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Abstract

Approximation fixpoint theory (AFT) provides an algebraic framework for the study of fix-
points of operators on bilattices and has found its applications in characterizing semantics for
various classes of logic programs and nonmonotonic languages. In this paper, we show one more
application of this kind: the alternating fixpoint operator by Knorr et al. for the study of the
well-founded semantics for hybrid minimal knowledge and negation as failure (MKNF) knowl-
edge bases is in fact an approximator of AFT in disguise, which, thanks to the abstraction
power of AFT, characterizes not only the well-founded semantics but also two-valued as well as
three-valued semantics for hybrid MKNF knowledge bases. Furthermore, we show an improved
approximator for these knowledge bases, of which the least stable fixpoint is information richer
than the one formulated from Knorr et al.’s construction. This leads to an improved computa-
tion for the well-founded semantics. This work is built on an extension of AFT that supports
consistent as well as inconsistent pairs in the induced product bilattice, to deal with incon-
sistencies that arise in the context of hybrid MKNF knowledge bases. This part of the work
can be considered generalizing the original AFT from symmetric approximators to arbitrary
approximators.

KEYWORDS: approximation fixpoint theory, hybrid MKNF knowledge bases, logic programs,
answer set semantics, description logics, inconsistencies

1 Introduction

Approximation fixpoint theory (AFT) is a framework for the study of semantics of non-

monotonic logics based on operators and their fixpoints (Denecker et al . 2004). Under

this theory, the semantics of a logic theory is defined or characterized in terms of respec-

tive stable fixpoints constructed by employing an approximator on a (product) bilattice.

The least stable fixpoint of such an approximator is called the well-founded fixpoint,

which serves as the basis for a well-founded semantics, and the stable fixpoints that are

total characterize a stable semantics, while partial stable fixpoints give rise to a partial

stable semantics. The approach is highly general as it only depends on mild conditions

https://doi.org/10.1017/S1471068421000168 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068421000168
https://orcid.org/0000-0003-0954-9238
mailto:ffliu@shu.edu.cn
https://orcid.org/0000-0001-9372-4371
mailto:jyou@ualberta.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068421000168&domain=pdf
https://doi.org/10.1017/S1471068421000168


306 F. Liu and J.-H. You

on approximators, and highly abstract as well since the semantics is given in terms of

an algebraic structure. As different approximators may represent different intuitions,

AFT provides a powerful framework to treat semantics uniformly and allows to explore

alternative semantics by different approximators.

Due to the underlying algebraic structure, a main feature of AFT is that we can

understand some general properties of a semantics without referring to a concrete ap-

proximator. For example, the well-founded fixpoint approximates all other fixpoints, and

mathematically, this property holds for all approximators. An implication of this prop-

erty is that it provides the bases for building constraint propagators for solvers; for logic

programs for example, it guarantees that the true and false atoms in the well-founded

fixpoint remain to hold in all stable fixpoints, and as such, the computation for the

well-founded fixpoint can be adopted as constraint propagation for the computation of

stable fixpoints. For example, this lattice structure of stable fixpoints has provided key

technical insights in building a DPLL-based solver for normal hybrid MKNF knowledge

bases (Ji et al . 2017), while previously the only known computational method was based

on guess-and-verify (Motik and Rosati 2010).

AFT has been applied to default logic as well as autoepistemic logic, and the study has

shown how the fixpoint theory induces the main and sometimes new semantics and leads

to new insights in these logics (Denecker et al . 2003), including the well-founded seman-

tics for autoepistemic logic (Bogaerts et al . 2016). AFT has been adopted in the study

of the semantics of logic programs with aggregates (Pelov et al . 2007) and disjunctive

HEX programs (Antic et al . 2013). Vennekens et al. (2006) used AFT in a modularity

study for a number of nonmonotonic logics, and by applying AFT, Strass (2013) showed

that many semantics from Dung’s argumentation frameworks and abstract dialectical

frameworks (Dung 1995) can be obtained rather directly. More recently, AFT has been

shown to play a key role in the study of semantics for database revision based on active

integrity constraints (Bogaerts and Cruz-Filipe 2018) and in addressing semantics issues

arising in weighted abstract dialectical frameworks, which are abstract argumentation

frameworks that incorporate not only attacks but also support, joint attacks and joint

support (Bogaerts 2019). AFT has also contributed to the study of induction (Bogaerts

et al . 2018) and knowledge compilation (Bogaerts and den Broeck 2015).

In this paper, we add one more application to the above collection for hybrid MKNF

(which stands for minimal knowledge and negation as failure). Hybrid MKNF was pro-

posed by Motik and Rosati (2010) for integrating nonmonotonic rules with description

logics (DLs). Since reasoning with DLs is based on classic, monotonic logic, there is

no support of nonmonotonic features such as defeasible inheritance or default reason-

ing. On the other hand, rules under the stable model semantics (Gelfond and Lifs-

chitz 1988) are formulated mainly to reason with ground knowledge, without support-

ing quantifiers or function symbols. It has been argued that such a combination draws

strengths from both and the weaknesses of one are balanced by the strengths of the

other. The formalism of hybrid MKNF knowledge bases provides a tight integration of

rules with DLs.

A hybrid MKNF knowledge base K consists of two components, K = (O,P), where

O is a DL knowledge base, which is expressed by a decidable first-order theory, and P

is a collection of MKNF rules based on the stable model semantics. MKNF structures in
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this case are two-valued, under which MKNF formulas are interpreted to be true or false.

Knorr et al. (2011) formulated a three-valued extension of MKNF and defined three-

valued MKNF models, where the least one is called the well-founded MKNF model. An

alternating fixpoint operator was then formulated for the computation of the well-founded

MKNF model for (non-disjunctive) hybrid MKNF knowledge bases. In this paper, our

primary goal is to show that this alternating fixpoint operator is in fact an approximator

of AFT. Due to the abstraction power of AFT, it turns out that Knorr et al.’s alternating

fixpoint construction provides a uniform characterization of all semantics based on various

kinds of three-valued MKNF models, including two-valued MKNF models of Motik and

Rosati (2010).

As shown in previous research (Knorr et al . 2011; Liu and You 2017), not all hybrid

MKNF knowledge bases possess a well-founded MKNF model, and in general, deciding

the existence of a well-founded MKNF model is intractable even if the underlying DL

knowledge base is polynomial (Liu and You 2017). On the other hand, we also know that

alternating fixpoint construction provides a tractable means in terms of a linear number

of iterations to compute the well-founded MKNF model for a subset of hybrid MKNF

knowledge bases. A question then is whether this subset can be enlarged. In this paper,

we answer this question positively by formulating an improved approximator, which is

more precise than the one derived from Knorr et al.’s alternating fixpoint operator. As

a result, the well-founded MKNF model can be computed iteratively for a strictly larger

class of hybrid MKNF knowledge bases than what was known previously.

Hybrid MKNF combines two very different reasoning paradigms, namely closed world

reasoning with nonmonotonic rules and open world reasoning with ontologies that are

expressed in DLs. In this context, inconsistencies naturally arise. AFT was first developed

for consistent approximations. In the seminal work (Denecker et al . 2004), the authors

show that the theory of consistent approximations generalizes to a class of approximators

beyond consistent pairs, which are called symmetric approximators. They also state that

it is possible to develop a generalization of AFT without the symmetry assumption.

These results and claims are given under the restriction that an approximator maps

an exact pair on a product bilattice (which represents a two-valued interpretation) to

an exact pair. Unfortunately, this assumption is too restrictive for hybrid MKNF since

a two-valued interpretation for a hybrid MKNF knowledge base may well lead to an

inconsistent state.

Approximations under symmetric approximators already provide a powerful framework

for characterizing intended models of a logic theory. But we want to go beyond that. We

do not only want to capture consistent approximations in the product bilattice, but also

want to allow operators to map a consistent state to an inconsistent one, and even allow

inconsistent stable fixpoints. This is motivated by the possible role that AFT may play

in building constraint propagators for solvers of an underlying logic (e.g., Ji et al . 2017),

where inconsistency not only guides the search via backtracking but also provides valuable

information to prune the search space (e.g., by learned clauses in SAT/ASP solvers).

