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The stability of a uniform flow above an erodible bed composed of a bimodal
mixture of sediments is investigated by means of linear analysis. Results show
that, for any given set of the flow and sediment parameters, two distinct modes of
instability arise, each one characterized by its own wave speed, growth rate and
longitudinal wavelength, each one involving spatial variations of both grain size
density and bed elevation. Although at a linear level no information on the amplitude
of the perturbations is gathered, the analysis of the eigenvectors associated with the
two modes of instability allows for an easy classification in terms of the relative
amplitudes of the perturbations of bed elevation and size density. One eigenvalue is
shown to be associated with the modifications of bed forms induced by the presence
of the heterogeneous mixture, such as the local accumulation of finer and coarser
material along the unit wavelength, the other with the formation of the low-amplitude
sorting waves known as bedload sheets. In the present unidirectional shallow-water
framework, only the sorting wave is found to be unstable, since dunes and antidunes,
the relevant bed forms for this case, require a more refined rotational flow model in
order to become unstable. On the other hand, the simple flow model adopted allows
for the formulation of an algebraic eigenvalue problem that can be solved analytically,
allowing for a deep insight into the mechanisms that drive both instabilities.

Key words: river dynamics, absolute/convective instability, sediment transport

1. Introduction
Sediments in nature can seldom be considered as homogeneous. Despite this,

among the many simplifying assumptions usually adopted in the modelling of
sediment transport, the one of well-sorted material is probably the most common.
Following this approach, the dynamics of the sediment mixture is modelled as if it
were composed of a single grain size, typically chosen as the median diameter of
the mixture, i.e. the average particle diameter of the sample by mass. If the sediment
is moving as bedload, a single sediment mass conservation equation (known as the
Exner equation) is then usually introduced to represent the bed dynamics. Moreover,
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FIGURE 1. Side and plane view of bedload sheets as reported by Whiting et al. (1988).
Flow is from left to right.

sediment discharge is assumed to equal the transport capacity of the flow. Once
coupled with the set of equations of a suitable flow model, the Exner equation
provides the simplest possible tool to study morphodynamic problems.

However, simplification always comes at a price, which in this case is related to
the fact that sorting effects are completely neglected in the analysis. This can be
acceptable when, as in the study of bed forms, the focus is on the instability of the
bed interface as a whole and sorting is passively driven by changes in bed elevation,
simply producing an accumulation of finer (coarser) material on crests (troughs) or
vice versa. On the other hand, this becomes inappropriate when the formation of the
bed form itself is inherently associated with, or dominated by, the effect of sorting,
the heterogeneity of the sediment being the crucial mechanism driving the instability
(Seminara 1995; Livesey et al. 1998). This is the case of the sorting waves named
‘bedload sheets’ after Whiting et al. (1988), which appear as rhythmic alternations
of finer and coarser bands of the bed material aligned across the flow (see figure 1),
characterized by downstream migration and negligible amplitude (Venditti, Nelson
& Dietrich 2008). Bedload sheets have been observed both in the laboratory (Iseya
& Ikeda 1987; Kuhnle & Southard 1988; Bennett & Bridge 1995; Recking et al.
2009) and in the field (Whiting et al. 1988; Cudden & Hoey 2003) sometimes
superimposed on the stoss side of dunes and bars (Whiting et al. 1988; Bennett &
Bridge 1995; Livesey et al. 1998; Rice et al. 2009). Moreover, their propagation has
been associated with the rhythmic fluctuations of the bedload transport rate that are
frequently observed in gravel bed rivers (Reid, Frostick & Layman 1985; Iseya &
Ikeda 1987; Kuhnle & Southard 1988).

Several authors (Livesey et al. 1998; Cudden & Hoey 2003) have highlighted how
difficult it is, from an experimental point of view, to distinguish among the different
spatial and temporal scales associated with bed and sorting waves. This led Livesey
et al. (1998) to conclude that ‘the interactions between bed topography, flow structure
and surface sorting patterns remains poorly understood despite their central role in
controlling mixed-size entrainment dynamics and fractional bedload transport rates’.
In particular, the distinction between dunes with sorting and bedload sheets is difficult
to make (Carling 1999), so that often the latter have been considered as some sort of
dune ‘precursors’ (e.g. Bridge 1993), adding confusion to the interpretation. In fact,
observations have shown that both the wavelength and the wave speed of dunes (with
sorting) and bedload sheets can be remarkably different from one another, the former
being typically longer and slower than the latter, as shown by Kuhnle et al. (2006),
who explicitly state that ‘It is not entirely clear how bed load sheets found in sand
and gravel mixtures relate to the dunes in gravel found in other studies’. The most
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distinctive character among the two patterns remains indeed the height of the bed form,
which is almost negligible for bedload sheets as compared to dunes.

From a theoretical point of view, linear stability analyses are known to be the ideal
tool to shed light on the mechanisms responsible for the formation of a wide variety
of patterns, so it is not surprising that in the nineties several attempts were made to
include sorting into existing studies on bed forms, initially developed for a well-sorted
sediment (see Colombini & Parker (1995), Seminara, Colombini & Parker (1996) and
Lanzoni & Tubino (1999), among others). These analyses were mainly focused on the
formulation of coupled sediment transport and flow models valid for heterogeneous
mixtures, thus including the effect of hiding and of the local surface roughness. The
appearance of sorting waves was in fact acknowledged, but the distinct nature of
topographic- and roughness-driven instabilities did not receive the attention it deserved,
mainly because the focus was more on the effect of sorting on bed forms than on the
formation of sorting waves. The only notable exception is the work of Seminara et al.
(1996), where the formation of bedload sheets was investigated in detail. However, in
order for the bedload-sheet mode to emerge, in Seminara et al. (1996) the dune mode
was artificially ruled out from the analysis, by assuming that the perturbation of bed
elevation scales with the (small) standard deviation of the grain size distribution.

More recently, in the scientific community dealing with coastal morphodynamics,
the problem of bed forms in heterogeneous sediment has received considerable
attention. In particular, Murray & Thieler (2004) described the existence in the inner
continental shelf of ‘self-organized sorted bed forms’, which can be considered as the
coastal counterpart of bedload sheets. Sorted bed forms, although the name chosen by
Murray & Thieler (2004) can be misleading in this regard, are in fact sorting patterns
generated by roughness variations, coupled to small undulations in the bed level (Van
Oyen, de Swart & Blondeaux 2010), the occurrence of which has been explained by
both the numerical solution of Coco et al. (2007) and the linear stability analysis
of Van Oyen, de Swart & Blondeaux (2011). In particular, in the latter work the
presence of two distinct modes of instability was highlighted, a ‘topography-driven’
mode primarily associated with changes in bed elevation and a ‘roughness-driven’
mode, characterized by shorter wavelength and by smaller amplitudes than the
former, associated with the appearance of the ‘sorted bed forms’. With the present
contribution, which can be considered as a revisitation of Seminara et al. (1996) with
a simpler flow model, those concepts are brought back to the riverine applications
where they were originally conceived. By doing so, we hope to gain a deeper insight
into the mutual interactions between sorting and bed forms.

In the following, the terms ‘bed wave’ and ‘sorting wave’ have been adopted to
indicate the topography-driven and the roughness-driven instabilities, respectively. In
fact, these terms have been borrowed from Stecca, Siviglia & Blom (2014), where
a linearized analysis of the dynamics of small waves in the case of heterogeneous
sediment was carried out. Note that each of these modes of instability displays a
topographic as well as a sorting pattern. It is only the relative importance of the
amplitude of the perturbations of bed elevation and size density that, eventually, draws
the distinction between bed waves (dunes) and sorting waves (bedload sheets).

The present analysis might also be of relevance for the investigation of the well
posedness of the Saint-Venant–Hirano model, which has been recently questioned in
several studies in terms of either loss of hyperbolicity of the system (Ribberink 1987;
Sieben 1997; Stecca et al. 2014; Chavarrías, Stecca & Blom 2018) or unboundedness
of the growth rate in the short-wave range (Chavarrías et al. 2019). Although the
focus is herein on the stability of the governing differential system and therein
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S
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B(x, t) + R(x, t) + D(x, t)

B(x, t) + R(x, t)
B(x, t)

FIGURE 2. Sketch of a longitudinal section of the flow configuration.

on its mathematical properties, the concepts of stability, unboundedness and well
posedness (and their own opposites) are in fact strongly tied to one another and
all the above analyses ultimately rely on a linearization in terms of small-amplitude
hydro-morphodynamic waves. Indeed, if the growth rate associated with an eigenvalue
has a finite upper bound, independent of the wavenumber, and so is well posed in
the sense of Chavarrías et al. (2019), the eigensystem is defined ‘regular’ (Birkhoff
1954). In turn, regularity implies hyperbolicity and so if the solution is regular in the
short-wave range it is also mathematically well posed in the sense of Stecca et al.
(2014).

