic helicity quantifies the degree of linkage and/or twistedness in the magnetic
field. It is probably the only physical quantity which is approximately conserved even in resistive
MHD. This makes it an ideal tool for the exploration of the physics of solar eruptions. In this
article, I discuss the sources of magnetic helicity injected into active regions and I point out
that coronal mass ejections (CMEs) are probably necessary to remove at least part of the excess
helicity produced in the Sun. I also discuss the importance of magnetic helicity in the overall
coronal evolution that may lead to eruptions.
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1. Introduction
Magnetic helicity, H, quantifies the degree of linkage and/or twistedness in the mag-

netic field, and therefore provides a measure of the topological complexity of the field.
The “natural” unit of magnetic helicity is the square of magnetic flux (Mx2) and there-
fore, in the simplest case the helicity of an isolated uniformly twisted flux tube with N
turns and magnetic flux equal to Φ is simply NΦ2.

It is well established (e.g. see Berger 1984) that magnetic helicity is very well pre-
served in plasmas with high magnetic Reynolds numbers, even in the presence of dis-
sipative processes such as magnetic reconnection (more accurately, it is approximately
conserved on time scales smaller than the global diffusion time scale; see Berger 1984).
This property of helicity has important consequences in the evolution of magnetic fields:
a stressed magnetic field cannot relax to a potential field. This behavior may have impor-
tant implications for the initiation of flares and coronal mass ejections (CMEs). On the
other hand, our inability to measure solar magnetic fields accurately above the photo-
sphere makes helicity calculations difficult because they require knowledge of either the
three-dimensional magnetic field in all or part of the coronal volume, including its lower
boundary (e.g. Berger 1984; Finn and Antonsen 1985) or the flow velocities on this lower
boundary (e.g. Berger and Field 1984).

In this article, I present a short review of magnetic helicity of active regions (ARs)
with emphasis on its role in the initiation of solar eruptions. The article is organized as
follows. After defining magnetic helicity and its flux, in section 3 I outline the methods
for its computation using solar data. In section 4, I discuss the sources of magnetic
helicity in ARs and in section 5 I examine its role in eruptive phenomena. Conclusions
are presented in section 6. For more extensive reviews of the subject, the reader is referred
to the articles by Démoulin (2007) and Démoulin & Pariat (2009).
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2. Definitions
2.1. Magnetic helicity

For a magnetic field B fully contained within a volume V (i.e. at any point of its boundary
S the normal component Bn = B · n̂ vanishes), magnetic helicity is defined as

H =
∫

V

A · BdV (2.1)

where A is the magnetic vector potential (B = ∇× A). H is independent of the gauge
selection for A (i.e. independent of the transformation A → A + ∇Φ, where Φ is any
single-valued derivable function of space and time).

In the solar atmosphere magnetic flux passes through S (especially in the photosphere)
and therefore the above condition is not satisfied. However, Berger & Field (1984) and
Finn & Antonsen (1985) have shown that when Bn �= 0 on S, we can define a gauge-
invariant relative magnetic helicity (hereafter refered to as helicity) of B with respect
to the magnetic helicity of a reference field Bp having the same distribution of normal
magnetic flux on the surface S surrounding V :

H =
∫

V

A · BdV −
∫

V

Ap · BpdV (2.2)

where Ap is the vector potential of Bp . The quantity H does not depend on the common
extension of B and Bp outside V . Being a potential field it is a convinient choice for Bp . If
in addition ∇·Ap = 0 and (Ap)n = 0 on S then the term

∫
V

Ap ·BpdV vanishes (Berger
1988), so H has the same expression as in the case of the helicity in closed volumes (eq.
2.1).

2.2. Flux of magnetic helicity

Generally, the amount of helicity within V can change either due to helicity flux crossing
S or/and due to dissipation within V . Berger (1984) has demonstrated that the helicity
dissipation rate is negligible in all processes taking place in the corona, including recon-
nection and all non-ideal processes. Helicity’s dissipation time scale is the global diffusion
time scale and consequently it can be regarded as an almost conserved quantity even in
resistive MHD.

