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Thermals from finite sources in stable and
unstable environments
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The rise of thermals in the atmosphere has attracted a lot of attention since the early work
of Morton et al. (Proc. R. Soc. Lond. A, vol. 234, 1956, pp. 1–23), who proposed that
entrainment into a thermal was proportional to the surface area of the thermal and to the
mean vertical velocity of the thermal. This paper presents new analytical solutions for the
heights of rise of buoyant thermals in both stably and unstably stratified environments, for
both negatively and positively buoyant sources, and where the sources have different size
and strength (momentum) characteristics. The limiting cases of these analytical solutions
are consistent with previous work. These analytical solutions do not appear elsewhere, and
provide a compact set of equations that are easy to apply to a wide range of circumstances.
The solutions are dependent upon the entrainment hypothesis, which is of course only an
approximation, but the simplicity of the analytical solutions allows easy calculation and
additional insights. These include the fact that while heights of rise are strongly dependent
on both source strength and size for flows in stable environments, the dilution at the top of
rise is independent of the source momentum. Further, in a stable environment, there is a
conserved quantity that has dimensions proportional to vertical momentum. For negatively
buoyant flows in an unstably stratified environment, thermals having low initial momentum
will reach a maximum height, while thermals with high initial momentum will entrain
sufficient buoyant environmental fluid that they will eventually become positively buoyant
and continue to rise indefinitely.

Key words: turbulent convection, plumes/thermals

1. Introduction

The pioneering work of Morton, Taylor & Turner (1956) established the basic equations
governing the rise of buoyant plumes, jets and thermals. Asymptotic solutions were
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found for flows from point sources in stably and neutrally stratified environments, with
dimensional reasoning governing the scaling. The present work details analytic solutions
to those basic equations for thermals from sources that are of finite size and that possess
momentum as well as buoyancy.

There are some basic assumptions of the pioneering work that are retained here, namely
that density differences are sufficiently small that they appear only in buoyancy terms (the
Boussinesq approximation), that as the thermal rises in an otherwise still environment
it retains a self-similar spherical shape, and that the thermal entrains ambient fluid at a
rate proportional to the product of the mean vertical velocity with the surface area. It is
also assumed that there is no energy lost to the environment through internal waves, which
would require an additional drag term as discussed by Bush, Thurber & Blanchette (2003).

There is a vast amount of more recent work on entrainment. For example, Kaminski, Tait
& Carazzo (2005) discuss the fact that entrainment is reduced in negatively buoyant jets
compared to those with positive buoyancy, and present a formulation for the entrainment
constant based on the local Richardson number Ri. Ciriello & Hunt (2020) follow up
on earlier work investigating the entrainment rate for plumes, also noting that Ri plays
an important role, and that entrainment rates differ for plumes from different source
characteristics. A reduced rate of entrainment could well be the case for negatively buoyant
thermals, and the dependence of entrainment on Ri and on source characteristics for
thermals may well be an issue, although no literature on this appears to be available.
Shui & Weyl (1975) noted that form drag terms were small enough to be neglected, and
that large thermals formed by strong explosions had entrainment parameters consistent
with that found by Morton et al. (1956). However, most of these more recent works that
provide potentially more accurate solutions still require numerical calculations, so that the
fundamental first-order physics is perhaps less apparent.

There do not appear to be any publications that have investigated the effects of different
source size and momentum on rate of rise. Orlandi & Carnevale (2020) undertook
numerical simulations of thermal structure and rise in both stable and neutrally stratified
environments. Their work focused on the internal vortex-ring-like structure and overall
thermal shape that changes when impacting on a strong thermocline. There was no
discussion of how the flow varies with differing source conditions. Domingos & Cardoso
(2015) investigated the effects on rise of chemical reactions within a thermal, and noted
that their analytic solutions for point sources converged to those of Morton et al. (1956).
Makhviladze, Roberts & Yakush (1996) looked at buoyant thermal rise in a stratified
atmosphere that had density inversely proportional to height. Unfortunately, their results
are not comparable with the present work, which assumes that density decreases linearly
with height.