One can also argue that inconsistent stable fixpoints may provide useful information for

debugging purposes (a potential topic beyond the scope of this paper).

We show in this paper that all of the above requires only a mild generalization of AFT,

which is defined for all pairs in the product bilattice without the assumption of symmetry.
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We relax the condition for an approximator so that an approximator is required to map

an exact pair to an exact pair only in the case of consistent approximation. Based on this

revised definition of approximator, we present a definition of the stable revision operator,

which is well defined, increasing, and monotone on the product bilattice of a complete

lattice, that guarantees existence of fixpoints and a least fixpoint.

In summary, we extend AFT from consistent and symmetric approximators to arbitrary

approximators for the entire product bilattice. The goal is to use stable fixpoints as

candidates for intended models, or to provide useful information on stable states (in terms

of fixpoints) that may contain consistent as well as inconsistent information. Such an

extension is not without subtleties. We provide a detailed account of how such technical

subtleties are addressed.

The paper is organized as follows. The next section introduces notations, basics of

fixpoint theory, and the current state of AFT. In Section 3, we present an extended

AFT. Section 4 gives a review of three-valued MKNF and hybrid MKNF knowledge

bases along with the underlying semantics. Then, in Section 5 we show how Knorr et

al.’s alternating fixpoint operator can be recast as an approximator and provide semantic

characterizations, and in Section 6, we show an improved approximator. Section 7 is about

related work, concluding remarks, and future directions.

This paper is revised and extended from a preliminary report of the work that appeared

in Liu and You (2019). The current paper is reorganized by first presenting a detailed

study of generalized AFT. Especially, we provide an elaborate account of the original

AFT and contrast it with our generalization. In this extended version of the work, all

claims are complete with a proof.

2 Preliminaries

In this section, we recall the basic definitions regarding lattices underlying our work

based on the Knaster–Tarski fixpoint theory (Tarski 1955).

A partially ordered set 〈L,≤〉 is a set L equipped with a partial order ≤, which is a

reflexive, antisymmetric, and transitive relation. As usual, the strict order is expressed by

x < y as an abbreviation for x ≤ y and x �= y. Given a subset S ⊆ L, an element x ∈ L is

an upper bound (resp. a lower bound) if s ≤ x (resp. x ≤ s) for all s ∈ S. A lattice 〈L,≤〉
is a partially ordered set (poset) in which every two elements have a least upper bound

(lub) and a greatest lower bound (glb). A complete lattice is a lattice where every subset

of L has a least upper bound and a greatest lower bound. A complete lattice has both

a least element ⊥ and a greatest element 	. A greatest lower bound of a subset S ⊆ L

is called a meet and a least upper bound of S is called a join, and we use the notations:
∧
S = glb(S), x ∧ y = glb({x, y}), ∨S = lub(S), and x ∨ y = lub({x, y}). An operator O

on L is monotone if for all x, y ∈ L, that x ≤ y implies O(x) ≤ O(y). An element x ∈ L is

a pre-fixpoint of O if O(x) ≤ x; it is a post-fixpoint of O if x ≤ O(x). The Knaster–Tarski

fixpoint theory (Tarski 1955) tells us the fact that a monotone operator O on a complete

lattice has fixpoints and a least fixpoint, denoted lfp(O), which coincides with its least

pre-fixpoint. The following result of Knaster–Tarski fixpoint theory (Tarski 1955) serves

as the basis of our work in this paper.
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Theorem 1

Let 〈L,≤〉 be a complete lattice and O a monotone operator on L. Then O has fixpoints,

a least fixpoint, and a least pre-fixpoint. (i) The set of fixpoints of O is a complete

lattice under order ≤. (ii) The least fixpoint and least pre-fixpoint of O coincide, that is,

lfp(O) = ∧{x ∈ L : O(x) ≤ x}.
A chain in a poset 〈L,≤〉 is a linearly ordered subset of L. A poset 〈L,≤〉 is chain-

complete if it contains a least element ⊥ and every chain C ⊆ L has a least upper bound

in L. A complete lattice is chain-complete, but the converse does not hold in general.

However, as pointed out by Denecker et al . (2004), the Knaster–Tarski fixpoint theory

generalizes to chain-complete posets.

Theorem 2

(Markowsky 1976) Let 〈L,≤〉 be a chain-complete poset and O a monotone operator on

L. Then O has fixpoints, a least fixpoint, and a least pre-fixpoint. (i) The set of fixpoints

of O is a chain-complete poset under order ≤. (ii) The least fixpoint and least pre-fixpoint

of O coincide.

Given a complete lattice 〈L,≤〉, AFT is built on the induced product bilattice 〈L2,≤p〉,
where ≤p is called the precision order and defined as: for all x, y, x′, y′ ∈ L, (x, y) ≤p

(x′, y′) if x ≤ x′ and y′ ≤ y. The ≤p ordering is a complete lattice ordering on L2. Below,

we often write a lattice 〈L,≤〉 by L and its induced product bilattice by L2.

We define two projection functions for pairs in L2: (x, y)1 = x and (x, y)2 = y. For

simplicity, we write A(x, y)i, where i ∈ [1, 2], instead of more formal (A(x, y))i to refer

to the corresponding projection of the value of the operator A on the pair (x, y). A

pair (x, y) ∈ L2 is consistent if x ≤ y, inconsistent otherwise, and exact if x = y. A

consistent pair (x, y) in L defines an interval, denoted [x, y], which is identified by the

set {z | x ≤ z ≤ y}. We therefore also use an interval to denote the corresponding

set. A consistent pair (x, y) in L can be seen as an approximation of every z ∈ L such

that z ∈ [x, y]. In this sense, the precision order ≤p corresponds to the precision of

approximation, while an exact pair approximates the only element in it. We denote by

Lc the set of consistent pairs in L2. Note that 〈Lc,≤p〉 is not a complete lattice in general.

On the other hand, an inconsistent pair (x, y) in L2 can be viewed as a departure from

some point z ∈ L, for which (z, z) is revised either by increasing the first component of

the pair (w.r.t. the order ≤), or by decreasing its second component, or by performing

both at the same time. Inconsistent pairs have a natural embedding of the notion of

the degree of inconsistency. For two inconsistent pairs such that (x1, y1) ≤p (x2, y2),

the latter is of higher degree of inconsistency than the former. Here, there is a natural

notion of inconsistency being partial as in contrast with full inconsistency represented by

the special pair (	,⊥). Intuitively, this means that an inconsistent pair in general may

embody consistent as well as inconsistent information.

In logic programming for instance, L is typically the power set 2Σ, where Σ is a set

of (ground) atoms representing reasoning individuals. A consistent pair (T, P ), where T

and P are sets of atoms and T ⊆ P , is considered a three-valued interpretation, where

T is the set of true atoms and P the set of possibly true atoms; thus the atoms in Σ \ P
are false. If T �⊆ P , the atoms that are in T but not in P are interpreted both true and

false, resulting in inconsistency. This gives rise to the notion of inconsistency in various

degrees.
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2.1 Approximation fixpoint theory: the previous development

At the center of AFT is the notion of approximator. We call an operator A : L2 → L2

an approximator if A is ≤p-monotone and maps exact pairs to exact pairs. To emphasize

the role of an operator O : L→ L whose fixpoints are approximated by an approximator,

we say that A is an approximator for O if A is ≤p-monotone and A(x, x) = (O(x), O(x))

for all x ∈ L.
In Denecker et al . (2004), AFT was first developed for consistent approximations,

where an approximator is consistent if it maps consistent pairs to consistent pairs. We

denote by Appx(L2) the set of all approximators on L2 and by Appx(Lc) the set of

consistent approximators on Lc. Given an approximator A ∈ Appx(L2), we denote by Ac

the restriction of A to Lc under the condition that Ac is an operator on Lc.1

For the study of semantics based on partial interpretations, we can focus on the fix-

points of approximators, independent of how they may approximate operators on L.