In the solar atmosphere V is part of the coronal volume, bounded from below by a
portion of the photosphere Sp and bounded in the corona by Sc (Sc = S−Sp). No data can
presently provide B on any Sc surface. The helicity flux across Sc can only be estimated
indirectly by the helicity carried away by CMEs, and estimated in the interplanetary
space from the associated magnetic clouds. All studies compute the helicity injected at
the photospheric level through Sp . Using the gauge ∇·Ap = 0, and selecting the boundary
condition Ap · n̂ = 0 for the vector potential of the potential reference field, Berger &
Field (1984) derived the flux of magnetic helicity through a planar surface:

dH

dt
= 2

∫
Sp

[(Ap · Bt)vn − (Ap · vt)Bn ]dS (2.3)

where Bt and Bn are the tangential and normal components of the photospheric magnetic
field and vt and vn the tangential and normal compoments of the photospheric plasma
velocity.
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3. Computations of helicity in finite volumes
3.1. Computations of instantaneous helicity in the corona

The application of the concept of relative magnetic helicity defined in section 2 is prob-
lematic in AR magnetic field extrapolations because the volumes involved are finite. For
linear force-free (LFF) fields, this problem can be bypassed by formulating the helicity
content of an AR in terms of surface integrals applied to the lower boundary (Berger 1985,
Georgoulis and LaBonte 2007). These calculations include summations over the Fourier
modes of the magnetogram. When the force-free parameter α exceeds a certain critical
value that depends on the horizontal size of the calculation box, helicity attains unphys-
ical large values, and Démoulin et al. (2002b) proposed to use the linearized Berger’s
(1985) expression in which the helicity is proportional to α. In several publications, (e.g.
Démoulin et al. 2002b; Green et al. 2002; Nindos and Andrews 2004) this linearized for-
mula has been used in conjunction with the best value of α, αbest , which is determined
by comparing the computed LFF field lines with the observed soft X-ray or EUV coronal
structures.

Georgoulis et al. (2012) extended the work by Georgoulis and LaBonte (2007) on LFF
fields to non-linear force-free (NLFF) fields. They developed a method that depends
on a lower-boundary connectivity matrix that can be inferred either by an NLFF field
extrapolation or otherwise. Instead of using extrapolation results, these authors used a
unique connectivity-matrix solution for a given flux-partition map. This solution relies
on a simulated annealing algorithm designed to minimize the distances of connected
opposite polarity partitions.

In several publications that treat the general problem of the calculation of the instan-
taneous helicity in the corona, NLFF field extrapolations are used, and the helicity in the
computation box is estimated using methods that are based on the Coulomb gauge (e.g.
Rudenko and Myshyakov 2011; Thalmann et al. 2011). The choice of gauge is irrelevant
for the relative magnetic helicity value, but it may influence how computationally expen-
sive the algorithm becomes. Valori et al. (2012) exploited the gauge freedom by choosing
one that requires that one component of the vector potential vanishes; their method is a
direct extension of an earlier work by DeVore (2000) to finite volumes.

3.2. Computations of the injection rate of helicity

When high-cadence photospheric magnetograms are available, the horizontal velocity
appearing in eq. (2.3) can be computed using various techniques. In the first studies of
the helicity injection rate, several authors (e.g. Chae 2001; Nindos & Zhang 2002; Moon
et al. 2002a,b; Nindos et al. 2003; Chae et al. 2004) utilized the local correlation tracking
(LCT) technique (November and Simon 1988) for the computation of horizontal veloci-
ties. Démoulin & Berger (2003) have pointed out that with magnetograms one follows the
photospheric intersection of the magnetic flux tubes but not the evolution of the plasma.
Consequently, from the observed magnetic evolution we obtain the flux tube motion and
not the plasma motion parallel to the photosphere. If vt is the tangential component of
the photospheric plasma velocity and vn the velocity perpendicular to the photosphere,
the tracking algorithm detects the velocity of the footpoints of the flux tube which is

u = vt −
vn

Bn
Bt (3.1)

However, MHD simulations (e.g. Welsch et al. 2007) have shown that this formula is not
valid always, and its use should be treated with caution especially during flux emergence
episodes.
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The combination of eq. (3.1) and (2.3) shows that the whole helicity flux density can be
retrieved within the accuracy of the calculation. Consequently, one may use the quantity
GA = −2u · ApBn as a proxy to the whole helicity flux density.