Note that it is the unboundedness of the growth rate that makes the system irregular
and ill posed, not the mere instability (i.e. a positive growth rate) in the short-wave
range, though the numerical solution of a system where the maximum growth rate
is found in the limit of infinitely short waves can become problematic. Examples of
regular short-wave instability are indeed present in the literature (Hooper & Boyd
1983). It must be stressed, however, that the absence of a cutoff in the short-wave
range makes the solution much less appealing from a physical point of view, because
no wavelength of maximum amplification is selected by means of a normal mode
analysis. As Joseph & Saut (1990) pointed out, that ‘there is always a cutoff’ is in
fact an axiom in physics which can be considered as fully equivalent to the medical
aphorism ‘the bleeding always stops’. Moreover, the absence of a cutoff in the
short-wave range is quite often the symptom of the lack of an essential, stabilizing
ingredient in the analysis, as is the case of the interfacial tension in Kelvin–Helmholtz
and Rayleigh–Taylor instabilities, which transform an ill-posed (and irregular) problem
into a well-posed one (Truzzolillo & Cipelletti 2017).

2. Formulation of the problem
The starting point of our analysis is the one-dimensional form of the governing

equations of morphodynamics in a straight channel with an erodible bed. The triplet
composed by the fluid mass density ρ and by the uniform, depth-averaged flow
velocity U∗ and depth D∗ is used for non-dimensionalization. Here and in the
following, an asterisk denotes dimensional variables.

It is convenient to write the equations in the Cartesian coordinate system sketched
in figure 2, sloping with slope S. Three different interfaces are displayed in the
picture. The curve z=B(x, t) is the actual bed level and the curve z=B(x, t)+R(x, t)
represents the reference level, R(x, t) being the roughness height, i.e. the distance
above the bed at which the logarithmic vertical profile of velocity conventionally
vanishes. Moreover, we stipulate that the reference level sets the lower boundary of the
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flow, so that the free surface is represented by the curve z=B(x, t)+R(x, t)+D(x, t),
where D is the non-dimensional local flow depth.

2.1. The flow model
Under the shallow-water approximation, whereby a hydrostatic pressure distribution
along the vertical is assumed, the non-dimensional forms of the Saint-Venant and
continuity equations read

U,t +UU,x −
S

Fr2
+
(B+ R+D),x

Fr2
+

Tt

D
−
(TnD),x

D
= 0, (2.1)

D,t + (UD),x = 0, (2.2)

where U is the local value of the depth-averaged velocity, Fr = U∗/
√

gD∗ is the
Froude number of the undisturbed uniform flow, g is the gravitational acceleration,
Tt is the bed shear stress, Tn is the depth-averaged value of the streamwise normal
Reynolds stress and the comma notation is used to indicate partial derivatives. The
closure for the stresses is found by assuming a self-similar vertical profile of velocity
and mixing length of the kind

u=
uf

κ
ln
(

R+ ζD
R

)
, l= κ(R+ ζD)(1− ζ )1/2, (2.3a,b)

where uf is the friction velocity, κ is the von Kármán constant, taken as 0.4 and
the following transformation is employed, which maps the domain of figure 2 in a
rectangular domain:

ζ =
z− B− R

D
, ξ = x. (2.4a,b)

Hence

Tt = u2
f = νtu,z|ζ=0, Tn = 2

∫ 1

0
νtu,x dζ , νt = l2u,z. (2.5a,b)

Moreover, the friction velocity is proportional to the local value of the depth-
averaged velocity through a non-dimensional Chézy coefficient C, which, in turn, is
assumed to depend on the average bed roughness r∗ through the Keulegan relationship
(ASCE 1963), valid for a uniform flow in the rough regime

C=
U
uf
=

1
κ

ln
(

11.09D∗

r∗

)
. (2.6)

In the case of homogeneous sediment, the roughness height R is typically set equal
to one thirtieth of the non-dimensional bed roughness, consistently with (2.6). In the
present heterogeneous case, the same line of reasoning is followed, whereby the local
roughness height R is set to one thirtieth of the local bed roughness, which in turn
depends on the local bed composition. As a consequence, a local increase of the
percentage of the coarser (finer) fraction implies a larger (smaller) roughness height,
thus creating the necessary feedback between the sorting process and the flow.
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2.2. The sediment transport model
To treat the bedload transport of heterogeneous sediment, a simple three-layer model is
used, which implements the concept of the ‘active layer’ of Hirano (1971). The active
layer, depicted as a grey area in figure 2, is defined as the layer of sediment close to
the bed interface which is available for entrainment into bedload. It is convenient at
this point to briefly summarize some of the salient concepts of the formulation. For
a more complete analysis, the reader is referred to Colombini & Parker (1995) and
Seminara et al. (1996).

To characterize the size distribution of the mixture composing the bed, we introduce
the sedimentological φ-scale as

d∗(φ)= d∗502−φ+φ50, (2.7)

where φ50 is the opposite of the binary logarithm of the median of the grain-size
distribution d∗50, expressed in millimetres.

The probability density function for the grain size φ in the active layer (in short,
the size density) is denoted as F(φ; x, t), where, by definition∫

∞

−∞

F(φ) dφ = 1. (2.8)

The first and second moments of F provide the mean φm and standard deviation σm
(on the φ-scale) of the grain-size distribution as

φm =

∫
∞

−∞

φF(φ) dφ, σ 2
=

∫
∞

−∞

(φ − φm)
2F(φ) dφ, (2.9a,b)

from which the characteristic diameters d∗g and d∗σ can be calculated

d∗g = d∗502−φm+φ50, d∗σ = d∗502−φm+φ50+σ . (2.10a,b)

It is just worth noting that in the case of a log-normally distributed sediment

φm = φ50, d∗g = d∗50, d∗σ = d∗502σ = d∗84, (2.11a−c)

where d∗84 is the size such that 84 % of the mass of a sample is finer. This grain size
is close to d∗90, which is often considered as representative of both the roughness of
the bed and the thickness of the active layer. However, in the present contribution
we want to investigate the mechanisms which drive and are driven by sorting and, to
this end, we are particularly interested in well-sorted mixtures which exhibit only a
small degree of heterogeneity. Hence, we can safely make use of d∗g instead of d∗σ
in the determination of the roughness and of the active layer thickness. Moreover,
following Colombini & Parker (1995) and Seminara et al. (1996), we assume the
active layer to be sufficiently thin to allow the neglect of a vertical structure. Any
interaction with the substrate is neglected as well, assuming that only a minimal
amount of aggradation and degradation takes place. This implies that the size density
F(φ) in the active layer coincides with the areal concentration of the sediment in the
size range φ, φ + dφ. The rationale for these hypotheses is that in the framework
of a linear analysis the base uniform state, for which the bed neither aggrades
nor degrades, is only slightly perturbed. Indeed, it must be pointed out that these
assumptions completely rule out aggradational and degradational cases and, with them,
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the troublesome, possibly elliptic case of degradation into a finer substrate (Stecca
et al. 2014).

The bed shear stress and the volumetric grain-specific sediment discharge per unit
width are made non-dimensional using d∗50, as it is customary when treating a sediment
mixture

θ =
T∗t

ρ(s− 1)gd∗50
, qs =

q∗s√
(s− 1)gd∗50d∗50

= quF, (2.12a,b)

where θ is the Shields stress, s is the relative mass density of the sediment and qu(φ)
is the bedload transport density per unit size density in the active layer (in short, the
transport density).

Imposing sediment mass conservation, a grain-size specific non-dimensional Exner
equation can eventually be obtained that reads

FB,t + LaF,t + γ (quF),x = 0, (2.13)

where La is the non-dimensional active layer thickness, which in the following is taken
as twice the dimensionless median diameter d50 = d∗50/D

∗ (Seminara et al. 1996).
The parameter γ appearing in (2.13) represents the order of magnitude of the

ratio between the fluxes per unit width of sediment and flow, corrected for the
sediment porosity ps. This small parameter can also be interpreted as the ratio of the
characteristic time scales of flow and sediment transport and reads

γ =

√
(s− 1)gd∗50d∗50

(1− ps)U∗D∗
=O

(
d50

C
√
θ

)
, (2.14)

where O(x) is used in the following to indicate ‘of the order of x’.
Integration of (2.13) on the φ-space yields the classic Exner equation

B,t + γ qt,x = 0, (2.15)

where (2.8) is used and

qt =

∫
∞

−∞

qu(φ)F(φ) dφ (2.16)

is the total sediment discharge per unit width.
A closure equation is needed for qu, which is assumed to depend on the fraction

grain size through one of the many empirical relationships available in the literature
for homogeneous sediment. In particular, we define (Parker, Klingeman & McLean
1982)

qu(φ)= θ
3/2G[Φ(φ)], Φ(φ)=

θ

θc

d∗50

d∗g

(
d∗g

d∗(φ)

)b

, (2.17)

where θc is the critical Shields stress for sediment motion.
In table 1 some of the most popular relationships for the function G(Φ) are

summarized, together with the corresponding values of the critical Shields stress.
Note that the perturbation approach followed herein requires G to possess continuous
derivatives, so that we have assumed the function to be valid in the whole interval
Φ > 1, accepting a small error in the limit θ→ θc, where the functions presented in
table 1 are known to become less accurate.