First, since 〈Lc,≤p〉 is not a complete lattice, the Knaster–Tarski fixpoint theory does

not apply. But Lc is a chain-complete poset (ordered by ≤p), so according to Markowsky’s

theorem, an approximator A ∈ Appx(Lc) has a least fixpoint, called Kripke–Kleene fix-

point of A, and other fixpoints. However, some of these fixpoints may not satisfy the

minimality principle commonly adopted in knowledge representation.2 To eliminate non-

minimal fixpoints, we can focus on what are called the stable fixpoints of A, which are

the fixpoints of a stable revision operator StA : Lc → Lc, which is defined as:

StA(u, v) = (lfp(A(·, v)1), lfp(A(u, ·)2)), (1)

where A(·, v)1 denotes the operator [⊥, v] → [⊥, v] : z → A(z, v)1 and A(u, ·)2 denotes

the operator [u,	]→ [u,	] : z → A(u, z)2.

Denecker et al. (2004) show that (1) is well defined for pairs in Lc under a desirable

property. We call a pair (u, v) ∈ Lc A-reliable if (u, v) ≤p A(u, v). Intuitively, if A(u, v)

is viewed as a revision of (u, v) for more accurate approximation, under A-reliability,

A(u, v) is at least as accurate as (u, v). Furthermore, Denecker et al. (2004) show that

if a pair (u, v) ∈ Lc is A-reliable, then A(·, v)1 is internal in [⊥, v], hence we can safely

define A(·, v)1 to be an operator on the lattice [⊥, v]; similarly, since A(u, ·)2 is internal

in [u,	], we can define it on lattice [u,	] (Proposition 3.3). Since the operators A(·, v)1
and A(u, ·)2 are ≤-monotone on their respective domains, a least fixpoint for each exists;

hence the stable revision operator StA is well defined. Note that by definition, since a

fixpoint of StA is a fixpoint of A, a stable fixpoint of A is a fixpoint of A.

However, the notion of A-reliability is not strong enough to guarantee another

desirable property: for any A-reliable pair (u, v), we want (u, v) ≤p StA(u, v)(=

(lfp(A(·, v)1), lfp(A(u, ·)2))); that is, a stable fixpoint computed from a given pair should

be at least as accurate. This property does not hold in general for A-reliable pairs. In

addition, we also want A(u, v) ≤p StA(u, v), so that there is a guarantee that the stable

revision operator “revises even more”, that is, stable revision is at least as accurate as re-

vision by a single application of A. We therefore introduce a new property: an A-reliable

1 Such Ac may not exist in general, but for symmetric approximators, it always does; cf. Proposition 14
of Denecker et al . (2000).

2 The situation is analogue to the notion of Kripke–Kleene model of a logic program, which is a least
fixpoint of a three-valued van Emden–Kowalski operator.
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pair (u, v) ∈ Lc is called A-prudent if u ≤ lfp(A(·, v)1). We denote by Lrp the set of

A-prudent pairs in Lc. Denecker et al. (2004) show that for all A-prudent pairs (u, v) in

Lc, (u, v) ≤p StA(u, v) and A(u, v) ≤p StA(u, v) (Propositions 3.7 and 3.8).

Example 1

Consider a complete lattice 〈L,≤〉 where L = {⊥,	} and ≤ is defined as usual. Define

an operator A on Lc as: A(	,	) = (	,	) and A(⊥,	) = A(⊥,⊥) = (	,	). It can

be seen that A is ≤p-monotone on Lc, the pairs (	,	) and (⊥,	) are A-reliable, and

(⊥,⊥) is not. Both A-reliable pairs (	,	) and (⊥,	) are A-prudent as well, thus Lrp =

{(	,	), (⊥,	)}.
Now let A′ be the identify operator on Lc except A′(⊥,⊥) = (	,	). The operator

A′ is ≤p-monotone on Lc. The pairs (	,	) and (⊥,	) are A′-reliable whereas (⊥,⊥) is
not. But the A′-reliable pair (	,	) is not A′-prudent because lfp(A′(·,	)1) = ⊥ < 	.
Note that (	,	) is a fixpoint of A′ but not a stable fixpoint. Thus, for approximator A′,
Lrp = {(⊥,	)}.

The above development has led to the following results of the properties of the stable

revision operator.

Theorem 3 (Theorem 3.11 of Denecker et al. 2004)

Let L be a complete lattice, A ∈ Appx(Lc). The set of A-prudent elements of Lc is a

chain-complete poset under the precision order ≤p, with least element (⊥,	). The stable
revision operator is a well defined, increasing and monotone operator in this poset.

This theorem serves as the foundation for AFT as it guarantees that the stable revision

operator has fixpoints and a least fixpoint, which we have called stable fixpoints of A.

The notion of approximator is then generalized to symmetric approximators, which

are ≤p-monotone operators A on L2 such that A(x, y)1 = A(y, x)2, for all x, y ∈ L. As
remarked in Denecker et al . (2004), this generalization is motivated by operators arising

in knowledge representation that are symmetric.3 A critical property of a symmetric

approximator A is that A(x, x) yields an exact pair, for all x ∈ L, that is, it maps

an exact pair to an exact pair, which is consistent. This can be seen as follows: Since

A(x, x) = (A(x, x)1, A(x, x)2) for all x ∈ L, and by the symmetry of A, A(x, x)1 =

A(x, x)2 and thus A(x, x) is consistent.

3 Approximation fixpoint theory generalized

In this section, we generalize AFT as given in Denecker et al . (2004) from consistent and

symmetric approximators to arbitrary approximators. This generalization is needed in

order to define approximators for hybrid MKNF knowledge bases since an exact pair in

this context is a two-valued interpretation which can be mapped to an inconsistent one.

This is because a hybrid MKNF knowledge base allows predicates to appear both in the

underlying DL knowledge base and in rules, inconsistencies may arise from the combi-

nation of classic negation in the former and derivations using nonmonotonic negation in

the latter.

3 For example, Fitting’s immediate consequence operator for normal logic programs (Fitting 2002),
placed in the context of bilattice ((2Σ)2,⊆p) where Σ is a set of ground atoms, induces a symmetric
approximator.
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The current AFT is defined for consistent and symmetric approximators. As alluded

earlier, a critical property of a symmetric approximator is that it maps an exact pair to

an exact pair. However, a ≤p-monotone operator on L2 may not possess this property.

Example 2

(Bi et al . 2014) Consider a complete lattice where L = {⊥,	} and ≤ is defined as

usual. Let O be the identity function on L. Then we have two fixpoints, O(⊥) = ⊥ and

O(	) = 	. Let A be an identity function on L2 everywhere except A(	,	) = (	,⊥).
Thus, A(	,	) is inconsistent. It is easy to check that A is ≤p-monotone, especially, from

(	,	) ≤p (	,⊥) we have A(	,	) ≤p A(	,⊥). There is exactly one exact pair (⊥,⊥)
for which A(⊥,⊥) is consistent, and the condition A(⊥,⊥) = (O(⊥), O(⊥)) is satisfied.
For the other exact pair (	,	), A(	,	) is inconsistent and A(	,	) �= (O(	), O(	)),
even though O(	) = 	. The fixpoint 	 of O is not captured by the operator A because

A(	,	) is inconsistent.
Conclusion: Though the operator A above is ≤p-monotone on L2, it is not an approx-

imator by the current definition because it fails to map an exact pair to an exact pair

when inconsistency arises.4

In order to accommodate operators like A above, we present a generalization by relax-

ing the condition for an approximator.

Definition 1

We say that an operator A : L2 → L2 is an approximator if A is ≤p-monotone and for all

x ∈ L, if A(x, x) is consistent then A maps (x, x) to an exact pair. Let O be an operator

on L. We say that A : L2 → L2 is an approximator for O if A is an approximator and

for all x ∈ L, if A(x, x) is consistent then A(x, x) = (O(x), O(x)).

That is, we make the notion of approximation partial: A(x, x) captures O only when

A(x, x) is consistent. Under this definition, the operator A in Example 2 is an approxi-

mator and it approximates, for example, the identify operator O on L.