Morton (1959) recognised that plumes having different strengths of source momentum
and size (forced plumes) would result in flows of different characteristics near the source,
and identified that jets with high momentum would have a more rapid entrainment
near the source, so the angle of spread would be wider than that of a simple plume.
Turner (1963a,b, 1964) further developed the theory for thermals, and later Turner (1966)
established the flow characteristics of jets and plumes with negative or reversing buoyancy.
Turner (1973) later provided a comprehensive review of buoyant plumes and thermals.
Much of this work is well summarised in the monograph of Turner (1973).

With more extensive computing capability using the Fortran computing language,
Morton & Middleton (1973) extended the work of Morton (1959) and provided a more
detailed description of the possible flows of forced plumes. Later, Middleton (1979)
realised that a change of independent variable from height of rise to time of rise would
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Figure 1. Diagram showing the thermal radius R at height Z, and the average vertical velocity W, with
source values indicated by the zero subscript. The thermal and environmental densities are given by ρ and
ρ0, respectively.

allow analytical solutions for times of rise of plumes, while the heights of rise remained
to be determined numerically. Middleton (1986) recognised that full analytic solutions
could be obtained for plumes in a crossflow using time of rise as the independent variable.
Those basic equations and analytical solutions are extremely simple, if only approximate.
Csanady (1980) briefly explored buoyant flows in unstable environments, noting that
solutions for buoyancy and momentum for plumes in a crossflow had solutions that were
comprised of hyperbolic functions.

In this paper, the application of the change of independent variable from height of
rise to time of rise, as initiated by Middleton (1979, 1986) for forced plumes, is applied
to thermals from sources of finite size and momentum. With this approach, analytical
solutions for heights of rise and vertical velocity do indeed exist for thermals emitted
into both stably stratified and unstably stratified environments for different source balance
characteristics. These solutions do not seem to have been published elsewhere, and this
paper presents the solutions as well as detailed descriptions of the flow characteristics for
flows from sources of various strengths.

2. The thermal in a stably stratified environment

Turner (1973) pointed out that the circulation within a thermal has an influence on the
dynamics of rise; however, a choice has been made here to limit the analysis to spherical
thermals as distinct from buoyant vortex rings.

A schematic diagram of the thermal, and the basic mathematical variables used in the
analyses below, are shown in figure 1.
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2.1. The equations
The equations are as described originally by Morton et al. (1956):

d 4
3πR3

dt
= 4απR2W, (2.1)

dπR3W
dt

= πR3B, (2.2)

dπR3B
dt

= −πR3WN2. (2.3)

Equation (2.1) describes the rate of increase of volume 4
3πR3 with time t of the thermal,

and assumes that the rate of entrainment across the thermal boundary is proportional to
the surface area 4πR2 and to the mean thermal vertical velocity W, with the constant of
proportionality being α. Equation (2.2) expresses the rate of change of momentum as being
proportional to the buoyancy force per unit mass

B = g(ρ0 − ρ)

ρ1
. (2.4)

Here, ρ1 is the reference density, ρ is the average density of fluid in the thermal, ρ0 is
the environment density at the same height as the thermal, and g is the gravity constant.
Equation (2.3) expresses how the buoyancy force per unit mass changes on entrainment
of ambient fluid from the density stratified environment whose vertical density gradient
(assumed constant) is expressed by

N2 = − g
ρ1

dρ0

dz
. (2.5)

For a stable environment, N2 > 0, and this is assumed for the rest of this section. In a
later section, thermals in unstable environments will be considered, in which case the
stratification will be defined with different sign. Now define bulk dimensional quantities
that represent momentum M and buoyancy F as follows:

M = R3W, (2.6)

F = R3B. (2.7)

Equations (2.1)–(2.4) now appear as

dR3

dt
= 3αM

R
, (2.8)

dM
dt

= F, (2.9)

dF
dt

= −N2M. (2.10)

With M0 and F0 designating the values at the source at time t = 0, the solutions to (2.9)
and (2.10) are

M = M0 csc δ sin θ, (2.11)

F = F0 sec δ cos θ, (2.12)
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where θ = Nt + δ is the phase angle, which increases with time as the thermal rises. With
these definitions, it follows that the constant δ is defined by

tan δ = NM0/F0. (2.13)