GA has been used extensively in several studies (e.g., see the references for the LCT
usage). The GA maps always appear extremely complex both in space and time, with
polarities of both signs present at any time. Pariat et al. (2005) showed that GA is not
a real helicity flux density and that its properties introduce artificial polarities of both
signs. The spurious signals appear due to the fact that helicity flux densities per unit
surface are not physical quantities. Due to the properties of helicity, only helicity flux
density per unit of elementary magnetic flux has a physical meaning. But to estimate
such quantity using real observations, it is necessary to isolate flux tubes and determine
their connectivity, which is actually not possible. Thus any definition of a helicity flux
density will only be a proxy of the helicity flux density per unit magnetic flux. Pariat
et al. (2005) introduced a new proxy for helicity flux density, Gθ , which does not suffer
from GA ’s problems. Gθ implies that the helicity injection rate is the summation of the
rotation rate of all pairs of elementary fluxes weighted by their magnetic flux. An example
of a Gθ map is given in fig. 1.

In order to define the real helicity flux density, the coronal linkage needs to be provided.
With it one can represent how all elementary flux tubes move relatively to a given
elementary flux tube, and the helicity flux density is defined per elementary flux tube.
Using photospheric maps this can be achieved by distributing equally the helicity input
between the two footpoints for each elementary flux tube. Then the helicity flux can be
rewritten as a flux of magnetic helicity per unit of surface, GΦ. GΦ is a field-weighted
average of Gθ at both photospheric footpoints, x±, of the photosheric connection.

While GΦ provides the true helicity flux density, its practical use is presently limited by
our ability to define the coronal linkage for all magnetic polarities. Currently, all we can

Figure 1. Computed velocity vectors and the corresponding Gθ map (gray-scale image) for
AR11158 on February 15 2011 01:15 UT. The velocities have been computed using the DAVE
method (Schuck 2006). The maximum arrow length measures velocity of 1 km s−1 . The black
and white thick contours represent longitudinal magnetic field strengths of 700 and -700 G,
respectively.
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do is to estimate GΦ maps for models that resemble certain configurations and evolution
patterns (Pariat et al. 2006).

It has been reported (e.g. Pariat et al. 2006; 2007) that unlike the usual GA maps,
most Gθ maps show almost unipolar spatial structures because the nondominant helicity
flux densities are significantly suppressed. However, as can be seen from fig. 1, this is
not always the case. If a crude modeling of the expected GΦ morphology shows that
GΦ should be unipolar then the bipolar structures of the computed Gθ maps should
be spurious. Note that, according to our modeling, this was not the case in the mixed
polarity morphology of the Gθ map of fig. 1.

When a cube of GA or Gθ maps is available, one can calculate the time evolution of
the total helicity flux, dH/dt. An example using a time series of Gθ maps which includes
the Gθ map of fig. 1, appears in fig. 2 (top panel). The resulting time profile of the net
accumulated change of helicity shows in the middle panel of fig. 2. Note that we expect
that the helicity flux integrated using GA to be identical to the one integrated using
Gθ because both definitions are derived from eq. (2.3). The interested reader may refer
to Pariat et al. (2006) for a discussion on the small differences that appear in practical
computations.

4. Sources of magnetic helicity
The first term of the right-hand side of eq. (2.3) corresponds to the injection of helicity

by advection (i.e. emergence of field lines that cross the photosphere) while the second
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Figure 2. (a) Time profile of the net flux of injected helicity, dH/dt, over the field of view of
AR11158 that is presented in fig. 1. (b) Time profile of the net accumulated change of helicity,
ΔH in AR11158, calculated from the measured dH/dt. The GOES soft X-ray flux time profile
is also presented. (c) Temproral evolution of the magnetic free energy for AR11158 (modified
from Nindos et al. 2012).
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term (also known as shearing term) is the flux of helicity due to motions parallel to S.
Such motions may come either from differential rotation and/or transient photospheric
shearing flows.