Before we proceed to generalize the notion of stable revision operator, we need to

extend the definition of A-reliability and A-prudence to pairs in L2. Such a definition is

already provided in the study of well-founded inductive definitions. Following Denecker

and Vennekens (2007), given an operator A on L2, we say that a pair (u, v) ∈ L2 is

A-contracting if (u, v) ≤p A(u, v).5 The notion of A-prudence is generalized to L2 as

well. A pair (u, v) ∈ L2 is A-prudent if u ≤ lfp(A(·, v)1) (when lfp(A(·, v)1) exists). By

an abuse of notation and without confusion, in the rest of this paper we will continue to

use Lrp but this time to denote the set of A-contracting and A-prudent pairs in L2.

Now, we relax the definition of the stable revision operator as follows: Given any pair

(u, v) ∈ L2, define

StA(u, v) = (lfp(A(·, v)1), lfp(A(u, ·)2)), (2)

where A(·, v)1 denotes the operator L → L : z → A(z, v)1 and A(u, ·)2 denotes the

operator L→ L : z → A(u, z)2. That is, both A(·, v)1 and A(u, ·)2 are operators on L.

4 This example specifies a system in which states are represented by a pair of factors – high and low. Here,
all states are stable except the one in which both factors are high. This state may be transmitted to an
“inconsistent state” with the first factor high and the second low. This state is the only inconsistent
one, and it itself is stable.

5 Earlier in this paper, A-contracting pairs were called A-reliable in the context of Lc.
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Notation: Let (u, v) ∈ L2 and A ∈ Appx(L2). We define

(C1(v), C2(u)) = (lfp(A(·, v)1), lfp(A(u, ·)2)),
where A(·, v)1 and A(u, ·)2 are the respective projection operators defined on L. We use

the notation (C1(v), C2(u)) with the understanding that the underlying approximator is

clear from the context.

Since A is ≤p-monotone on L2, the projection operators A(·, v)1 and A(u, ·)2, for any
pair (u, v) ∈ L2, are both ≤-monotone on L, which guarantees the existence of a least

fixpoint for each. Thus, the stable revision operator in equation (2) is well defined for

all pairs in L2. Note that in this case a stable fixpoint can be inconsistent. For example,

consider lattice L = {⊥,	} and an operator A on L2, which is identity on every pair

except A(⊥,⊥) = (	,⊥). Clearly, A is ≤p-monotone. The inconsistent pair (	,⊥) is a

stable fixpoint of A since StA(	,⊥) = (lfp(A(·,⊥)1), lfp(A(	, ·)2)) = (	,⊥).
The definition of stable revision above has been proposed and adopted in the literature

of AFT already,6 for example, in Denecker et al . (2004) and more recently in Bogaerts and

Cruz-Filipe (2018), Bogaerts et al . (2015), for consistent and symmetric approximators.

It however differs from stable revision for consistent approximators with regard to the

domains of the two projection operators. As mentioned earlier, in consistent AFT (where

an approximator is from Appx(Lc)), we know from Denecker et al . (2004) that A(·, v)1 is

internal in [⊥, v] so we define A(·, v)1 to be an operator on the lattice [⊥, v], and A(u, ·)2
is internal in [u,	] so we define it on lattice [u,	]. Now, let us generalize this to all

approximators in Appx(L2) for consistent pairs in Lc.

Notation: Let (u, v) ∈ Lc and A ∈ Appx(L2). We define

(D1(v), D2(u)) = (lfp(A(·, v)1), lfp(A(u, ·)2)),
where A(·, v)1 is defined on [⊥, v] and A(u, ·)2 is defined on [u,	]. In the sequel, the term

consistent stable fixpoints refer to the fixpoints determined by this definition.

Since we consider the entire product bilattice L2, we are interested in knowing which

consistent pairs in it make the above projection operators well defined under our relaxed

definition of approximators.

Proposition 1

Let 〈L,≤〉 be a complete lattice and A an approximator on L2. If a consistent pair (u, v) ∈
L2 is A-contracting and A(u, u) is consistent, then for every x ∈ [u,	], A(u, x)2 ∈ [u,	],
and for every x ∈ [⊥, v], A(u, v)1 ∈ [⊥, v].

Proof

We can show that, for any x ∈ [u,	],
u ≤ A(u, v)1 ≤ A(u, u)1 = A(u, u)2 ≤ A(u, x)2.

The first inequality is because (u, v) ≤p A(u, v) (i.e., (u, v) is A-contracting). The second

is due to A(u, v) ≤p A(u, u), as (u, v) is consistent thus (u, v) ≤p (u, u) and A is ≤p-

monotone. The next equality is by the fact that since A(u, u) is consistent, it maps a

consistent pair to a consistent pair. The last inequality is due to x ≥ u and that A

6 But notice a critical difference in our definition of an approximator discussed above.
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is ≤p-monotone. For any x ∈ [⊥, v], we can similarly show that A(x, v)1 ≤ A(v, v)1 =

A(v, v)2 ≤ v.7

A question that arises is whether consistent stable fixpoints from consistent approxi-

mations are carried over to approximators on L2. That is, assume (u, v) ∈ Lc is a stable

fixpoint as computed by (D1(v), D2(u)), and the question is whether (u, v) is also a

stable fixpoint as computed by (C1(v), C2(u)). If (D1(v), D2(u)) = (C1(v), C2(u)), then

the answer is yes for (u, v). In this way, a consistent stable fixpoint as computed by

(D1(v), D2(u)) is preserved for the stable revision operator as defined by (C1(v), C2(u)).

The above question was answered positively by Denecker et al . (2004) (cf. Theorem

4.2) for symmetric approximators by restricting them to consistent pairs. The authors

show that the theory of consistent approximations captures general AFT that treats

consistent and symmetric approximators on the product bilattice, as long as we restrict

our attention to consistent pairs. They show that for any symmetric approximator A, a

consistent pair (u, v) is a stable fixpoint of A on L2 (as defined in terms of (C1(v), C2(u)))

if and only if it is a stable fixpoint of Ac (as defined in terms of (D1(v), D2(u))). They

state that it is possible to develop a generalization of AFT for which these results hold

without the assumption of symmetry. However, once we allow consistent pairs to be

mapped to inconsistent ones and adopt the domain L for the projection operators, a

discrepancy with consistent AFT emerges.

Example 3

Let L = {⊥,	} and A an identity function everywhere on L2 except that A(⊥,	) =

A(⊥,⊥) = (	,	). It is easy to verify that A is ≤p-monotone. Clearly, Ac ∈ Appx(Lc),

that is, it maps consistent pairs to consistent pairs, it is ≤p-monotone on Lc, and ap-

proximates, for example, the identify operator O on L. But A is not symmetric since

A(⊥,	)1 = 	 and A(	,⊥)2 = ⊥. Since Ac ∈ Appx(Lc), Ac(	, ·)2 is an operator on

[	,	]. Since StAc(	,	) = (lfp(Ac(·,	)1), lfp(Ac(	, ·)2) = (	,	), it follows that (	,	)
is a stable fixpoint of Ac. Now let us apply the definition of stable revision in equation

(2) to approximator A, where both projection operators A(·, y)1 and A(x, ·)2 are defined

on L. In this case, since StA(	,	) = (lfp(A(·,	)1), lfp(A(	, ·)2) = (	,⊥), (	,	) is not
a stable fixpoint of A. This example is not a surprise since in general different domains

may well lead to different least fixpoints.

Now consider another approximator A′ ∈ Appx(L2) such that A′ maps all pairs to

(	,	). It can be seen that A′ is ≤p-monotone and (	,	) is a stable fixpoint of A′

in both cases, where A′(·, T )1 is defined as an operator either on [⊥,	] or on L, and

A′(	, ·)2 is defined as an operator either on [	,	] or on L. That is, for each projection

operator, the least fixpoints of it on two different domains coincide.

Conclusion: For an arbitrary approximator A on the product bilattice L2, the stable

revision operator StA(u, v) is well defined for all pairs (u, v) ∈ L2, if we define both

projection operators on L. However, consistent stable fixpoints under consistent AFT

may not be preserved if we adopt the stable revision operator as defined in this paper

(i.e., by equation (2) in terms of (C1(v), C2(u))).