The angle δ is therefore a measure of the relative influences of the time scale of the
environmental stability N and the source dimensions of momentum and buoyancy. The
time t = −N−1δ, which occurs at θ = 0, might be thought of as a virtual origin in time
whereby the momentum is M = 0 and the buoyancy is given by F = F0 sec δ. Using the
definition of δ provides an alternative dimensional scaling for the momentum solution:

M = F0N−1 sec δ sin θ. (2.14)

Equation (2.1) can be shown to simplify to dR/dt = αW, and since the vertical velocity
is W = dZ/dt, it follows that the spread of the thermal is linear with height Z such that
R = R0 + α(Z − Z0). Integrating (2.8) gives an expression for the radius R,

R4 = R4
0 + 4α

∫ t

0
M dt, (2.15)

and evaluating that integral using (2.10) gives

R4 = R4
0 + 4αN−2(F0 − F). (2.16)

At this stage, to simplify the presentation it is useful to define the dimensionless buoyancy
f as

f = sec δ cos θ, (2.17)

and the dimensionless parameter Γ , which is a constant, as

Γ = R4
0N2

4αF0
. (2.18)

The parameter Γ represents the balance of initial volume at the source, scaled with the
length scale defined from the buoyancy and stratification. This Γ may also be interpreted
as the dimensionless source radius to the fourth power. The solution for the thermal radius
at all times is given by

R4 = 4αF0N−2(Γ + 1 − f ). (2.19)

The dimensional height Z − Z0 above the source is found by recognising the linear
relationship Z − Z0 = α−1(R − R0), and is

Z = 21/2(F0N−2α−3)1/4((Γ + 1 − f )1/4 − Γ 1/4). (2.20)

The vertical velocity can be found either through the derivative of height Z with respect
to time, or more easily through the relationship (2.6), i.e. W = MR−3.

These equations constitute the full analytical solutions for thermals being emitted
vertically upwards into a density-stratified environment, with options for the source
buoyancy being either positive or negative. For positively buoyant flows emitted upwards,
δ lies in the range 0 < δ < π/2, while for negatively buoyant flows emitted upwards,
π/2 < δ < π. A flow with initial positive buoyancy and positive momentum at the
source has θ = δ < π/2. As a positively buoyant thermal rises with time, the phase
angle θ = Nt + δ grows, and when it approaches π/2, the buoyancy drops to zero, but
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the momentum carries the thermal higher into the environment. Finally, at θ = π, the
thermal reaches its maximum height. After this it will descend again towards equilibrium,
continuing to entrain ambient fluid, but this further descent is not modelled here.

Limiting cases are found easily. For example, for neutral stratification and zero initial
buoyancy, the asymptotic solutions for thermals emitted from a small origin come directly
from (2.15) and are R4 = 4αM0t and Z4 = 4α−3M0t.

For thermals emitted with finite F0, consideration of (2.20) with Γ negligible gives

Z4 = 4F0N−2α−3(1 − f ). (2.21)

For small times, we have 1 − f ≈ θ2/2 = N2t2/2, the radius is given by R4 = 2αF0t2, and
Z4 = 2α−3F0t2.

For the case of a point source (Γ = 0) of buoyancy only (δ = 0) in a stratified
environment, the solutions for R, Z, F and W are mathematically identical with those
given by (20) of Morton et al. (1956). Results for the height of rise of a positively buoyant
thermal can also be found easily, noting that the height of zero buoyancy is at θ = π/2
( f = 0), and the height of maximum rise is at θ = π ( f = −1). These asymptotic values
are given by Z4 = 4F0N2α−3 and Z4 = 8F0N2α−3, respectively. Morton et al. (1956)
give results for the maximum initial height of rise (their figure 7) as X = 4.8, and since
4.8/23/2 ≈ 1.68 ≈ 81/4, the present results are consistent, and the value of α from their
experiments is α = 0.285.

2.2. Calculating the solutions
For forced plumes Morton & Middleton (1973), following Morton (1959), chose to scale
dimensionally using the initial momentum for their plume models, as this allowed focus
on the role that the source strength balance plays on the resultant flow. For thermals in a
stratified environment, it is perhaps more useful to scale the present analytical solutions
with the environmental parameters F0 and N, which will cater for graphical presentations
covering a range of values of F0 and N.