Differential rotation was the first mechanism that injects helicity into ARs which was
studied (DeVore 2000). Even when a single bipole is considered, differential rotation does
not provide a monotonous input of magnetic helicity (DeVore 2000). This is because
differential rotation rotates both magnetic polarities on themselves and also changes
their relative positions, introducing twist and writhe helicity fluxes, respectively. These
fluxes always have opposite signs and similar amplitudes, and therefore partially cancel
(Démoulin et al. 2002a). Démoulin et al. (2002b) and Green et al. (2002) studied the
long-term evolution of the helicity injected by differential rotation into the coronal part
of two active regions which were followed from their birth until they decayed. These
studies showed that the contribution of differential rotation to the helicity budget of
active regions is small.

The study of the helicity budget of active regions requires knowledge of the helicity
injected into them and of the helicity carried away from them. The former is computed
using the methods described in section 3 while CMEs are considered responsible for the
latter. The helicity content of a CME can be estimated by the change of coronal helicity
of the source region during the event (e.g. Mandrini et al. 2005). Inside magnetic clouds,
helicity is estimated from modeling of the in situ measurements of the magnetic field
vector. In practice, in studies of the long-term evolution of helicity of active regions
that are linked to at least one magnetic cloud at 1 AU one assumes that the helicity
carried away by each CME is equal to the helicity content in the magnetic cloud. Nindos
et al. (2003) and Lim et al. (2007) were able to partially reconcile the amount of helicity
injected into the corona with the helicity carried away by the CMEs in the active regions
they studied. However, the uncertainties of these studies are significant primarily due to
the large uncertainties in the calculation of the helicity transported away by CMEs.

Using line-of-sight magnetograms together with the Démoulin and Berger (2003) for-
mula (eq. 3.1), one cannot calculate separately the advection and the shearing term in
eq. (2.3). Furthermore, the validity of the Démoulin and Berger hypothesis has been ques-
tioned (e.g. Schuck 2008; Ravindra et al. 2008; Liu and Schuck 2012; see also
section 3.2).

The separate computation of both the shearing and advection terms requires the use
of photospheric vector magetograms. Several methods have been developed towards this
goal (e.g. Kusano et al. 2002; Welsch et al. 2004; Longcope 2004; Georgoulis & LaBonte
2005; Schuck 2008; Zhang et al. 2012; Liu & Schuck 2012). Most of these methods have
not been tested extensively with solar data, and contradictory results have been reported.
Furthermore, the methods which were developed before 2007 were checked against the
same anelastic MHD simulation (Welsch et al. 2007) and produced different results.

5. Magnetic helicity and the initiation of CMEs
5.1. Helicity as an important agent for CME initiation

In several publications, CMEs are thought to be the primary agent through which the
Sun gets rid of its excess helicity (e.g. Rust 1994; Low 1996; Zhang and Low 2005).
The main arguments for this conclusion is that: (1) on the global scale, helicity emerges
predominantly negative in the northern hemisphere and predominantly positive in the
southern hemisphere (e.g. Pevtsov et al. 1995), and this hemispheric helicity sign pattern
does not change from solar cycle to solar cycle (Pevtsov et al. 2001). (2) A fraction of
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AR’s helicity is cretaed by the dynamo and then transported into the corona through the
photosphere with the emerging magnetic flux. This process would constantly accumulate
helicity into the corona because of helicity’s property not to be destroyed under recon-
nection. Furthermore, cancellations of opposite helicity fluxes involves a small fraction
of the magnetic flux (e.g. between ARs of opposite helicity sign, either within the same
hemisphere or across the equator, Pevtsov 2000). Finally, it is speculated that a small
fraction of helicity is lost from the corona by the reconnections between ARs and coronal
holes, since the relevant magnetic fluxes are small.