7 The proof is essentially the same as the poof of Proposition 3.3 in Denecker et al . (2004); but there is
a subtle difference in the definition of approximator: in the case of Denecker et al . (2004), the claim
is proved for Ac ∈ Appx(Lc). But in our case, the claim is for arbitrary approximators in Appx(L2).
This shows an argument in favor of our relaxed definition of approximators.
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Let us call the existence of a gap between the two pairs of least fixpoints, (C1(v), C2(u))

and (D1(v), D2(u)), discussed above an “anomaly”. One can argue that a desirable ap-

proximator should not exhibit this anomaly so that accommodating inconsistent pairs

does not have to sacrifice the preservation of consistent stable fixpoints.

Definition 2

Let A ∈ Appx(L2), and (u, v) ∈ Lc such that (u, v) = (lfp(A(·, v)1), lfp(A(u, ·)2)) where

A(·, v)1 is an operator on [⊥, v] and A(u, ·)2 is an operator on [u,	]. Approximator A

is called strong for (u, v) if (u, v) = (lfp(A(·, v)1), lfp(A(u, ·)2)) where both A(·, v)1 and

A(u, ·)2 are operators on L. Approximator A is called strong if it is strong for every

(u, v) ∈ Lc that satisfies the above condition.

In other words, a strong approximator preserves consistent stable fixpoints under the

definition of stable revision adopted in this paper. For example, in Example 3, while the

approximator A′ is strong for (	,	), the approximator A is not.

A question arises: are there natural approximators that are strong? For normal logic

programs, it is known that Fitting’s immediate consequence operator ΘP (Fitting 2002)

induces a symmetric approximator. It can be shown that ΘP is also a strong approx-

imator.8 In addition, we show later in this paper that the approximators we formulate

for hybrid MKNF knowledge bases are (essentially) strong approximators.9 If we focus

on strong approximators, the relaxed AFT as presented in this paper can be seen as a

generalization of the original AFT.

Finally, as a generalization of the current AFT, we show that the properties of the

stable revision operator as stated in Theorem 3 for consistent AFT can be generalized.

Theorem 4

Let (L,≤) be a complete lattice and A an approximator on L2. Then, 〈Lrp,≤p〉 is a

chain-complete poset under the precision order ≤p, with least element (⊥,	). The stable
revision operator as given in equation (2) is a well defined, increasing and monotone

operator in this poset.

Proof

The least element (⊥,	) is naturally A-contracting and A-prudent. Let C be a chain

in Lrp, and C1, C2 be the respective projections of C. First we show that the element

(lub(C1), glb(C2)) = (
∨
C1,

∧
C2) is the least upper bound of C, which is also in Lrp.

Since C is a chain in Lrp ordered by the relation ≤p, it is easy to see that the least

upper bound of C1 exists, which is just the maximum element in C1; similarly, the

greatest lower bound of C2 exists. Then, it is clear that the least upper bound of C is

lub(C) = (lub(C1), glb(C2)).

To show (lub(C1), glb(C2)) = (
∨
C1,

∧
C2) is A-contracting and A-prudent, let u0 =

∨
C1 and v0 =

∧
C2 and consider any (a, b) ∈ C. Since C is a chain in Lrp that contains

8 We can apply Lemma 4.1 of Denecker et al . (2004), which says that for any symmetric approximator
A and for any consistent pair (u, v), if (u, v) is Ac-prudent, then (D1(v), D2(u)) = (C1(v), C2(u)).
Since a consistent, ΘP -prudent stable fixpoint of ΘP is Θc

P -prudent, the conclusion follows.
9 Technically, we need a mild condition: Given a consistent stable fixpoint (u, v), these approximators
are strong for (u, v) if u is consistent with the given DL knowledge base. If the condition is not satisfied,
the stable fixpoint (u, v) does not correspond to a three-valued MKNF model. Thus, the condition
does not affect the preservation of consistent stable fixpoints that give three-valued MKNF models.

https://doi.org/10.1017/S1471068421000168 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000168


316 F. Liu and J.-H. You

(a, b), a ∈ C1 and b ∈ C2, we have a ≤ u0 and v0 ≤ b, from which we obtain a ≤
A(a, b)1 ≤ A(u0, b)1 ≤ A(u0, v0)1, where the first inequality is because (a, b) ∈ Lrp is

A-contracting and the next two inequalities are due to the ≤p-monotonicity of A. Since

a ∈ C1 is arbitrary, letting a = u0, we then have u0 =
∨
C1 ≤ A(u0, v0)1. Similarly,

we can show A(u0, v0)2 ≤ A(a, v0)2 ≤ A(a, b)2 ≤ b. Since v0 =
∧
C2, it follows that

A(u0, v0)2 ≤ v0 =
∧
C2. Hence, (

∨
C1,

∧
C2) is A-contracting.

To show that (
∨
C1,

∧
C2) is A-prudent, let u′ = lfp(A(·, v0)1). For any (a, b) ∈ C,

we have A(u′, b)1 ≤ A(u′, v0)1 = u′, then u′ is a pre-fixpoint of A(·, b)1 and thus

lfp(A(·, b)1) ≤ u′. Also since (a, b) is A-contracting, we have a ≤ lfp(A(·, b)1) ≤ u′.
Since a is arbitrary from C1, this applies to u0 =

∨
C1 ∈ C1 and thus

∨
C1 ≤ u′. That

is, (
∨
C1,

∧
C2) is A-prudent.

We therefore conclude that (Lrp,≤p) is a chain-complete poset under order ≤p.

Next, we show that the stable revision operator defined in equation (2) is a well defined,

increasing and monotone operator in this poset. In the definition of the stable revision

operator StA(u, v) = (lfp(A(·, v)1), lfp(A(u, ·)2)) in equation (2), we already argued that

StA is a well-defined mapping, due to the fact that both projection operators A(·, v)1
and A(u, ·)2 are defined on L. We now show that

• StA is well defined for Lrp, namely Lrp is closed under StA, that is, for all (a, b) ∈ Lrp,

StA(a, b) ∈ Lrp,

• StA is increasing, that is, (a, b) ≤p StA(a, b) for all (a, b) ∈ Lrp, and

• StA is ≤p-monotone.

Let (a, b), (c, d) ∈ Lrp. For simplicity, let u1 = StA(a, b)1 = lfp(A(·, b)1) and

v1 = StA(a, b)2 = lfp(A(a, ·)2), u2 = StA(c, d)1 = lfp(A(·, d)1) and v2 = StA(c, d)2 =

lfp(A(c, ·)2).
For convenience, let us first show that StA is increasing and ≤p-monotone. By A-

prudence of (a, b), a ≤ u1. Since (a, b) is A-contracting, A(a, b)2 ≤ b. Thus b is a pre-

fixpoint of A(a, ·)2, and since v1 = lfp(A(a, ·)2), it follows v1 ≤ b. That is, (a, b) ≤p

StA(a, b).

For ≤p-monotonicity, given (a, b) ≤p (c, d), we have A(u2, b)1 ≤ A(u2, d)1 = u2 by

d ≤ b, and thus u2 is a pre-fixpoint of A(·, b)1 and u1 ≤ u2. Similarly, A(c, v1)2 ≤
A(a, v1)2 = v1 by a ≤ c, so v1 is a pre-fixpoint of A(c, ·)2 and thus v2 ≤ v1. That is,

StA(a, b) ≤p StA(c, d).