To allow for solutions that arise from either negatively or positively buoyant flows,
it is useful to introduce the sign variable sgn defined here by F0 = sgn |F0| so that
sgn = +1 for positively buoyant sources and sgn = −1 for negatively buoyant sources.
The dimensionless solutions for each parameter can now be written in terms of a product
of the scaling (which contains the dimensions and the entrainment parameter α, but no
numbers) and the numerical values of the equations and numerical multipliers.

The scaled solutions for momentum and buoyancy become

M/|F0| = m = sgn sec δ sin θ, (2.22)

F/|F0| = f = sgn sec δ cos θ. (2.23)

The radius becomes

R(N2/(α|F0|))1/4 = r = 41/4(Γ + sgn − f )1/4, (2.24)

and the height of the thermal above the source is given by

Z(N2/(α3|F0|))1/4 = z = 41/4((Γ + sgn − f )1/4) − Γ 1/4). (2.25)

The vertical velocity is found from the relationship w = mr−3 and has scaling
(|F0|N2/α3)1/4.
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For some applications, the rate of dilution of the effluent might be considered important.
Defining this as the ratio of volume flux at height to that at the source, the dilution is
D = ((Γ + 1 − f )/Γ )3/4 for a thermal in a stably stratified environment. As f = −1 at
the top of rise, the dilution there is D = (1 + 2/Γ )3/4.

2.3. Describing the solutions
Before proceeding with the discussion, it is important to recognise the structure of the
equations. The source buoyancy flux F0 and the environmental stratification N are used
to create the dimensional scaling of the equations. The numerical results therefore cannot
explicitly depict the way in which the flows might eventuate as a consequence of changes in
either of those parameters. Instead, the dependence on the source characteristics (volume
and momentum) can be determined readily with this approach.

The parameter Γ may be thought of as representing the source volume, which
is proportional to R3

0, suitably made dimensionless with the source buoyancy and
environmental stratification. Smaller values of Γ represent small radius sources, while
larger values represent sources of larger extent. The solutions for Γ = 0 are those for
point sources that were found by Morton et al. (1956) and are shown in their (20) and (21).

The parameter δ may be thought of as representing the source momentum, suitably
made dimensionless with the source buoyancy and environmental stratification. Small
values represent sources with low momentum, while a value δ = π/2 represents a source
of infinite momentum (clearly unrealistic). However, flows for which δ approaches π/2
from below have high source momentum and positive source buoyancy, while flows for
which δ exceeds π/2 by a small amount have high source momentum but negative source
buoyancy.

The results for thermals are shown in figure 2. Figure 2(a) is for a positively buoyant
source and shows the various dimensionless variables m (momentum), f (buoyancy), w
(velocity), r (radius) and z (height), for Γ = 0.2 and δ = 0.2, plotted as functions of time
represented by θ . The buoyancy f drops from a value near 1 at the source to zero at θ =
π/2, and then to f = −1 at θ = π. The momentum m rises from its source value tan δ at
θ = δ to a maximum value 1, then decreases to zero at θ = π. The vertical velocity w rises
rapidly at first then decays once the entrainment has added sufficient extra volume, before
reaching zero buoyancy at θ = π/2. The height z and radius r have the same shape, with
the vertical source at z = 0 and the source radius r reflected by Γ .

Figure 2(b) shows the same plume variables as in figure 2(a), but now arising from
a negatively buoyant source at δ = 1.8, after which the buoyancy satisfies f < 0 and
continues to decrease. The vertical velocity starts at its maximum value at the source,
then drops as the negative buoyancy retards the flow. Figure 2(c) shows heights of rise
for specific source size Γ = 0.2 and for various values of δ. For low values of δ, the
heights of rise are modest and rise as the source momentum increases (higher δ). Beyond
δ = π/2, the negative buoyancy of the source has the effect of reducing the rate of rise w
and limiting the height of rise z.

Figure 2(d) shows, for δ = 0.2 and δ = 1.8, how the heights of rise vary with Γ . Higher
values of Γ result in lower maximum heights as the sources with larger radius create a
larger thermal so that the buoyancy per unit volume is lower and the vertical velocity is
lower.