The exponent b in (2.17) controls the hiding effect. Two limiting cases are of
relevance: when b vanishes, the ‘equal mobility’ case is recovered, whereby the
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Meyer-Peter & Müller (1948) 8(1− 1/Φ)1.5 0.047
Ashida & Michiue (1972) 17(1− 1/Φ)(1− 1/

√
Φ) 0.06

Parker (1978) 11.2(1− 1/Φ)4.5 0.03
Wilcock & Crowe (2003) 14(1− 1/

√
Φ)4.5 0.0288

Wong & Parker (2006) 3.97(1− 1/Φ)1.5 0.0495

TABLE 1. The function G(Φ) and the corresponding value of the critical Shields stress
θch for several empirical relationships.

transport densities of the fractions are all equal to each other and depend on the local
value of the Shields stress built upon the geometric mean size. On the contrary, when
b is set to unity, the transport density of each fraction depends on the local value of
the Shields stress built upon the fraction grain size, as if the bed were composed by
that sediment alone. We set b to the value of 0.095, as in Parker (1990), so that even
if the same function G is used for all grain sizes, the mobility of each fraction is
not identical. Indeed, a small positive value of b corresponds to finer material being
slightly more mobile than the coarser one. Hence, under uniform conditions the bed
surface is coarser than the bedload and selective transport of surface grains can take
place whenever uniform conditions are perturbed. As an example, using the classic
Meyer-Peter & Müller (1948) relationship, we obtain

qud = 8(θd − ξdθc)
3/2, ξd =

(
d∗g
d∗

)1−b

, (2.18)

where qud and θd are the transport density and Shields stress built upon the fraction
grain size d∗. The coefficient ξd in (2.18), which corrects the critical Shields stress θc
is shown to play the role of the hiding-exposure coefficient of Egiaziaroff (1965), to
which it successfully compares.

Finally, the effect of gravity, whereby grains move more easily downhill than
uphill, is included in the analysis by reducing the critical Shields stress of an amount
proportional to the local slope

θc = θch −µ(S− B,x), (2.19)

where θch is the constant value appearing in table 1 and the constant µ has been set
equal to 0.1 after Fredsøe (1974).

3. Linear analysis
A normal mode analysis is developed by expanding the main variables as follows

(U,D, B, R)= (1, 1, 0, R0)+ ε{(U1.D1, B1, R0R1) exp[ik(x−wt)] + c.c.}, (3.1)

where ε is a small parameter, k and w are the wavenumber and complex wave speed
of the perturbation and c.c. stands for complex conjugate. Similarly, any generic
derived quantity f (φ; x, t) is expanded as

f (φ; x, t)= f0(φ)+ ε{ f1(φ) exp[ik(x−wt)] + c.c.}. (3.2)

Collecting terms with the same power of ε, the following problems arise.
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3.1. Base state: O(ε0)

The base state consists, as already stated, of a uniform flow, so that, by definition, we
have

Tt0 =
S

Fr2
=

1
C2
, Tn0 = 0, (3.3a,b)

R0 = exp(−κC− 1)=
r0

30
, r0 = nrdg0, dg0 = d50, (3.4)

where nr is taken as 2.5 after Engelund & Hansen (1967). Note that the roughness
height R0, the bed roughness r0, the conductance coefficient C and the median
diameter of the mixture dg0 are interrelated by (3.4), so that either of them can be
used to fix the grain-to-depth ratio d50.

The Exner equation (2.13) does not provide any additional information, since, under
uniform flow conditions, the bed neither experiences aggradation nor degradation. The
following relationships hold

qu0(φ)= θ
3/2
0 G[Φ0(φ)], Φ0(φ)=

θ0

θc0
2b(φ−φm0), (3.5a,b)

θ0 =
Fr2

C2(s− 1)d50
, θc0 = θch −µ

Fr2

C2
, (3.6a,b)∫

∞

−∞

F0(φ) dφ = 1, φm0 =

∫
∞

−∞

φF0(φ) dφ, σ =

∫
∞

−∞

(φ − φm0)
2F0(φ) dφ. (3.7a−c)

3.2. Linear level: O(ε1)

Substituting the expansion (3.2) into (2.1)–(2.2) and equating terms of O(ε), the
following set of algebraic equations is obtained

U1(1−w)+
B1 + R0R1 +D1

Fr2
−

i
kC2

(
Tt1

Tt0
−D1

)
− Tn1 = 0, (3.8)

U1 +D1(1−w)= 0, (3.9)

where (see appendix A)

Tt1

Tt0
= 2U1 Tn1 =

ik
C2

(
NU1 − B1 −

1
3

R1

)
, N =

1
3

(
κC+

1
6

)
. (3.10a,b)

By substituting (3.10) in (3.8) and (3.9), the following algebraic homogeneous
system is obtained

(
a11 −w a12 a13 a14

1 1−w 0 0

)
·

U1
D1
B1
R1

=(0
0

)
, (3.11)

where

a11 = 1−
i

kC2
(2+ k2N), a12 =

1
Fr2
+

i
kC2

, (3.12a,b)
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885 A46-10 M. Colombini and C. Carbonari

a13 =
1

Fr2
+

ik
C2
, a14 =

R0

Fr2
+

ik
3C2

. (3.13a,b)

Focusing now on the sediment transport model, at the linear level the Exner
equation (2.13) yields

−wF0B1 −wLaF1 + γ (F0qu1 + qu0F1)= 0, (3.14)

where

qu1 = α(φ)
Tt1

Tt0
+ β(φ)

[
Tt1

Tt0
−
θc1

θc0
− (1− b)

dg1

dg0

]
, (3.15)

α(φ)= 3
2θ

3/2
0 G[Φ0(φ)], β(φ)= θ

3/2
0 Φ0(φ)G′[Φ0(φ)], (3.16a,b)

θc1 = ikµB1,
dg1

dg0
=

r1

r0
= R1 =− ln(2)φm1, (3.17a,b)∫

∞

−∞

F1(φ) dφ = 0, φm1 =

∫
∞

−∞

φF1(φ) dφ, (3.18a,b)

and G′ denotes the derivative of G with respect to Φ.
Equation (3.14) can be integrated in φ leading to

−wB1 + γ qt1 = 0, (3.19)

where

qt1 =

∫
∞

−∞

[F0(φ)qu1(φ)+ qu0(φ)F1(φ)] dφ (3.20)

is the perturbation of the total sediment discharge per unit width.
Moreover, equation (3.19) can be substituted in (3.14) leading to

−wLaF1(φ)+ γ [F0(φ)qu1(φ)− F0(φ)qt1 + qu0(φ)F1(φ)] = 0, (3.21)

which, together with (3.19), defines the linear system that controls the bed evolution,
in terms of bed elevation and composition. Assuming that the size distribution of
the mixture can be approximated by means of n fractions, the continuous probability
density function F(Φ; x, t) is formally replaced by its discrete counterpart: the
probability mass function (in short, the size fraction) F(Φ i

; x, t). Note that, in
this case, equations (3.19) and (3.21) provide a total of n equations in n unknown
variables: the amplitude of the bed perturbation B1 plus the n− 1 perturbations of the
size fraction F1(φ

i), the last size fraction F1(φ
n) being determined by the condition

that the summation of all F1 must vanish.
Let us restrict our attention, from now on, to the simplest possible case of

heterogeneous sediment: a bimodal mixture composed by two species (a and b)
in equal parts. Although most of the following considerations also apply to the more
general case of n fractions, this choice will allow for discussing the behaviour of a
single sorting wave instead of that of a family of n − 1 eigenvalues, which indeed
behave quite similarly (Stecca et al. 2014). We set

φa
= φm0 + σ , φb

= φm0 − σ , Fa
0 = Fb

0 =
1
2 , (3.22a,b)
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Fa
1 + Fb

1 = 0, φm1 = 2σFa
1, R1 =−2σ ln(2)Fa

1, (3.23a−c)

where the superscripts a and b refer to the finer and the coarser fraction, respectively.
Note that (3.23) shows that the amplitude of the perturbations of the roughness height
R1 is proportional to that of the coarser size fraction Fb

1 =−Fa
1 , so that the former is

maximum where the areal concentration of the coarser sediment is higher.
Using (3.19) and (3.21), the following algebraic homogeneous system is obtained:

−wB1 + γ (q+u1 + 2q−u0Fa
1)= 0,

−wFa
1 −

γ

2La
(q−u1 + 2q+u0Fa

1)= 0,

 (3.24)

where
q±u0 =

1
2(q

a
u0 ± qb

u0), q±u1 =
1
2(q

a
u1 ± qb

u1). (3.25a,b)

Moreover, making use of (3.15)–(3.17) and (3.23) the system (3.24) can be rewritten
as (

γ a31 0 γ ika33 −w γ a34
Γ a41 0 Γ ika43 Γ a44 −w

)
·

U1
D1
B1
R1

=(0
0

)
, (3.26)

where

a31 = 2(α+ + β+), a33 =−β
+
µ

θc0
, a34 =−

2
3

α−

σ ln(2)
− β+(1− b),

a41 =−2σ
(
α− + β−

)
, a43 = σβ

−
µ

θc0
, a44 =

2
3
α+

ln(2)
+ σβ−(1− b),

 (3.27)

and, as in (3.25), α± and β± are the halved sums and differences of the values of the
functions α and β evaluated at φa and φb.