We now show that StA maps a pair (a, b) ∈ Lrp to a pair in Lrp. We observe that

u1 = A(u1, b)1 ≤ A(u1, v1)1, where the equality is because u1 is a fixpoint of the operator

A(·, b)1 and the inequality is because (a, b) is A-contracting. Similarly, v1 = A(a, v1)2 ≤
A(u1, v1)2. Therefore, (u1, v1) ≤p A(u1, v1), that is, (u1, v1) is A-contracting. To prove

A-prudence of (u1, v1), since (a, b) is A-contracting, b ≥ v1 and by ≤p-monononitcity of

A, for any x ∈ L, A(x, b) ≤p A(x, v1) and thus A(x, b)1 ≤ A(x, v1)1. Thus, every pre-

fixpoint of A(·, v1)1 is a pre-fixpoint of A(·, b)1, that is, for any z ∈ L, if A(z, v1)1 ≤ z then
A(z, b)1 ≤ A(z, v1)1 ≤ z. Since A(·, v1)1 is a monotone operator on L, lfp(A(·, v1)1) exists
and thus the set of pre-fixpoints of A(·, v1)1 is non-empty. Therefore u1 ≤ lfp(A(·, v1)1)
and (u1, v1) is A-prudent.
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We now can apply Theorem 2 so that given an approximator A on the product bilattice

L2, the stable revision operator defined by equation (2) possesses fixpoints and a least

fixpoint, the latter of which can be computed iteratively from the least element (⊥,	).
Note that by the Knaster–Tarski fixpoint theory, since 〈L2,≤p〉 is a complete lattice

and the stable revision operator StA is ≤p-monotone on L2 (which can be shown by the

same proof for the ≤p-monotonicity on Lrp above), the operator StA defined in equation

(2) is already guaranteed to possess fixpoints and a least fixpoint. Nevertheless, Theorem

4 above is still relevant because it shows a generalization of the chain-completeness result

from Lc to L2, and in addition, it points to a smaller domain of pairs Lrp from which

consistent as well as inconsistent stable fixpoints can be computed by the guess-and-verify

method.

4 Hybrid MKNF knowledge bases

4.1 Minimal knowledge and negation as failure

The logic of MKNF (Lifschitz 1991) is based on a first-order language L (possibly with

equality ≈) with two modal operators, K, for minimal knowledge, and not, for negation

as failure. In MKNF, first-order atoms are defined as usual and MKNF formulas are

first-order formulas with K and not. An MKNF formula ϕ is ground if it contains no

variables, and ϕ[t/x] denotes the formula obtained from ϕ by replacing all free occurrences

of variable x with term t. Given a first-order formula ψ, Kψ is called a (modal) K-atom

and notψ called a (modal) not-atom. Both of these are also called modal atoms.

A first-order interpretation is understood as in first-order logic. The universe of a first-

order interpretation I is denoted by |I|. A first-order structure is a non-empty set M

of first-order interpretations with the universe |I| for some fixed I ∈ M . An MKNF

structure is a triple (I,M,N), whereM and N are sets of first-order interpretations with

the universe |I|. We extend the language L by adding object constants representing all

elements of |I|, and call these constants names. The satisfaction relation |= between an

MKNF structure (I,M,N) and an MKNF formula ϕ is defined as follows:

(I,M,N) |= ϕ (ϕ is a first-order atom) if ϕ is true in I,

(I,M,N) |= ¬ϕ if (I,M,N) �|= ϕ,

(I,M,N) |= ϕ1 ∧ ϕ2 if (I,M,N) |= ϕ1 and (I,M,N) |= ϕ2,

(I,M,N) |= ∃xϕ if (I,M,N) |= ϕ[α/x] for some name α,

(I,M,N) |= Kϕ if (J,M,N) |= ϕ for all J ∈M,

(I,M,N) |= notϕ if (J,M,N) �|= ϕ for some J ∈ N.
The symbols 	, ⊥, ∨, ∀, and ⊃ are interpreted as usual.

An MKNF interpretation M is a non-empty set of first-order interpretations over the

universe |I| for some I ∈ M . In MKNF, a notion called standard name assumption

is imposed to avoid unintended behaviors (Motik and Rosati 2010). This requires an

interpretation to be a Herbrand interpretation with a countably infinite number of ad-

ditional constants, and the predicate ≈ to be a congruence relation.10 Intuitively, given

10 The requirement that the predicate ≈ be interpreted as a congruence relation overwrites the earlier
assumption that ≈ is interpreted as equality.
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the assumption that each individual in the universe of an interpretation is denoted by

a constant and the countability it implies, the standard name assumption becomes a

convenient normalized representation of interpretations since each interpretation is iso-

morphic to the quotient (w.r.t. ≈) of a Herbrand interpretation and each quotient of a

Herbrand interpretation is an interpretation. In the sequel, we assume the standard name

assumption, and due to this assumption, in definitions we need not explicitly mention

the universe associated with the underlying interpretations.

An MKNF interpretation M satisfies an MKNF formula ϕ, written M |=MKNF ϕ, if

(I,M,M) |= ϕ for each I ∈M . Two-valued MKNF models are defined as follows.

Definition 3

An MKNF interpretation M is an MKNF model of an MKNF formula ϕ if

(1) M |=MKNF ϕ, and

(2) for all MKNF interpretations M ′ such that M ′ ⊃ M , (I ′,M ′,M) �|= ϕ for every

I ′ ∈M ′.

For example, with the MKNF formula ϕ = not b ⊃ Ka, it is easy to verify that the

MKNF interpretation M = {{a}, {a, b}} is an MKNF model of ϕ.

Following Knorr et al . (2011), a three-valued MKNF structure, (I,M ,N ), consists of

a first-order interpretation, I, and two pairs, M = 〈M,M1〉 and N = 〈N,N1〉, of sets of
first-order interpretations, whereM1 ⊆M and N1 ⊆ N . From the two component sets in

M = 〈M,M1〉, we can define three truth values for modal K-atoms in the following way:

Kϕ is true w.r.t. M = 〈M,M1〉 if ϕ is true in all interpretations in M ; it is false if it is

false in at least one interpretation in M1; and it is undefined otherwise. For not-atoms,

a symmetric treatment w.r.t. N = 〈N,N1〉 is adopted. Let {t,u, f} be the set of truth

values true, undefined, and false with the order f < u < t, and let the operator max

(resp. min) choose the greatest (resp. the least) element with respect to this ordering.

Table 1 shows three-valued evaluation of MKNF formulas.

A (three-valued) MKNF interpretation pair (M,N) consists of two MKNF interpreta-

tions, M and N , with ∅ ⊂ N ⊆ M . An MKNF interpretation pair satisfies an MKNF

formula ϕ, denoted (M,N) |= ϕ, iff (I, 〈M,N〉, 〈M,N〉)(ϕ) = t for each I ∈ M . If

M = N , the MKNF interpretation pair is called total.

Definition 4

An MKNF interpretation pair (M,N) is a three-valued MKNF model of an MKNF for-

mula ϕ if

(a) (M,N) |= ϕ, and

(b) for all MKNF interpretation pairs (M ′, N ′) with M ⊆ M ′ and N ⊆ N ′, where at

least one of the inclusions is proper and M ′ = N ′ if M = N , ∃I ′ ∈ M ′ such that

(I ′, 〈M ′, N ′〉, 〈M,N〉)(ϕ) �= t.

Condition (a) checks satisfiability while condition (b), with the evaluation of not-

atoms fixed, constrains the evaluation of modal K-atoms to be minimal w.r.t the ordering

f < u < t while maximizing falsity. That is, by enlargingM toM ′ we limit the derivation

of K-atoms, and by enlarging N to N ′ we expand on falsity to reduce undefined. Thus,

a three-valued MKNF model is one for which neither of these is possible under the

assumption that not-atoms remain to be evaluated w.r.t. (M,N). If M = N , then
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Table 1. Evaluation in three-valued MKNF structure (I,M ,N )

(I,M ,N )(P (t1, . . . , tn)) =

{
t iff P (t1, . . . , tn) is true in I

f iff P (t1, . . . , tn) is false in I

(I,M ,N )(¬ϕ) =

⎧⎪⎨
⎪⎩
t iff (I,M ,N )(ϕ) = f

u iff (I,M ,N )(ϕ) = u

f iff (I,M ,N )(ϕ) = t

(I,M ,N )(ϕ1 ∧ ϕ2) = min{(I,M ,N )(ϕ1), (I,M ,N )(ϕ2)}

(I,M ,N )(ϕ1 ⊃ ϕ2) =

{
t iff (I,M ,N )(ϕ2) ≥ (I,M ,N )(ϕ1)

f otherwise

(I,M ,N )(∃x : ϕ) = max{(I,M ,N )(ϕ[α/x]) |α is a name}

(I,M ,N )(Kϕ) =

⎧⎪⎨
⎪⎩
t iff (J, 〈M,M1〉,N )(ϕ) = t for all J ∈ M

f iff (J, 〈M,M1〉,N )(ϕ) = f for some J ∈ M1

u otherwise

(I,M ,N )(notϕ) =

⎧⎪⎨
⎪⎩
t iff (J,M , 〈N,N1〉)(ϕ) = f for some J ∈ N1

f iff (J,M , 〈N,N1〉)(ϕ) = t for all J ∈ N

u otherwise

(M,M) is equivalent to a two-valued MKNF model. The requirement M ′ = N ′ reduces
the definition to one for two-valued MKNF models as given in Definition 3, which enables

Knorr et al. (2011) to show that an MKNF interpretation pair (M,M) that is a three-

valued MKNF model of ϕ corresponds to a two-valued MKNF model M of ϕ as defined

in Motik and Rosati (2010).