Considering solutions (2.11) and (2.12), the quantity

Q2 = M2 + N−2F2 = N−2F2
0 sec2 δ (2.26)
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Figure 2. The momentum m, buoyancy f , radius r, vertical velocity w and height of rise z for selected values
of parameters Γ and δ for both positively and negatively buoyant thermals in a stably stratified environment.

is a positive flow constant independent of time as the thermal rises. The dimensions of
Q are that of volume times velocity, hence Q is in effect a conserved specific vertical
momentum. For δ < π/2, both M0 and F0 are positive at the origin, and momentum
increases as the relative buoyancy drops. For M0 > 0, F0 < 0 as the buoyancy becomes
increasingly negative, and the momentum drops from its initial (and highest) value.

These results will be compared to those for thermals emitted into an unstably stratified
environment in the next two sections.

3. The thermal in an unstably stratified environment

The same formulation is used as in § 2. Equations (2.1) and (2.2) remain valid, while (2.3)
has a sign change in the stratification, so that (2.3) is replaced by

dπR3B
dt

= πR3WG2, (3.1)

where

G2 = g
ρ1

dρ0

dz
. (3.2)

Here, G clearly takes on the same role for the unstable environment as did N for the stable
environment.
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Thermals from finite sources

The bulk quantities that represent momentum M and buoyancy F are as defined in § 2.
Solutions to (2.2) and (2.3) are

M/M0 = cosh θ + ε−1 sinh θ, (3.3)

F/F0 = cosh θ + ε sinh θ. (3.4)

Here, ε is defined by

ε = GM0/F0 (3.5)

in analogy with (2.12). The phase angle representing dimensionless time is now given by
θ = Gt. By virtue of the definition of ε, the dimensionless definitions of momentum and
buoyancy are

MG/F0 = m = ε cosh θ + sinh θ (3.6)

and

F/F0 = f = cosh θ + ε sinh θ. (3.7)

The equation for the radius is R4 = R4
0 + 4α

∫ t
0 M dt as before, and evaluating the integral

yields

R4G2/(αF0) = r4 = 4(Γ + f − 1), (3.8)

where the dimensionless source parameter Γ is now defined by

Γ = R4
0G2

4αF0
. (3.9)

The height of rise is given by

Z4G2/(α3F0) = z = 21/2((Γ + f − 1)1/4 − Γ 1/4). (3.10)

The vertical velocity is found from the relationship w = mr−3 and has scaling
(|F0|G2/α3)1/4.

3.1. Calculating the solutions
In analogy with § 2, we will consider solutions for both positively and negatively buoyant
flows rising into an unstable environment. Define the sign of the buoyancy F0 by sgn, i.e.
F0 = sgn |F0|, and ε = GM0/|F0|. The dimensionless equations are

m = ε cosh θ + sgn sinh θ, (3.11)

f = sgn cosh θ + ε sinh θ, (3.12)

r = 21/2(Γ + f − sgn)1/4, (3.13)

z = 21/2((Γ + f − sgn)1/4 − Γ 1/4), (3.14)

w = m/r3. (3.15)
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Figure 3. Plots showing the momentum m, buoyancy f , radius r, vertical velocity w and height of rise z for
selected values of parameters Γ and ε for positively buoyant thermals in an unstably stratified environment.

3.2. Describing the solutions
The case of a positive thermal emitted into an unstable environment is straightforward
in that all properties increase hyperbolically with time. This may occur in very limited
circumstances where, for example, there is rapid heating of the Earth’s surface in the
morning as might occur when cloud cover is non-existent, and the morning sun rapidly
heats the surface of the Earth, which has cooled substantially overnight. It might also
occur at times when cooler air flows over a warmer surface. Such circumstances are almost
certain to be brief, limited perhaps to a few hours of the day. Nevertheless, this theory will
cater for those circumstances. Figure 3(a) shows the parameters r, b and w as functions of
time for Γ = 0.2 and ε = 1.2. Figure 3(b) shows heights of rise as a function of time (θ =
Gt) for ε = 2.2 and various values of Γ . As for thermals in a stable environment, smaller
thermals rise more rapidly as their entrainment rate is slower than for larger thermals.