The parameter Γ , which appears in the last row of (3.26), is equal to

Γ =
γ ln(2)

La
=O

(
1

C
√
θ0

)
(3.28)

and, in strict analogy with γ , it can be considered as the ratio of the characteristic
time scales of flow and sorting, an assumption the validity of which will be confirmed
later on. Although large with respect to γ , since La is proportional to the (small)
grain-to-depth ratio d50, Γ can still be considered as a small parameter. Indeed, the
smallness of γ and Γ ultimately ensures that both the bed and the sorting processes
do not evolve faster than the flow, a condition that would lead to quite unrealistic and
unphysical results. Hence, we have

γ � Γ � 1, δ =
γ

Γ
� 1, (3.29a,b)

where δ represents the ratio of the characteristic time scales of topographic and sorting
waves.
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885 A46-12 M. Colombini and C. Carbonari

Combining together (3.11) and (3.26), the fully coupled morphodynamic system for
a two-grain sediment mixture is obtained, in the forma11 −w a12 a13 a14

1 1−w 0 0
γ a31 0 γ ika33 −w γ a34
Γ a41 0 Γ ika43 Γ a44 −w

 ·
U1

D1
B1
R1

=
0

0
0
0

 (3.30)

or, in compact form,
(A−wI) · x= {0}, (3.31)

where A and x have obvious definitions and I is the identity matrix. This equation
reveals itself as a classic eigenvalue problem, whereby the system admits a non-trivial
solution only for those specific values of w, the eigenvalues, for which

det(A−wI)= 0, (3.32)

where det(·) stands for the determinant of the matrix.
The analysis of the eigenvalues of (3.32) and of the corresponding eigenvectors

provides the required information on the stability of the system. In particular, for any
given set of values of the parameters of the problem, the eigenvalue determines the
growth rate and the celerity (i.e. the wave speed) of the perturbations, which read,
respectively

Ω = kwi, ω=wr, (3.33a,b)

where the superscripts r,i stand for the real and the imaginary part of the complex
quantity, respectively.

A positive (negative) growth rate implies instability (stability) of the base state,
whereas a positive (negative) celerity implies downstream (upstream) propagation.

The system (3.30) represents the core of the present linear stability analysis and,
therefore, its solutions will be discussed in detail in the following. It is worth noting
that this algebraic eigenvalue problem provides four separate eigenvalues, each of
them describing a different physical process and each of them being in principle
able to induce an instability of the base uniform flow. In the next section, the nature
of these eigenvalues will be thoroughly investigated and it will be shown how they
can be associated with different patterns. Indeed, the eigenvectors associated with
each eigenvalue involve perturbations of the same quantities (velocity, flow depth,
topography and roughness) but, as in cooking, the same ingredients, combined in
different ways, can provide quite different results. In particular, it will be shown that
one of the eigenvalues can be associated with an instability of the bedload-sheet kind:
a sorting wave which manifests itself as a streamwise periodic perturbation of the
surface composition of the bed, travelling downstream with only a minimal change
in bed elevation.

4. Flow, bed and sorting eigenvalues
In this section we will examine the characteristics of the four eigenvalues of the

complete system by isolating simpler eigenproblems, already contained in (3.30),
which will provide some insight on the physical processes described by each of the
eigenvalues of the original problem. Moreover, we will show how the character (and
thus the labelling) of the eigenvalues remains valid as we zoom out from the simpler
towards the more complex problem. When appropriate, we will also take advantage
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Sorting and bed waves 885 A46-13

of the presence of the small parameters introduced in the previous section (namely
γ , Γ and δ), by suitably expanding the eigenvalues. The quasi-steady approximation
and the limiting case of weak sorting will also be considered and discussed.

Let us first rewrite (3.30) asa11 − γW a12 a13 a14
1 1− γW 0 0

a31 0 ika33 −W a34
a41 0 ika43 a44 − δW

 ·
U1

D1
B1
R1

=
0

0
0
0

 , (4.1)

where a new complex wave speed W = w/γ has been introduced, thus adopting the
slow time scale of sediment transport instead of the fast time scale of the flow.

4.1. The flow eigenvalues
We start from the simple hydrodynamic problem, whereby the bed is assumed to be
flat, uniformly rough and unerodible. The latter conditions can be easily imposed by
setting B1 and R1 to zero (flat bed of uniform roughness) and by dropping the Exner
equations (unerodible bed).

The system reduces to the rank-2 submatrix in the upper-left corner of (4.1) and
the corresponding characteristic polynomial takes the form

(γWf )
2
− a0(γWf )+ b0 = 0, (4.2)

where
a0 = 1+ a11, b0 = a11 − a12. (4.3a,b)

Two complex eigenvalues w±f = γW±f are obtained as the roots of the quadratic
eigenrelation (4.2) and the associated growth rates and celerities are readily obtained
using (3.33). In particular, in the short-wave limit (k→∞) and neglecting the normal
stress term Tn1, we recover the classic result

Ω±f C2
→−1±

Fr
2
, ω±f → 1±

1
Fr
, (4.4a,b)

where the ‘slow’ eigenvalue w−f (i.e. the one characterized by the smallest celerity) is
always stable and propagates upstream (downstream) in the subcritical (supercritical)
regime, whereas the ‘fast’ eigenvalue w+f always propagates downstream and it
becomes unstable for Fr> 2, leading to the formation of roll waves.

The growth rate of the fast eigenvalue being bounded with a maximum for the
shortest waves, the solution described by (4.4) is regular in the sense of Birkhoff
(1954) and thus the problem is mathematically well posed. However, the physical
interpretation of the stability results is not particularly appealing, because of the
absence of a suitable cutoff mechanism. As soon as the Froude number exceeds the
critical threshold, all modes in the short-wave range are equally unstable. In this
regard, the normal stress perturbation Tn1 plays a fundamental role, since it provides
a diffusive damping of the growth rate in the short-wave range (Needham & Merkin
1984). Including Tn1, the limits of the growth rate and celerity of the fast eigenvalue
in the short-wave range become, respectively

Ω+f →−
C2

NFr2
, ω+f → 1. (4.5a,b)

Note that the normal stress term only inhibits the growth of the shortest modes,
whereas some intermediate modes are still unstable if the threshold is exceeded. This,
in turn, provides a wavelength selection mechanism.
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885 A46-14 M. Colombini and C. Carbonari

4.2. The bed eigenvalue
We now consider the rank-3 submatrix in the upper-left corner of (4.1), which defines
the classic morphodynamic problem that controls bed form instability for uniform
sediment, thus implying constant roughness. Hence, we can set R1 to zero, dropping
only the Exner equation for the fraction. In this case

α+ = α(φm0)= αm, β+ = β(φm0)= βm. (4.6a,b)

The characteristic polynomial takes the form

γ 2W3
− γW2(a0 + γ a1)+W(b0 + γ b1)− c0 = 0, (4.7)

where

a1 = ika33, b1 = a0a1 − a13a31, c0 = a1b0 − a13a31. (4.8a−c)

The presence of the small parameter γ in (4.7) suggests the use of perturbation
theory to find approximate solutions for the roots of the cubic polynomial. However,
for vanishing γ , the degree of the polynomial is reduced to unity so that two roots
are missing. Such an abrupt change in the character of the solution is a symptom that
we are dealing with a singular perturbation problem, as also hinted by the fact that
the small parameter multiplies the higher degree term of the polynomial.

We then expand the roots of (4.7) as

W = γ −1W−1 +W0 +O(γ ), (4.9)

where the first term of the expansion takes care of the singularity so that the
approximate roots converge in the limit γ→0. Note that O(x) is used in the following
to indicate both ‘of the order of’ x and to summarize all the least-significant terms
in a series, as above. When x is a complex number, the order of its modulus is
considered.

Substituting (4.9) in (4.7) and collecting terms at O(γ −1) we obtain

W−1(W2
−1 − a0W−1 + b0)= 0, W−1 =w+f ,w−f , 0 (4.10a,b)

having recognized that the roots of the quadratic polynomial between parentheses are
none other than the flow eigenvalues over a flat bed w±f . Moreover, at O(γ 0) we get:

W0 =
a1W2

−1 − b1W−1 + c0

3W2
−1 − 2a0W−1 + b0

. (4.11)

The approximate roots of (4.7) are then

w±F =w±f + γ
a13a31(w±f − 1)

w±f (1+ a11)− 2(a11 − a12)
, wb = γ

(
ika33 −

a13a31

a11 − a12

)
. (4.12a,b)

The above procedure sheds some light on the nature of the eigenvalues of the
morphodynamic problem of flow over a mobile bed composed by a uniform sediment:
(i) two of the three eigenvalues can still be labelled as flow eigenvalues, since they are
found to be equal to the flow eigenvalues over a flat bed plus a small O(γ ) correction,
which accounts for the presence of the mobile bed; (ii) the third eigenvalue is new,
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Sorting and bed waves 885 A46-15

is itself of O(γ ) and can be labelled as the ‘bed’ eigenvalue, since it appears only if
the bed is allowed to be modified by the flow.