Example 4

Consider the MKNF formula ϕ = [(not b ∧ not a) ⊃ Ka] ∧ [Ka ⊃ Kd] and the

MKNF interpretation pair (M,M) where M = {{a, d}, {a, b, d}}. We have (M,M) |=
{not b,¬not a,Ka,Kd}. Though (M,M) |= ϕ, it violates condition (b) of Defini-

tion 4, since the three-valued MKNF structure (I, 〈M ′,M ′〉, 〈M,M〉), where M ′ =

{∅, {a, d}, {a, b, d}} and thus M ⊂ M ′, evaluates [not b,not a,Ka,Kd] to [t, f , f , f ],

respectively, independent of I. It follows that (I, 〈M ′,M ′〉, 〈M,M〉) evaluates ϕ to t,

according to Table 1.

MKNF interpretation pairs can be compared by an order of knowledge. Let (M1, N1)

and (M2, N2) be MKNF interpretation pairs. (M1, N1) �k (M2, N2) iff M1 ⊆ M2 and

N1 ⊇ N2. A three-valued MKNF model (M,N) of an MKNF formula ϕ is called a well-

founded MKNF model of ϕ if (M1, N1) �k (M,N) for all three-valued MKNF models

(M1, N1) of ϕ.
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4.2 Hybrid MKNF knowledge bases

The critical issue of how to combine open and closed world reasoning is addressed in

Motik and Rosati (2010) by seamlessly integrating rules with DLs. A hybrid MKNF

knowledge base K = (O,P) consists of a decidable DL knowledge base O, translatable

into first-order logic and a rule base P, which is a finite set of rules with modal atoms.

The original work on hybrid MKNF knowledge bases (Motik and Rosati 2007; 2010)

defines a two-valued semantics for such knowledge bases with disjunctive rules. In this

paper, following Knorr et al . (2011), our focus is on non-disjunctive rules as presented

in Motik and Rosati (2007).

An MKNF rule (or simply a rule) r is of the form: KH ← KA1, . . . ,KAm,

notB1, . . . ,notBn, where H,Ai, and Bj are function-free first-order atoms. Given a

rule r, we let hd(r) = KH, bd+(r) = {KAi | i = 1..m}, and bd−(r) = {Bi | i = 1..n}. A
rule is positive if it contains no not-atoms. When all rules in P are positive, K = (O,P)

is called positive.

For the interpretation of a hybrid MKNF knowledge base K = (O,P) in the logic of

MKNF, a transformation π(K ) = Kπ(O) ∧ π(P) is performed to transform O into a

first-order formula and rules r ∈P into a conjunction of first-order implications to make

each of them coincide syntactically with an MKNF formula. More precisely,

π(r) = ∀�x : (KH ⊂ KA1 ∧ . . . ∧KAm ∧ notB1 ∧ . . . ∧ notBn)

π(P) =
∧

r∈P π(r), π(K ) = Kπ(O) ∧ π(P),

where �x is the vector of free variables in r.

Under the additional assumption of DL-safety a first-order rule base is semantically

equivalent to a finite ground rule base, in terms of two-valued MKNF models (Motik and

Rosati 2010) as well as in terms of three-valued MKNF models (Knorr et al . 2011); hence

decidability is guaranteed. Given a hybrid MKNF knowledge base K = (O,P), a rule

r in P is said to be DL-safe if every variable in r occurs in at least one K-atom in the

body of r whose predicate symbol does not appear in O,11 and K is DL-safe if all rules

in P are DL-safe. In this paper, we assume that a given rule base is always DL-safe, and

for convenience, when we write P we assume it is already grounded.

Given a hybrid MKNF knowledge base K = (O,P), let KA(K ) be the set of all

(ground) K-atoms Kφ such that either Kφ occurs in P or notφ occurs in P. We

generalize the notion of partition (Knorr et al . 2011) from consistent pairs to all pairs:

A partition of KA(K ) is a pair (T, P ) such that T, P ⊆ KA(K ); if T ⊆ P , then (T, P ) is

said to be consistent, otherwise it is inconsistent. A partition of the form (E,E) is said

to be exact.

Intuitively, for a partition (T, P ), T contains true modal K-atoms and P contains

possibly true modal K-atoms. Thus, the complement of P is the set of false modal K-

atoms and P\T the set of undefined modal K-atoms.

Partitions are closely related to MKNF interpretation pairs. It is shown in Knorr

et al . (2011), Liu and You (2017) that an MKNF interpretation pair (M,N) induces a

consistent partition (T, P ) such that for any modal K-atom Kξ ∈ KA(K ),

11 Such a modal K-atom is called a non-DL-atom in Knorr et al . (2011), Motik and Rosati (2010).
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1. Kξ ∈ T iff ∀I ∈M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = t,

2. Kξ �∈ P iff ∀I ∈M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = f , and

3. Kξ ∈ P\T iff ∀I ∈M, (I, 〈M,N〉, 〈M,N〉)(Kξ) = u.

Given a set of first-order atoms S, we define the corresponding set of modal K-atoms

as: K(S) = {Kφ |φ ∈ S}.
Let S be a subset of KA(K ). The objective knowledge of S relevant to K is the set of

first-order formulas OBO,S = {π(O)} ∪ {ξ | Kξ ∈ S}.
Example 5

Consider a hybrid MKNF knowledge base K = (O,P), where O = a∧ (b ⊃ c)∧¬f and

P is

Kb← Ka. Kd← Kc,not e. Ke← not d. Kf ← not b.

Reasoning with K can be understood as follows: since KO implies Ka, by the first

rule we derive Kb; then due to b ⊃ c in O we derive Kc. Thus its occurrence in the

body of the second rule is true and can be ignored. For the K-atoms Kd and Ke ap-

pearing in the two rules in the middle, without preferring one over the other, both can

be undefined. Because both not b and Kf are false (the latter is due to ¬f in O),

the last rule is also satisfied. Now consider an MKNF interpretation pair (M,N) =

({I | I |= O ∧ b}, {I | I |= O ∧ b ∧ d ∧ e}), which corresponds to partition (T, P ) =

({Ka,Kb,Kc}, {Ka,Kb,Kc,Kd,Ke}). For instance, we have that, for all I ∈ M ,

(I, 〈M,N〉, 〈M,N〉)(Ka) = t and (I, 〈M,N〉, 〈M,N〉)(Kd) = u. The interpretation pair

(M,N) is a three-valued MKNF model of K ; in fact, it is the well-founded MKNF model

of K .

It is known that in general the well-founded MKNF model may not exist.

Example 6

(Liu and You 2017) Let us consider K = (O,P), where O = (a ⊃ h)∧ (b ⊃ ¬h) and P

consists of

Ka← not b. Kb← not a.

Consider two partitions, ({Ka}, {Ka}) and ({Kb}, {Kb}). The corresponding MKNF

interpretation pairs turn out to be two-valued MKNF models of K . For example, for

the former the interpretation pair is (M,M), where M = {{a, h}}. Since these two-

valued MKNF models are not comparable w.r.t. undefinedness and there are no other

three-valued MKNF models of K , it follows that no well-founded MKNF model for K

exists.

5 Approximators for hybrid MKNF knowledge bases

In this section, we first show that the alternating fixpoint operator defined by Knorr

et al. (2011) can be recast as an approximator of AFT, and therefore can be applied to

characterize all three-valued MKNF models automatically and naturally. We show that

this approximator is a strong approximator. Since this approximator is not symmetric,

we have discovered a strong approximator for an important application without the

assumption of symmetry. Being strong guarantees that all consistent stable fixpoints are

preserved. At the end, we show how stable fixpoints of this approximator serve as the

candidates for three-valued MKNF models by a simple consistency test.
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Throughout this section, the underlying complete lattice is (2KA(K ),⊆) and the in-

duced product bilattice is (2KA(K ))2.