A more interesting situation occurs when a negatively buoyant thermal is projected into
an unstably stratified atmosphere. There are two possibilities, both of which are catered
for by the theory. One case occurs when the source momentum is large enough to continue
the thermal rise up to the point where entrainment of lighter fluid changes the sign of
the thermal buoyancy from negative to positive (with respect to the local environment
at that height). In this case, the thermal’s vertical velocity slows at first, then ultimately
accelerates upwards once more under its newly found positive buoyancy. The second
case arises when the initial source momentum is weak, and entrainment of less dense
environmental fluid is insufficient to change the sign of the thermal buoyancy before it
ceases to rise.

Figure 4(a) shows the dimensionless parameters as a function of angle θ , which is
dimensionless time. Note that the phase origin for these calculations is always zero. The
dimensionless parameters are plotted against θ for specific values of Γ = 0.2, and ε = 1.2.
This reflects a negatively buoyant source of relatively small radius emitting into an unstable
environment. Both height and radius grow rapidly at first, then the growth is slowed down
as entrainment dilutes the thermal. The momentum drops initially as the negative buoyancy
impacts the flow, and the buoyancy increases from f = −1 as more positively buoyant fluid
is entrained. At about θ ≈ 1.2, the buoyancy changes sign and becomes positive, and the

960 A41-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.245


Thermals from finite sources

2.5

3.0

2.0

(a) (b)

(c) (d)

D
im

en
si

o
n
le

ss
 d

y
n
am

ic
 p

ar
am

et
er

s

1.5

1.0

0.5

0

–0.5

–1.0

3.0

2.5

2.0

1.5

1.0

0.5

0

–0.5

–1.0
0.50 1.0 1.5 2.0 2.5 3.0 3.5

2.2

1.8

0.2

1.2

2.2
3.2
4.2

1.4

1.0

0.6

0.50 1.0 1.5 2.0 2.5 3.0 3.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5

θ (rad) θ (rad)

1.8

1.6

D
im

en
si

o
n
le

ss
 h

ei
g
h
t

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Γ = 0.2

ε = 1.2

Γ = 0.2

ε = 0.98r

r

z
z

m

m

f

f

w
w

ε = 2.2 Various ΓΓ = 0.2 Various ε

Figure 4. Plots showing the momentum m, buoyancy f , radius r, vertical velocity w and height of rise z for
selected values of parameters Γ and ε for negatively buoyant thermals in a unstably stratified environment.

momentum starts to increase again from its minimum value. It takes a little longer for the
vertical velocity to begin increasing again because m = b3w, and the radius is growing at
the time when m = 0. Ultimately, the unstable environment controls the growth, and both
momentum and buoyancy increase at a more rapid rate as time progresses.

The criterion that indicates whether a thermal will continue to grow or to reach a
maximum height is determined by m = 0. This occurs when tanh θ = ε = GW0/|B|. Since
tanh θ can never exceed 1, a maximum height is never reached if ε > 1. Maximum heights
are reached only when ε < 1, because the source velocity is sufficiently high, and the
height is given by evaluating θm = tanh−1 ε, then using that value to calculate f and z.
For the limiting case ε = 1, the thermal reaches a level of neutral buoyancy and neutral
momentum asymptotically for large time.

Figure 4(b) shows the dimensionless parameters plotted for values of Γ = 0.2, and
ε = 0.98. This reflects a negatively buoyant source of small radius emitting into an
unstable environment with insufficient momentum, and in this case the thermal reaches its
maximum height with zero momentum and zero vertical velocity. The buoyancy f remains
negative at all times.

Figure 4(c) shows heights for rise for Γ = 0.2 and for various ε. Growth is most rapid
for larger values of ε > 1, reflecting a stronger source momentum, while for ε = 1, the
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maximum height is reached asymptotically for large θ . For ε < 1, the maximum height is
reached, and beyond that time, calculations are not presented.

Figure 4(d) examines the dependence of the height of rise on Γ for the selected value
ε = 2.2, reflecting a continuing rise at all times. As with thermals in a stable environment,
a larger Γ ensures a greater relative rate of entrainment and a slower rate of rise.