Along the above lines, Low and Zhang (2002) and Zhang and Low (2001; 2003) have
developed a unified view of CMEs as the last chain of processes that transfer helicity
from the convective zone into the inteplanetary medium. Their theory exploits Taylor’s
conjecture that the magnetic field will relax towards a LFF field state. A summary of their
results is as follows. When new field enters the corona repeated reconnections between
the new and pre-existing field take place. This process simplifies the magnetic topology
and the dissipated magnetic energy produces flares. The relaxation proceeds according to
Taylor’s conjecture and results in the formation of a flux rope which contains a significant
fraction of the total helicity of the system. The fate of the flux rope is determined by the
efficiency of its confinement by its surrounding anchored field. Flux rope ejection occurs
when the magnetic energy it contains is sufficient to drive an outward expansion against
the confining field.

In a series of articles Zhang et al. (2006; 2008; 2012) studied theoretically the maximum
amount of helicity that can be stored in various field configurations and its implications
for coronal evolution. In the 2006 article they showed that in an open spherical volume
like the corona, for a given boundary flux distribution, there is an upper bound on the
magnitude of the total helicity of all axisymmetric power-law force-free fields. When
the accumulated helicity exceeds this limit, a non-equilibrium situation is reached which
mimics the initiation of CMEs. In the 2008 article they found that the helicity upper
bound of force-free fields depends on the boundary flux distribution: multipolar photo-
spheric configurations can have a helicity upper bound 10 times smaller than dipolar
ones. In the 2012 article they studied the helicity of self-similar axisymmetric force-free
fields and found that there may be an upper bound on the total helicity of all bipolar
axisymmetric force-free fields. As the helicity increases, the fields open up forming a
current sheet surrounded by Parker-spiral-like structures.

Amari et al. (2003a, 2003b) constructed a set of force-free fields having different mag-
netic flux and helicity contents and used them as initial conditions by applying converging
motions or a diffuse-driven evolution. These processes can trigger eruptive events that
may be either confined or global, depending on the value of the initial helicity. Amari
et al. (2003b) concluded that helicity cannot be the only parameter controlling the trig-
gering of an ejection: having a large enough helicity seems a necessary condition for an
ejection to occur, but not a sufficient one. Jacobs et al. (2006) performed MHD simu-
lations by shearing an axisymmetric arcade outside a sphere, and found that a twisted
flux tube forms and ejects when H/Φ2 is typically above 0.2-0.3.

5.2. Observational evidence
The physical view presented in section 5.1 has been supported by several observations.
Nindos and Andrews (2004) used LFF field extrapolations and the αbest method to model
the pre-flare coronal field of 78 ARs that produced big flares. Only some 60% of these
flares were associated with CMEs. Then from the derived values of αbest they computed
the corresponding coronal helicities. Their results indicated that in a statistical sense
both the pre-flare absolute value of α and the corresponding coronal helicity of the ARs
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producing CME-associated big flares were larger than the absolute value of α and helicity
of those that did not have associated CMEs.

The above results are consistent with the ones reported by LaBonte et al. (2007) who
calculated the helicity flux in 48 ARs that produced X-class flares and in 345 non-X-
flaring ARs. They found that a necessary condition for the occurrence of an X-class flare
is that the peak helicity flux has a magnitude > 6 × 1036 Mx2 s−1 .

I have also studied the helicity evolution of 43 ARs that emerged on the solar disk
within 45◦ from disk center. The database consisted of 18 ARs that gave a CME before
crossing W45◦ and 25 that did not. The helicity calculations for each AR were performed
from the time of its emergence until the time of its first CME or the time when it reached
W45◦ (whichever happened first). At a given time t, the coronal helicity Hc was estimated
by the formula Hc(t) = Hc,emerg + ΔHinj (t) where Hc,emerg was the helicity stored in
the corona at the beginning of flux emergence and ΔHinj (t) was the accumulated change
of helicity as a function of time. The quantity Hc,emerg was calculated using LFF field
extrapolations and the αbest method; this procedure was reliable because the field in
most cases emerged in a nearly potential state. The quantity ΔHinj was calculated from
the helicity fluxes dH/dt using the method described in section 3.2.