In particular, the fast flow eigenvalue w+F still describes the roll-wave instability
discussed in § 4.1, which now also involves a modification of the incoherent bed. After
some algebra, the bed eigenvalue eventually turns out to be

wb = γ

[
(αm + βm)

TB

Tt0
− βm

ikµ
θc0

]
, (4.13)

where
TB =−2Tt0

a13

a11 − a12
(4.14)

is the part of the perturbation of the bed shear stress Tt1 proportional to B1.
The celerity and growth rate of the bed wave are then equal to

ωb = γ (αm + βm)
T r

B

Tt0
, Ωb = γ

[
(αm + βm)

kT i
B

Tt0
− k2βm

µ

θc0

]
. (4.15a,b)

Moreover, ignoring for simplicity the effect of the normal stress Tn1 we obtain

TB

Tt0
=−C2 2k2C2(Fr2

− 1)+ 6ikFr2

k2C4(Fr2 − 1)2 + 9Fr4
. (4.16)

By combining (4.15) and (4.16), some well-known results are recovered: (i) the
celerity of the bed wave is of O(γ ) (i.e. the bed wave is much slower than a flow
wave); (ii) the bed wave propagates downstream for Fr< 1 and upstream for Fr> 1;
(iii) the base uniform flow is always stable with respect to perturbations of the bed
elevation, since the imaginary part of the bed shear stress is consistently negative (i.e.
the stress perturbation lags the bed); (iv) gravity (i.e. the streamwise bed slope) acts
as a stabilizing effect, the damping increasing with the wavenumber squared.

Moreover, in the short-wave (k→∞) limit

T r
B

Tt0
→

2
(1− Fr2)

,
kT i

B

Tt0
→−

6Fr2

C2(Fr2 − 1)2
(4.17a,b)

so that resonance occurs when Fr→ 1, whereby

ωb→±∞ as Fr→ 1∓, Ωb→−∞. (4.18a,b)

We remark that this resonance appears only when approximate roots of (4.7) are
sought, because the expansion (4.9) is not uniformly valid in the transcritical Fr ' 1
region as k → ∞. Indeed, in the complete analysis of Lyn & Altinakar (2002),
the celerities associated with the three eigenvalues are always two positive and one
negative and there is no sign of this spurious resonance, the physical meaning of
which will become clear in the next subsection.

Note also that if the normal stress Tn1 is included in the analysis, its damping,
stabilizing effect modifies the behaviour of the solution in the short-wave range, as
in the roll-wave example cited before

T r
B

Tt0
→

2
N
,

kT i
B

Tt0
→−

2C2

N2Fr2
(Fr2
− 1+N). (4.19a,b)
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Hence, resonance disappears and the growth rate remains consistently negative, the
coefficient N being typically larger than 1.

By adopting a shallow-water flow model, the linear morphodynamic analysis tends
to be limited in application to processes occurring over distances larger than the flow
depth. As a result, the dynamics of dunes and antidunes, the wavelength of which
scales with the flow depth, cannot be handled satisfactorily (Lanzoni et al. 2006). In
particular, the only bed waves that are found to be linearly unstable with uniform
sediment are those associated with the formation of roll waves (Balmforth & Vakil
2012), whereby the process driving the instability has to be sought in the interactions
between the flow and the free surface more than in the interactions of the flow with
the erodible bed.

4.3. The quasi-steady case
One of the most popular simplifications adopted in the study of morphodynamic
problems is the quasi-steady approximation, whereby times derivatives are dropped
in the flow equations. The rationale behind this hypothesis stands in the smallness
of the parameter γ , which implies that the bed dynamics evolves on a much slower
time scale with respect to flow. As a consequence, the flow is assumed to adapt
instantaneously to the modifications of the bed and the analysis can be split in two
parts. Firstly, the linear response of the flow to a steady perturbation of the bed
is determined using the flow equations and, secondly, the (only) eigenvalue of the
problem is found by substituting the latter into the Exner equation.

If we enforce the quasi-steady approximation on the morphodynamic system by
dropping time derivatives in the flow equations we obtain the so called ‘decoupled’
system, which reads a11 a12 a13

1 1 0
a31 0 ika33 −W

 ·
U1

D1
B1

=
0

0
0

 . (4.20)

Using the first two rows of (4.20), U1 and D1 can be expressed in terms of B1

U1 =−D1 =UBB1, UB =−
a13

a11 − a12
=

TB

2Tt0
. (4.21a,b)

Substituting (4.21) into the third row of (4.20) we obtain the decoupled bed
eigenvalue

wbd = γW = γ (ika33 + a31UB)=wb, (4.22)

which is identical to the bed eigenvalue obtained in the previous subsection. As far
as the bed eigenvalue is concerned, the two procedures are then formally equivalent.
However, the decoupling procedure rules out any mode of instability associated with
the flow: only the bed eigenvalue is present and flow instability cannot any more
drive the formation of bed forms, as in the roll-wave example previously outlined.
Indeed, it must be pointed out that the use of the quasi-steady approximation does
not cancel out the flow–bed feedback mechanism that drives the process of instability:
a growth (decay) of the bed perturbation is observed whenever the deformation of
the bed induces a stress field able to increment (decrement) the amplitude of the
perturbation itself.

The spurious resonance in the transcritical region is still present, but is amenable
in this context of a more physical explanation: the system being decoupled, the slow
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bed disturbance is felt by the flow as an external forcing which excites a ‘natural’
frequency of the flow itself, thus leading the system to resonate. We remark once more
that the resonance disappears once the complete coupled morphodynamic problem is
solved (Lyn & Altinakar 2002).

Moving back to the case of heterogeneous sediment and making use of the quasi-
steady hypothesis, U1 and D1 can be expressed as linear combinations of B1 and R1

U1 =−D1 =UBB1 +URR1, UR =−
a14

a11 − a12
=

TR

2Tt0
. (4.23a,b)

Moreover, the system (3.26) can then be rewritten as(
ika33 + a31UB −W a34 + a31UR

ika43 + a41UB a44 + a41UR − δW

)
·

(
B1
R1

)
=

(
0
0

)
(4.24)

revealing itself as a new eigenvalue problem, the solution of which provides two
eigenvalues, one to be associated with a bed wave, the other with a sorting wave. It
must be pointed out that each wave involves a perturbation of both the bed elevation
and the roughness. Which of the two defines the character of the wave will eventually
become clear in the next subsection.

4.4. The sorting eigenvalue
The characteristic polynomial of (4.24) takes the form

δW2
− (T0 + δT1)W +D0 = 0, (4.25)

where

T0 = a44 + a41UR, T1 = ika33 + a31UB, (4.26a,b)

D0 = T0T1 − (ika43 + a41UB)(a34 + a31UR). (4.27)

The presence of the small parameter δ = γ /Γ suggests that it is useful to expand
the roots of (4.25) as

W = δ−1W−1 +W0 +O(δ), (4.28)

where, as before, the first term of the expansion is needed because (4.25) is easily
recognized as a singular perturbation problem as δ→ 0.

Collecting terms at various orders we obtain

W−1 = 0, T0, W0 =
D0

T0
, T1 −

D0

T0
(4.29a,b)

and
wB =wb −wsb, wS =ws +wsb, (4.30a,b)

where

ws = Γ (a44 + a41UR), wsb = γ
(ika43 + a41UB)(a34 + a31UR)

a44 + a41UR
. (4.31a,b)

The approximate solution (4.30) provides some insight into the nature of the
eigenvalues of the quasi-steady morphodynamic problem for heterogeneous sediment:
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(i) one of the two eigenvalues can still be labelled as the bed eigenvalue, since it is
found equal to the one obtained for the case of uniform sediment wb plus a O(γ )
correction that represents the reciprocal interactions between sorting and bed waves;
(ii) the same correction, with opposite sign, is present in the second eigenvalue, which
is new and can be labelled as the ‘sorting’ eigenvalue, since it appears only if the
bed is composed by a sediment mixture; (iii) the leading-order term of the sorting
eigenvalue is of O(Γ ). Sorting waves are then found to propagate much faster than
bed waves (Ribberink 1980), the order of magnitude of the ratio of the two celerities
(the parameter δ above) being related to the non-dimensional thickness of the active
layer La and so, in turn, on the grain-to-depth ratio d50 (Stecca et al. 2014).

The above considerations are used to estimate of the limits of applicability of
the quasi-steady hypothesis, since not only γ but also Γ must be small for this
approximation to be valid. Using (2.14) and (3.28) we obtain that both conditions
hold if

d50� 1�C
√
θ0. (4.32)

This inequality also ensures that sorting and bed perturbations do not travel faster than
flow perturbations. Moreover, equation (4.32) suggests that the analysis is likely to
fail for very coarse mixtures or very shallow flows (large d50 and small C) and for
values of the Shields stress close to its critical threshold. It must be pointed out that
this result is totally independent of the choice of the length scale for L∗a. Whether
the grain size, as in the present case, or the bed form amplitude, which itself scales
with the flow depth, is used to express the active layer thickness, this only alters the
relative celerity of sorting and bed waves, which both became of O(γ ) in the latter
case. Moreover, the idea that a minimum active layer thickness must be set in order to
limit the speed of the sediment waves (Sieben 1997) seems unfounded, the only limit
being that the active layer cannot obviously be thinner than the median diameter of
the mixture.