4. General discussion

There is a considerable literature refining the concepts of turbulence and entrainment for
buoyant flows. The overall Richardson number Ri = F(WR)−2 for the asymptotic solutions
of thermals in a neutral environment is constant (as is true for pure plumes); however, this
is not the case for either flow in a stable environment. This remains a limiting factor for the
present analyses, which rely on the entrainment rate to depend only on the vertical velocity
and not on Ri for non-neutral environments, despite this being a known factor for plumes
as described by Ciriello & Hunt (2020).

For the present results, the scaling is undertaken with buoyancy F0 and stratification N
(or G in the case of unstably stratified environments) as the key dimensional parameters.
The entrainment constant α is included in the dimensional grouping so that the numerical
dimensionless solutions are independent of the numerical value of α. For thermals, heights
of rise are proportional to (αF0N−2)1/4 so that the height of rise is inversely proportional
to −dρ0/dZ in a stably stratified environment, but is dependent on the source buoyancy
flux only to the quarter power.

The source size that is characterised by Γ has a fairly strong impact on the height of
rise, with significant decreases as the source size becomes larger. The ratio NM0/F0 is the
momentum scaled by the buoyancy and stratification, and so is direct measure of the source
strength, characterised here by tan δ = NM0/F0 in a stably stratified environment. Higher
values of δ are associated with larger M0 (until δ = π/2, where the source momentum is
infinite) and result in significantly greater heights of rise.

The specific momentum Q defined in (2.25) is determined at the source and retains
its value as the thermal rises, and appears to be a conserved quantity so far undefined
in the literature on thermal rise in stratified flows. It is a bulk quantity, and its internal
contributions reflect the gradual change in balance between buoyancy and upward
momentum, with upward momentum increasing when the thermal has positive buoyancy,
and decreasing when the buoyancy is negative. Sources with non-zero buoyancy and zero
momentum δ = 0 are virtual sources for more realistic thermals having some momentum.

The assumption that the thermal is and remains of spherical shape is another
simplification. A number of papers suggest that the shape is more of an oblate spheroid,
but catering for another shape factor would not change the structure of the equations. Also,
the thermal may begin spreading laterally after it reaches its level of zero buoyancy, but
this is also not catered for here.

For some applications, knowledge of dilution is important. The rate of dilution of
the effluent is defined by D = ((Γ + 1 − f )/Γ )3/4 for a thermal in a stably stratified
environment. As f = −1 at the top of rise, the dilution there is D = (1 + 2/Γ )3/4, and is
therefore independent of δ, the source strength, but dependent on the entrainment constant
α, since Γ is inversely proportional to α. This is an interesting and unexpected result,
as it might be thought that increased momentum might enhance dilution through larger
entrainment. Dilution is larger for smaller sources characterised by smaller Γ .

A question arises as to the relevance of the present results in unstably stratified
environments. Such environments occur in the atmosphere in the early morning when solar
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heating of the Earth’s surface heats the air immediately above, or perhaps more commonly
when cooler air flows over a warmer ocean surface. Turner (1969) notes that the sustained
motion of a thermal in an unstable environment is unlikely, but it remains possible that
such circumstances may apply for a period short enough for a thermal to rise. That there
do not appear to be data to compare with the theory is not ideal, however, any requirement
that data be first available before a theory be published would appear to run counter to
many scientific developments. This paper may prompt some ingenious new experiments.

For vertical forced plumes in an otherwise still environment, and for bent-over plumes
in a crossflow, the mathematical structure of the buoyancy and momentum equations is
the same as for thermals, although the scaling is different. For vertical forced plumes, the
equation representing change in volume provides for a change in structure from jet-like
spread to plume-like spread. This precludes analytical solutions; however, the entrainment
hypothesis and the sinusoidal solutions for momentum and buoyancy ensure that such
flows will also have similar properties throughout the range of parameters. For bent-over
plumes in a crossflow, analytic solutions were found by Middleton (1986), and those
solutions are analogous to the solutions found here for the thermal.

The simple assumptions made by Morton et al. (1956) have been adapted here
for thermals emitted from finite size sources having momentum. The resulting simple
analytical solutions determine thermals to remain straight sided at all stages of flow
development, as is the case for asymptotic flows. The solutions for momentum and
buoyancy have a sinusoidal structure for flows in stable environments, and a hyperbolic
structure in unstable environments.
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