The results appear in fig. 3 (left column) and indicate that in a statistical sense the
coronal helicity of the ARs that produced a CME before crossing W45◦ was larger than
the coronal helicity of those that crossed W45◦ without producing a CME. The right
column of fig. 3 shows the coronal helicities at two different times in the evolution of the
ARs: the bottom panel shows the coronal helicities when the ARs produced their first
confined flares above C1.0 while the top panel shows the coronal helicities when the ARs
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Figure 3. Left column, top: scatter plot of coronal helicities of emerging ARs just before their
first CMEs as a function of the AR’s magnetic fluxes. Left column, bottom: same as top panel,
but for ARs when they cross W45◦ without producing any CME. Right column, top: same as
left column, top. Right column, bottom: same as top panel, with the exception that the helicities
were calculated just before the first confined flare of each AR (see text for details).
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produced their first CMEs. The segregation of the two sets of helicity values is almost
complete. This result implies that, unlike CMEs, confined flares may occur without the
prior accumulation of significant amounts of helicity.

Tziotziou et al. (2012) used the method developed by Georgoulis et al. (2012; see sec-
tion 3.1) to calculate the instantaneous magnetic free energy and helicity of 162 vector
magnetograms that corresponded to 42 different ARs. They found a statistically signifi-
cant, monotonic correlation between the free energy and helicity. This correlation implies
that, in addition to free energy, helicity may play a significant role in eruptive phenom-
ena. In their study, the eruptive ARs appeared well segregated from the non-eruptive
ones in both free energy and helicity (see fig. 4).

In ARs, a primary constraining force that inhibits global eruptions is provided by the
overlying background field. Using both line-of-sight and vector magnetograms, Nindos
et al. (2012) studied the long-term evolution of the background field in AR11158 that
produced three major CMEs. In their calculations they used the decay index of the
magnetic field which is a parameter that quantifies how fast the field decreases with
height. Their results indicated that the initiation of eruptions did not depend critically
on the temporal evolution of the variation of the background field with height. On the
other hand, they showed that both the magnetic free energy (computed from NLFF
field extrapolations) and the accumulated helicity into the corona (computed using the
method described in section 3.2) contributed the most to the eruptions by their increase
throughout the observations (by factors of more than 5 and more than two orders of
magnitude, respectively; see fig. 2).

5.3. Other approaches
There are several other approaches to the initiation of CMEs and the role of helicity.
Some models suggest that eruptive events can occur without any significant helicity
accumulations. MacNeice et al. (2004) studied the evolution of helicity under the breakout
model (Antiochos et al. 1999). In their simulation, the model was driven by a shear flow

Figure 4. Free energy-helicity diagram of ARs. Diamonds, squares and asterisks correspond to
non-flaring, M- and X-class flaring ARs, respectively. Dashed lines indicate the estimated thresh-
olds for helicity and magnetic free energy above which ARs give major flares. These thresholds
divide the diagram into four regions, labeled a, b, c, and d. The dotted and dashed-dotted lines
denote the least-squares best fit and the least-squares best logarithmic fit, respectively, between
helicity and magnetic free energy (from Tziotziou et al. 2012).
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that injected both free energy and net helicity into the corona. Their results showed that
the helicity shed by the plasmoid ejection was at least 80% of the total originally injected
into the system. They interpreted this result as an indication that although CMEs remove
the bulk of the coronal helicity, some fraction remains behind. They suggested that some
other mechanism (possibly small-scale diffusion) might be responsible for dissipating the
rest of the helicity. Furthermore, Kliem et al. (2011) found that simulated flux rope CMEs
carried away only a minor part of the initial helicity that was present in the simulation
box; most of the helicity remained in the simulation box even after the departure of
the CME from the simulation box. This result was interpreted as a consequence of the
requirement that the current through an expanding loop must decrease if the magnetic
energy of the configuration is to decrease as the loop rises, to provide the kinetic energy
of the CME.