Another important information on sorting waves can be extracted from the
approximated eigenvectors associated with (4.30). We have

Bs =
1
Rs
=

ws − Γ (a44 + a41UR)

Γ (ika43 + a41UB)
= δ

(a34 + a31UR)

(a44 + a41UR)
, (4.33)

Bb =
1
Rb
=

γ (a34 + a31UR)

wb − γ (ika33 + a31UB)
=−

(a44 + a41UR)

(ika43 + a41UB)
, (4.34)

where Bs and Bb are the amplitudes of the bed perturbation corresponding to a unitary
perturbation of the roughness height for the sorting and the bed wave, respectively.
Similarly, Rs and Rb are the amplitudes of the roughness height perturbation for a
unitary bed perturbation.

The ratio of (4.33) and (4.34) turns out to be of O(δ), revealing that the sorting
wave is associated with a negligible amplitude of the bed perturbation, whereas
the bed wave is associated with a negligible amplitude of the roughness height
perturbation and, ultimately, of the perturbation of the areal concentration of the
sediment fraction. Hence, in the present one-dimensional context, the two eigenvalues
well describe dune and bedload-sheet instabilities, whereby bed elevation dominates
over sorting in the former and sorting rules over topography in the latter.

The stability picture emerging from the analysis of the multi-size case is indeed
much richer than for the case of uniform sediment: (i) sorting and bed waves can both
be stable and no instability will develop; (ii) either of them can grow, with the other
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decaying; (iii) they can both be linearly unstable, selecting different wavelengths
and with different growth rates, the competition among them being controlled by
nonlinear interactions; (iv) although perturbations of the bed elevation and of the size
fraction develop side by side in both instabilities, sorting and bed waves produce
quite different patterns in terms of the relative amplitudes of bed and roughness
perturbations.

As already discussed at the end of § 4.2, by adopting a shallow-water flow model
we have chosen to privilege the benefit of an algebraic eigenproblem, which allows
for a deep insight into the characteristics of bed and sorting waves, to the detriment
of an accurate representation of the phase lag between shear stress and the bed, which
controls dune instability.

4.5. The weak-sorting case
Let us finally introduce the weak-sorting case, whereby the two fractions are assumed
to be infinitely close one to the other. The idea is to observe how the eigenvalue
problem modifies as the sediment mixture composing the bed becomes less and less
heterogeneous and formally corresponds to taking the limit of the eigenvalues as
σ→ 0. To this end, every quantity evaluated at φa,b is then expanded in Taylor series,
as

f (φa)= fm + σ f ′m +
σ 2

2
f ′′m +

σ 3

6
f ′′′m +O(σ 4),

f (φb)= fm − σ f ′m +
σ 2

2
f ′′m −

σ 3

6
f ′′′m +O(σ 4),

 (4.35)

where primes denote derivatives with respect to φ and the subscript m stands for
‘evaluated at φm0’, as in (4.6).

In particular, the functions α± and β± appearing in (3.27) become (see also
appendix B)

α+ = αm +
σ 2

2
α′′m +O(σ 4), α− = σα′m +

σ 3

6
α′′′m +O(σ 5), (4.36a,b)

β+ = βm +
σ 2

2
β ′′m +O(σ 4), β− = σβ ′m +O(σ 3). (4.37a,b)

With reference to (4.30), it can be easily shown that

wb =wb0 + σ
2wb2 +O(σ 4), ws =ws0 + σ

2ws2 +O(σ 4), (4.38a,b)

wsb = σ
2wsb2 +O(σ 4). (4.39)

In the limit of vanishing σ , we can then write

wb =wb0 = γ

[
(αm + βm)

TB

Tt0
− βm

ikµ
θc0

]
, ws =ws0 = Γ

2
3
αm

ln(2)
= γ

qu0

La
. (4.40a,b)

Hence, as expected, for a well sorted two-grain mixture the bed eigenvalue tends to
the one already discussed for the case of uniform sediment, the correction due to the
effect of sorting appearing at O(σ 2). Therefore, the growth rate is negative and the
uniform flow is stable with respect to bed waves.

Less obviously, as soon as the mixture becomes even slightly heterogeneous a
second, O(Γ ) sorting eigenvalue appears, which is real and positive. Hence, at leading
order the associated instability is marginal and perturbations propagate downstream
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without amplification nor decay. Moreover, the celerity increases with the sediment
discharge, thus implying a faster downstream propagation of sorting perturbations as
the Shields and the Froude numbers increase. Note that the estimate of the sorting
wave celerity provided by (4.40) coincides with that of Ribberink (1987), who first
studied the dynamics of small-amplitude perturbations of bed level and composition
in river with non-uniform sediment.

The sorting instability appears at order O(σ 2) and is related to the imaginary part
of the roughness-driven portion of the bed shear stress. Hence, at the leading order,
the growth rate of the sorting eigenvalue is

ΩS =−kσ 2

[
Γ (α′m + β

′

m)
T i

R

Tt0
−wi

sb2

]
, (4.41)

where TR is the part of the perturbation of the bed shear stress Tt1 proportional to the
perturbation of the roughness height R1. Similarly, the celerity of the sorting wave
reads

ωS = Γ
2
3
αm

ln(2)
− σ 2

[
Γ (α′m + β

′

m)
T r

R

Tt0
−wr

sb2

]
, (4.42)

which provides the O(σ 2) correction of the estimate of the sorting wave celerity given
by Ribberink (1987).

Moreover, neglecting as in (4.16) the normal stress Tn1, we have

TR

Tt0
=−R0C2 2k2C2(Fr2

− 1)+ 6ikFr2

k2C4(Fr2 − 1)2 + 9Fr4
= R0

TB

Tt0
. (4.43)

Ignoring for the moment the O(γ ) contribution associated with wsb2 in (4.41) and
(4.42), we note that the behaviour is here reversed with respect to the bed eigenvalue:
the base uniform flow is always unstable with respect to sorting perturbations, since
the growth rate is proportional to the opposite of the imaginary part of the bed shear
stress, which is negative (i.e. the stress perturbation leads the sorting wave).

The behaviour of the growth rate of the sorting eigenvalue in the large wavenumber
range controls both the well posedness of the problem and the presence of a cutoff
wavelength. Taking the limit of (4.43) as k→∞ we obtain

T r
R

Tt0
→

2R0

(1− Fr2)
,

kT i
R

Tt0
→−

6Fr2R0

C2(Fr2 − 1)2
, (4.44a,b)

so that the growth rate tends to a finite positive value and the solution is regular,
except for the transcritical Fr→ 1 region, where, similarly to (4.17), resonance takes
place

ωS→±∞ as Fr→ 1∓ ΩS→−∞. (4.45a,b)

The latter disappears if the normal stress is included in the analysis, yielding

T r
R

Tt0
→

2
3N

kT i
R

Tt0
→−

2C2

3
Fr2
− 1+ 3R0N
N2Fr2

. (4.46a,b)

Note that the instability is now limited to the range

Fr>
√

1− 3R0N ' 1, 3R0N = d50N/4� 1 (4.47a,b)
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FIGURE 3. Stability plot of the sorting eigenvalue with varying C and constant σ = 0.01;
C= 16 (a) and 18 (b).

and that the solution remains regular even though a cutoff is still missing: as soon as
the Froude number exceeds unity, the shortest modes are all equally unstable. In order
to introduce a cutoff, the term wsb2, which includes the stabilizing effect of gravity, has
to be accounted for in (4.41). However, by doing so, a second unstable region appears
in the subcritical region.

As a matter of fact, sorting instability is related to an intricate balance between
the two terms appearing in (4.41), which neither an order of magnitude analysis
nor perturbation theory appear capable to disentangle. Nonetheless, the analysis of
the weak-sorting case provides some useful information: (i) as the sediment mixture
becomes more and more well sorted, the bed eigenvalue tends to the one obtained
in the case of uniform sediment; (ii) sorting waves are found to be unstable and to
propagate downstream with a faster wave speed with respect to bed waves; (iii) an
O(σ 2) correction of the celerity of the sorting wave estimated by Ribberink (1987)
is found; (iv) the growth rate is proportional to the variance of the size distribution;
(v) sorting instability is regular, since the growth rate tends to a finite limit in the
short-wave range.

5. Discussion of results
Stability plots represent the main output of the linear analysis. By plotting the

isolines of the growth rate in the (k,Fr) space, the regions of instability (i.e. positive
growth rate) can be easily identified, bounded by the marginal curves (i.e. of vanishing
growth rate). In figure 3 stability plots of the sorting eigenvalue are shown for a value
of the standard deviation σ equal to 0.01 and for two values of the non-dimensional
Chézy coefficient C. The growth rate is obtained from an iterative solution of the
fully coupled eigenvalue problem (3.30). In each plot, the no transport area at
the bottom corresponds to a base shear stress lower than the critical threshold for
the coarser fraction, so that above the upper boundary of this region the sediment
transport rate of both fractions is non-zero. Partial transport, whereby only the finer
fraction is mobile, cannot be considered in the framework of a perturbative analysis.
The white areas above the no transport line are associated with stable uniform flow
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FIGURE 4. Comparison between the stability plots of the ‘fast’ flow eigenvalue obtained
with (a) and without (b) the inclusion of the depth-averaged normal Reynolds stress;
C= 18, σ = 0.01.

(i.e. negative growth rate) with active sediment transport, whereas in the unstable
regions the (positive) growth rate is displayed in shades of grey, the darkest the
largest. White isolines are drawn for constant values of the growth rate (multiplied
by C2/σ 2) which increase on a logarithmic scale. Solid black lines identify marginal
curves, whereas dashed lines mark the maximum amplification wavenumber.

Two distinct regions of instability can be observed in each plot, one in the
subcritical and one in the supercritical regime, whereas in the transcritical region
the uniform flow is stable with respect to sorting waves (and to bed waves as well).
Both the unstable regions are bounded in the short-wave and long-wave ranges. As
the conductance Chézy coefficient C is raised, which corresponds to deeper flows
and finer sediments, the two regions of instability move away from the critical
(Fr = 1) line. Meanwhile, the subcritical region widens whereas the supercritical
one slightly shrinks. As a whole, it seems relatively easier to observe unstable
sorting waves in the supercritical regime, and with coarser sediments, consistently
with laboratory observations. The wavenumber of maximum amplification, the one
selected by the linear stability analysis, varies greatly with the Froude number,
spanning approximately two orders of magnitude. Most frequent values are of order
10–100, showing that sorting waves are consistently shorter than bed waves, which
are typically characterized by O(1) wavenumbers.

Among the four roots of the complete eigensystem (3.30) there is only one more
unstable eigenvalue, to be associated with the free-surface instability which leads,
for values of the Froude number larger than 2, to the formation of roll waves. The
corresponding stability plot is shown in figure 4(a), while figure 4(b) shows the effect
of switching off the term associated with the depth-averaged normal Reynolds stress
term. The crucial role played by this term in damping short-wave perturbations, thus
introducing a cutoff and a wavelength selection mechanism (Needham & Merkin
1984; Balmforth & Vakil 2012), is more than evident. It must be remarked that each
of the four eigenvalues, whether associated with a flow or with a sorting or bed
instability, brings with itself, if unstable, a set of growing perturbations of velocity,
depth, bed elevation and roughness all characterized by the same wavelength and
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FIGURE 5. Comparison between the stability plots obtained with the fully coupled (a) and
with the quasi-steady (b) solutions for C= 18.

wave speed. The associated eigenvectors define the relative amplitude and phase of
each perturbations with respect to the others. Indeed, for Froude numbers larger than
2, both roll waves and sorting waves are found to be simultaneously unstable at a
linear level.

In figure 5 a comparison between the growth rate of the sorting eigenvalue obtained
by means of the fully coupled problem (3.30) and of the decoupled quasi-steady
problem (4.24) is presented. The quasi-steady solution presents substantially the
same instability pattern observed in the coupled case; however, while the subcritical
region remains mostly unchanged, the supercritical region is slightly enlarged. Note
that the free-surface roll-wave instability associated with the fastest flow eigenvalue,
is completely wiped out by the quasi-steady approximation, whereby the flow is
assumed to adjust instantaneously to perturbations of bed elevation and roughness
without being allowed to develop instabilities of its own.

The effect of increasing σ and thus the relative distance in φ-units between the two
fractions is shown in figure 6. As in all the other stability plots presented above, the
growth rate is multiplied by C2/σ 2, so that the small variations observed are related
to effects of order σ 4 or greater. Indeed, the effect of the mixture heterogeneity is
rather small and becomes visible only for values of the standard deviation of O(1).
The no-transport threshold slightly increases with σ , because a higher Shields stress
(and consequently Froude number) is required to set the coarsest fraction in motion.
The plot in figure 6(d) presents the solution obtained by means of the weak-sorting
approximation, which can be considered as the limit of the quasi-steady solution
for vanishing σ . Note that this stability plot is almost indistinguishable from that
of figure 6(a) (quasi-steady solution, σ = 1), showing that the weak-sorting solution
holds for relatively large values of the standard deviation. We recall that a value of
σ equal to 5 corresponds to a finer (coarser) fraction thirty-two times smaller (larger)
than the median diameter of the mixture d50. If the analysis is pushed toward an
even larger heterogeneity, the solution eventually breaks down, because the averaged
dynamics of the mixture is not well represented by d50 when the two fractions are
too far apart in the φ-scale. Nonetheless, according to the verbal classification scale
of sorting introduced by Folk & Ward (1957), a standard deviation larger than 4
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FIGURE 6. Stability plot of the quasi-steady sorting eigenvalue with varying σ value and
constant C = 18; (a) σ = 1; (b) σ = 3; (c) σ = 5; (d) the weak-sorting solution for the
same value of C.

corresponds to an ‘extremely poorly sorted’ mixture, and a standard deviation larger
than 2 to a ‘poorly sorted’ mixture. Hence, we can safely state that the model holds
for very well sorted up to very poorly sorted mixtures and that the weak-sorting
approximation can be used up to poorly sorted sediment.

Figure 7 shows the behaviour of the eigenvector associated with the sorting
eigenvalue. The amplitude and phase of the roughness height perturbation R0Rs
corresponding to a unitary amplitude perturbation of the bed elevation are plotted
inside the instability regions for two different values of C. The amplitude of the
roughness height perturbation (a,c) is typically smaller in the subcritical than in the
supercritical region and globally increases with C. Moreover, in the supercritical range
the amplitude tends to decrease with the wavenumber, whereas it is almost unaffected
in the subcritical regime. The plots in figure 7(b,d) show the relative phase of the
roughness with respect to the perturbation of the bed amplitude. Irrespective of the
Chèzy coefficient, in the supercritical region the phase is in the range 0–π, whereas
in the subcritical region it is in the range π–3π/2, with values decreasing (increasing)
for larger wavenumber in the supercritical (subcritical) regime. We recall that a phase
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FIGURE 7. Amplitude (a,c) and phase (b,d) of the roughness height perturbation R0Rs for
a unitary amplitude perturbation of the bed elevation; (a,b) C= 16, (c,d) C= 18.

lag of π corresponds to out-of-phase perturbations, which means that the roughness
height is maximum where bed elevation is minimum and vice versa. Moreover, the
maximum of the roughness height corresponds to the minimum of the mean grain
size (in the φ-scale) φm and to the maximum areal concentration of the coarser
fraction Fb. Hence, the present results are in good agreement with the experimental
measurements of Bennett & Bridge (1995), who described bedload sheets in the
subcritical regime as having ‘relatively fine-grained crests and coarse-grained troughs’
(see also Kuhnle & Southard (1988) and Kuhnle et al. (2006)).

Table 2 summarizes the hydraulic and geometrical characteristics of bedload sheets
observed in other studies, made non-dimensional using the fluid mass density and the
measured values of the flow depth and area velocity. In the last column, a prediction
of the celerity of the sorting waves according to (4.40) is provided.

It must be noted that a direct comparison with the experimental results is made
extremely difficult by the peculiarity of bedload sheets, which are ephemeral sorting
patterns characterized by small heights and short wavelengths, easily disrupted, or at
least heavily altered, by the interactions with bed forms and with the sorting patterns
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Run d50 θ0 Fr k ω× 103 ωs × 103

BB-G1 0.02 0.049–0.077 0.85 0.67–0.71 0.8–1.8 0.1–3.9
BB-G2 0.02 0.063–0.067 0.87 0.53–0.83 1.2–1.7 1.7–2.3
BB-G3 0.015 0.1–0.11 0.81 1.3–1.5 1.1–1.3 8.2–13.9
C-3 0.13 0.13 1.21 0.7–0.9 — 30.5
II-6 0.081 0.085–0.24 1.11 0.86 — 7.9–95.4
Ka-RLBF 0.01–0.013 0.057–0.06 0.4–0.44 2.1–3.1 7.8–66.7 2.1–3.4
Ka-BLS 0.01–0.013 0.064–0.078 0.44–0.55 1.6–2.1 11–46.5 5–13.8
KS-H5 0.043 0.29 1.16 0.72 30 68.5
Wa-DC 0.0083–0.013 0.07–0.11 0.33–0.39 1.1–6.9 2.9–3.9 5.6–9.8
Wa-MC 0.003 0.11 0.23 3.14–9.43 15–37.5 13.3
W-MC50-3 0.024 0.1 0.76 0.34–0.67 — 9

TABLE 2. Main hydraulics conditions and characteristics of observed bedload sheets. In
the last column, an estimate of the celerity using (4.40). BB, Bennett & Bridge (1995);
C, Carbonari (2019); II, Iseya & Ikeda (1987); Ka, Kuhnle et al. (2006); KS, Kuhnle &
Southard (1988); Wa, Whiting et al. (1988) (DC: Duck Creek, MC: Muddy Creek); W,
Wilcock (1992).

associated with them. This aspect is particularly evident in the detailed description of
Run 6 contained in the seminal paper of Iseya & Ikeda (1987), which deserves some
further discussion in light of the present results.