Phillips et al. (2005) presented simulations of the breakout model where eruption occurs
even when no net helicity is injected into the corona. In their simulations the eruption
occurs at a fixed magnitude of free energy in the corona, independent of the value of
helicity. It would be desirable to check these results against computations of the helicity
evolution in observed eruptions that appear to be due to breakout. The MHD simulations
by Zuccarello et al. (2009) also showed that the injection of helicity is not a necassary
constraint in the initiation of CMEs. However, the absence of significant net helicity
accumulation prior to an eruption might result from the accumulation of similar amounts
of both positive and negative helicity; in such case the “helicity anihilation” might be at
work (Kusano et al. 2003). Indeed, Kusano et al. (2004) presented simulations where the
introduction of a reverse helicity was essential for the eruption of a sheared arcade.

Moreover, several proposed eruption mechanisms do not explicitly rely on helicity.
These models include the tether cutting (e.g. Moore et al. 2001); breakout (Antiochos
et al. 1999); magnetic flux cancellation (e.g. van Ballegooijen and Martens 1989); and
the torus instability (Kliem and Török 2006). On the other hand, helicity is at the heart
of the helical kink instability (e.g. Rust and Kumar 1996; Török and Kliem 2005; Kliem
et al. 2012) which has been invoked to explain several eruptive phenomena.

6. Conclusions
Magnetic helicity provides an important tool for the study of eruptive phenomena. Its

use is justified by two key properties of CMEs: (1) the pre-eruption magnetic topology
is non-potential, and (2) CMEs carry away twisted magnetic fields. Of course, there
are also other physical quantities that describe non-potential fields, for example the
α parameter of the LFF field approximation. But helicity is superior because of its
unique feature of being conserved even in resistive MHD on time scales less than the
global diffusion time scale. This makes helicity probably the only physical quantity which
can monitor the entire history of an eruptive event: from the transfer of magnetic field
from the convective zone all the way to the eruption and the escape of the CME into
interplanetary medium. On the other hand, calculations of helicity are difficult and only
relatively recently attempts have been made to measure helicity using solar observations.

A lot of effort has been put on the determination of the relative importance of the
sources of the helicity that is injected into ARs. Theoretical and observational work has
demonstrated that differential rotation is an inefficient mechanism to account for the
helicity budget of ARs. Computations using high-cadence longitudinal magnetograms
give the total helicity flux but cannot separate the shearing from the advection term.
Attempts for the computation of the shearing and advection term separately have been
made using vector magnetograms. But the algorithms that have been developed have not
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been applied extensively to observations. Even more serious uncertainties are associated
with the computation of the helicity carried away by CMEs. All the above problems
contribute to the discrepancies concerning the helicity budget of ARs. At this point,
these uncertainties have been cleared up only partially and much work needs to be done
on this issue.

There is concensus that CMEs are probably necessary to remove at least part of the ex-
cess helicity produced in the Sun. As for the role of helicity in the initiation of eruptions,
theoretical studies indicate that eruptions can occur with or without the prior accumu-
lation of significant amounts of helicity into the ARs that erupt. The analysis of a few
observational data sets has indicated that helicity accumulation might be a necessary
but not sufficient condition for an eruption to occur. This result requires confirmation
with the analysis of more data, both in a statistical sense and in case studies. It appears
that for a thorough investigation of the magnetic origin of eruptions other parameters
might be also important, for example the location with respect to the pre-existing field
where helicity is injected, the efficiency of the reconnection process and how efficiently
the helicity-charged stucture is confined by the overlying magnetic field.

To make progress in the subject of the evaluation of the importance of helicity in the
initiation of eruptions we need to: (1) improve the reliability and accuracy of the helicity
computations, (2) compare the helicity budgets between non-eruptive and eruptive ARs
in the pre-eruption state, and (3) link observations with an eruption initiation mechanism
that will be able to capture most of the observed features of the eruption.
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