Indeed, we speculate that the rhythmic alternations of ‘congested’ and ‘smooth’
states described by Iseya & Ikeda (1987) can be interpreted as a topographic pattern,
as shown by the longitudinal profile of the bed displayed in figure 6 of the paper,
where a periodic change of slope (and thus of bed elevation) is quite evident. Since
the bed is heterogeneous, there is necessarily a sorting pattern associated with this bed
form, whereby gravel (sand) accumulates on the crests (troughs) with a spacing of
approximately 2 m. Superimposed on it, there is a second sorting pattern, associated
with the so-called ‘transitional’ state, which is described as ‘gravel jams one or two
grain diameters thick’, migrating over a smooth sand bed with a spacing of about
8 cm. The sorting patterns observed by Iseya & Ikeda (1987) are, in our view, to
be considered the result of the two different instabilities discussed in the present
contribution: the bed eigenvalue has to be associated with the topographic long wave,
whereas the sorting eigenvalue is representative of the sorting short wave of the
bedload-sheet kind.

As a conclusive comment, in light of the experimental observations presented
in table 2, we can state that the present theory correctly predicts that: (i) bedload
sheets occur in both the sub-critical and super-critical regimes; (ii) bedload sheet
wavenumbers are of O(1) or larger; (iii) the celerity of the sorting wave increases
with the Shields number and with the bedload transport rate (4.40). Moreover, there
is a good, although qualitative, agreement between the theoretical predictions and the
measured values of the wave speed.

On the downside, the theory seems to underestimate the wavelength of maximum
amplification and it remains limited to relatively small grain-to-depth ratios and
to moderate Shields numbers. Moreover, the sediment transport model is based on
a simplified version of the Hirano (1971) model, whereby interactions between the
active layer and the substrate are neglected and thus the analysis is unsuitable to study
cases with substantial bed aggradation or degradation. Finally, the shallow-water flow
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model adopted does not allow for a full description of the phenomenon because the
bed eigenvalue is consistently stable and no bed waves form. On the other hand, the
algebraic eigenvalue problem obtained making use of the shallow-water approximation
provides a deep insight into the stability of the sorting wave, which can be of great
use for a future analysis based upon a more complete rotational flow model.

6. Conclusions
A linear stability analysis of a uniform flow over a bed composed of an even

mixture of two grain sizes is presented. The complete eigensystem consists in a
fourth degree characteristic polynomial, the roots of which can be associated with
flow and bed instabilities. In particular, two eigenvalues present regions of positive
growth rate, one associated with the amplification of a free-surface perturbation of the
roll-wave kind, the other with the formation of sorting waves. Instability is shown to
be well posed from a mathematical point of view and a cutoff in the short wavelength
range is present, provided that the effect of gravity on the sediment and the diffusive
term in the flow equation, which formally emerges by the integration along the depth
of the normal Reynolds stress, are included in the analysis. Moreover, for the sorting
eigenvalue, it has been shown that the analysis is likely to fail for relatively coarse
sediment (or for relatively shallow flows) and for small values of the base Shields
stress.

A simplified quasi-steady analysis is developed, whereby flow derivatives are
dropped in the flow equation and the flow is assumed to adapt instantaneously to
changes in bed elevation and roughness. In this case, the stability analysis reduces
to a double eigenvalue problem, one of which can be associated with the formation
of bedload sheets, rhythmic alternations of coarse and fine stripes with negligible
variations of the bed elevation, the other with sorting over bed forms. The distinction
of the two can be built on the basis of the related eigenvectors. In the present
shallow-water framework, only the former is found to be unstable, predicting the
formation of bedload sheets in two separate regions of instability, one for subcritical
and the other for supercritical base flows. In both regimes, the perturbations travel
downstream at a faster rate with respect to bed waves but at a slower speed with
respect to the depth-average flow velocity. On the contrary, the bed eigenvalue is
found to be invariably stable, due to the inability of the shallow-water flow model to
correctly predict the phase lag of the bed shear stress perturbation driven by changes
in bed elevation.

The weak-sorting case is also investigated, whereby the two fractions are assumed
to collapse on the median grain size as the standard deviation of the mixture vanishes.
As the sediment becomes more and more well sorted, the bed eigenvalue naturally
devolves into the morphodynamic eigenvalue of the homogeneous case, the instability
of which is controlled by a balance between the component of the bed shear stress
associated with the perturbation of the bed elevation and the stabilizing effect of
gravity. Instability of the sorting wave appears at O(σ 2) and is mainly related to the
component of the bed shear stress associated with a perturbation of the bed roughness.
The weak-sorting solution has also been used to show that the analysis is limited
to relatively small values of the median grain-to-depth ratio and to relatively large
values of the Shields stress. When this inequality is satisfied, the weak-sorting solution
behaves surprisingly well, providing an excellent representation of the solution from
very well sorted up to poorly sorted mixtures.

Finally, a comparison of the present results with some laboratory and field
observations of bedload sheets has been attempted in terms of wavelength and celerity
of the sorting waves, showing an acceptable, though merely qualitative, agreement.
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Appendix A
Purpose of the present appendix is to formally derive the closures for the normal

(Tn) and the tangential (Tt) stress defined by (2.5) from the self-similar profiles of
velocity and mixing length along the vertical (2.3).

Making use of (2.6) we obtain

U =
1
D

∫ B+R+D

B+R
u dz=

∫ 1

0
u dζ =

U
κC

∫ 1

0
ln
(

1+ ζ
D
R

)
dζ . (A 1)

Hence,

C=
1
κ

∫ 1

0
ln
(

1+ ζ
D
R

)
dζ =

1
κ

[(
1+

R
D

)
ln
(

1+
D
R

)
− 1
]
. (A 2)

The weak logarithmic dependence of C on D and R has been neglected in the analysis,
so that

C=
1
κ

[
(1+ R0) ln

(
1+

1
R0

)
− 1
]
'−

1
κ
[ln(R0)+ 1], (A 3)

where R0� 1 is assumed. Note that if we set R0 = r0/30, equation (A 3) yields

C=
1
κ

ln
(

11.04
r0

)
, (A 4)

which compares more than satisfactorily with Keulegan (ASCE 1963) relationship
(2.6).

Making use of the transformation (2.4) and of (2.3) we have

u,z = u,ζ ζ,z =
u,ζ
D
=

U
κC(R+ ζD)

, (A 5)

u,x = u,ξ + u,ζ ζ,x =
U
κC

[
U,x

U
ln
(

1+ ζ
D
R

)
−

R,x
R
−

B,x
R+ ζD

]
, (A 6)

and
νt = l2u,z =

κU
C
(R+ ζD)(1− ζ ). (A 7)

Hence, using (2.5), we obtain

Tn = 2
∫ 1

0
νtu,x dζ

= 2
U2

C2

∫ 1

0
(R+ ζD)(1− ζ )

[
U,x

U
ln
(

1+ ζ
D
R

)
−

R,x
R
−

B,x
R+ ζD

]
dζ

= 2
U2

C2

[
U,x

U

∫ 1

0
(R+ ζD)(1− ζ ) ln

(
1+ ζ

D
R

)
dζ

−
R,x
R

∫ 1

0
(R+ ζD)(1− ζ ) dζ − B,x

∫ 1

0
(1− ζ ) dζ

]
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=
U2

C2

{
D

U,x

U
1
3

(
1+

D
R

)3 [
ln
(

1+
D
R

)
−

5
6

]

+ D
U,x

U
R2

2D2

(
1+

5
9

R
D

)
− R,x

(
1+

D
3R

)
− B,x

}
. (A 8)

Expanding Tn as in (3.2) we readily obtain

Tn0 = 0 Tn1 =
ik
C2

(
NU1 − B1 −

1
3

R1

)
, N =

1
3

(
κC+

1
6

)
, (A 9a,b)

where R0� 1 is assumed as before and use is made of (A 3).

Appendix B
The recursive relationships providing the derivatives of the functions α and β with

respect to φ are here formally derived. In order to avoid confusion, prime notation is
not used in this section.

Φ0(φ)=
θ0

θc0
exp[b ln(2)(φ − φm0)],

dmΦ0

dφm
= [b ln(2)]mΦ0(φ), (B 1a,b)

α(φ)=
3
2
θ

3/2
0 G|Φ0(φ), β(φ)= θ

3/2
0 Φ0(φ)

dG
dΦ

∣∣∣∣
Φ0(φ)

, (B 2a,b)

dα
dφ
=

3
2
θ

3/2
0

dG
dφ
=

3
2

b ln(2)β,
dmα

dφm
=

3
2

b ln(2)
dm−1β

dφm−1
, (B 3a,b)

dβ
dφ
= θ

3/2
0 b ln(2)Φ0

(
d2G
dΦ2

Φ0 +
dG
dΦ

)
, (B 4)

d2β

dφ2
= θ

3/2
0 [b ln(2)]2Φ0

(
d3G
dΦ3

Φ2
0 + 3

d2G
dΦ2

Φ0 +
dG
dΦ

)
. (B 5)

The second and third derivatives of α follow from (B 3)–(B 5).
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