We define an operator on 2KA(K ), which is to be approximated by our approximators

introduced shortly.

Definition 5

Let K = (O,P) be a hybrid MKNF knowledge base. We define an operator TK on

2KA(K ) as follows: given I ⊆ KA(K ),

TK (I) = {Ka ∈ KA(K ) | OBO,I |= a}∪
{hd(r) | r ∈P : bd+(r) ⊆ I, K(bd−(r)) ∩ I = ∅}

If K is a positive hybrid MKNF knowledge base, the operator TK is monotone and has

a least fixpoint. If in addition O is an empty DL knowledge base, then TK is essentially

the familiar immediate consequence operator of van Emden and Kowalski (1976).

Knorr et al. (2011) defined two kinds of transforms with consistent partitions. For the

purpose of this paper, let us allow arbitrary partitions.

Definition 6

Let K = (O,P) be a hybrid MKNF knowledge base and S ∈ 2KA(K ). Define two forms

of reduct:

K /S = (O,P ′), where

P ′ = {Ka← bd+(r) | r ∈P : hd(r) = Ka,K(bd−(r)) ⊆ KA(K ) \ S}
K //S = (O,P ′′), where

P ′′ = {Ka← bd+(r) | r ∈P : hd(r) = Ka, K(bd−(r)) ⊆ KA(K ) \ S,OBO,S �|= ¬a}
We call K /S MKNF transform and K //S MKNF-coherent transform.

Since in both cases of K /S and K //S the resulting rule base is positive, a least

fixpoint in each case exists. Let us define ΓK (S) = lfp(TK /S) and Γ
′
K (S) = lfp(TK //S).

Then, we can construct two sequences Pi and Ni as follows:

P0 = ∅, . . . ,Pn+1 = ΓK (Nn), . . . ,PΩ =
⋃
Pi

N0 = KA(K ), . . . ,Nn+1 = Γ ′
K (Pn), . . . ,NΩ =

⋂
Ni

Intuitively, starting from P0 where no modal K-atoms are known to be true and N0

where all modalK-atoms are possibly true, Pi+1 computes the true modalK-atoms given

the set of possibly true modal K-atoms in Ni, and Ni+1 computes the set of possibly

true modal K-atoms given the K-atoms are known be true in Pi. Now let us place this

construction under AFT by formulating an approximator.

Definition 7

Let K = (O,P) be a hybrid MKNF knowledge base. We define an operator ΦK on

(2KA(K ))2 as follows: ΦK (T, P ) = (ΦK (T, P )1,ΦK (T, P )2), where

ΦK (T, P )1 = {Ka ∈ KA(K ) | OBO,T |= a}∪
{hd(r) | r ∈P : bd+(r) ⊆ T, K(bd−(r)) ∩ P = ∅}

ΦK (T, P )2 = {Ka ∈ KA(K ) | OBO,P |= a} ∪
{hd(r) | r ∈P : hd(r) = Ka, OBO,T �|= ¬a, bd+(r) ⊆ P,

K(bd−(r)) ∩ T = ∅}
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Intuitively, given a partition (T, P ), the operator ΦK (·, P )1, with P fixed, computes the

set of true modal K-atoms w.r.t. (T, P ) and operator ΦK (T, ·)2, with T fixed, computes

the set of modal K-atoms that are possibly true w.r.t. (T, P ).

Note that the least fixpoint of operator ΦK (·, P )1 corresponds to an element in the

sequence Pi, that is, if P in ΦK (·, P )1 is Nn, then lfp(ΦK (·, P )1) is Pn+1 = ΓK (Nn).

Similarly for operator ΦK (T, ·)2. In this way, the ΦK operator can be seen as a reformu-

lation of the corresponding alternating fixpoint operator; namely, ΦK (·, P )1 simulates

operator TK /P and ΦK (T, ·)2 simulates operator TK //T .

Proposition 2

ΦK is an approximator for TK .

Proof

Let us check ⊆p-monotonicity of ΦK . Let (T1, P1) ⊆p (T2, P2). From T1 ⊆ T2 and

P2 ⊆ P1, it is easy to verify that ΦK (T1, P1)1 ⊆ ΦK (T2, P2)1. For ΦK (T2, P2)2 ⊆
ΦK (T1, P1)2, note that ΦK (·, ·)2 is defined in terms of two subsets. For the first subset,

since P2 ⊆ P1, the set defined w.r.t. P2 is a subset of the set defined w.r.t. P1, that is,

{Ka ∈ KA(K ) | OBO,P2
|= a} is a subset of {Ka ∈ KA(K ) | OBO,P1

|= a}. For the

second subset, along with T1 ⊆ T2, the set defined w.r.t. (T2, P2) is a subset of the set

defined w.r.t. (T1, P1). Thus ΦK (T1, P1) ⊆p ΦK (T2, P2). Furthermore, ΦK approximates

TK , since by definition ΦK (I, I)1 ⊇ ΦK (I, I)2, and it follows that whenever ΦK (I, I)

is consistent, ΦK (I, I) = (TK (I),TK (I)).

Example 7

Consider a hybrid MKNF knowledge base K = (O,P), where O = c∧ (e ⊃ ¬r) and P

consists of

Kr ← Kc,Ki,not o,not l. Ke← . Ki← .

One can derive that, for the exact pair (T, T ) = ({Kc,Ki,Ke}, {Kc,Ki,Ke}),
ΦK (T, T ) = ({Kc,Ki,Ke,Kr,Ko,Kl}, {Kc,Ki,Ke}). Operator ΦK maps the exact

pair (T, T ) to an inconsistent one, and it is therefore not a symmetric approximator. Note

that the least stable fixpoint of ΦK is just the mapped inconsistent pair. It is interesting

to see the information revealed in this stable fixpoint – while it is inconsistent, it provides

consistent information on K-atoms, Kc,Ki, and Ke.

Our next goal is to show that the operator ΦK is a strong approximator under

a mild condition. First, let us introduce some notations. Recall that we use the no-

tation (D1(P ), D1(T )) = lfp(ΦK (·, P )1, lfp(ΦK (T, ·)2), where ΦK (·, P )1 is defined on

[∅, P ] and ΦK (T, ·)2 is defined on [T,KA(K )], and the notation (C1(P ), C2(T )) =

lfp(ΦK (·, P )1, lfp(ΦK (T, ·)2), where both ΦK (·, P )1 and ΦK (T, ·)2 are operators on

KA(K ). We now give notations to refer to intermediate results in a least fixpoint con-

struction (we define them here for D1(P ) and C2(T ); others are similar):

D↑0
1 (P ) = ∅ C↑0

2 (T ) = ∅
D↑k+1

1 (P ) = ΦK (D↑k
1 (P ), P )1 C↑k+1

2 (T ) = ΦK (T,C↑k
2 (T ))2 for all k ≥ 0.
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Proposition 3

Let K = (O,P) be a hybrid MKNF knowledge base and (T, P ) be a consistent stable

fixpoint of ΦK such that OBO,T is satisfiable. Then ΦK is a strong approximator for

(T, P ).

Proof

Let (T, P ) be a consistent stable fixpoint of ΦK such that OBO,T is satisfiable. We show

that ΦK is strong for (T, P ). We need to show (C1(P ), C2(T )) = (D1(P ), D2(T )). That

C1(P ) = D1(P ) is immediate since the monotonicity of the projection operators implies

that the construction of the least fixpoint in both cases starts with the same least element,

∅, and is carried out in tandem by the same mapping, and therefore terminates at the

same fixpoint.

That C2(T ) ⊆ D2(T ) is also easy to show by induction. The construction of the

least fixpoint by C2(T ) starts from ∅ and the one by D2(T ) starts from T . So for the

base case, C↑0
2 (T ) ⊆ D↑0

2 (T ). Then, one can verify by definition that for any (fixed)

k ≥ 0, by the monotonicity of the projection operators on their respective domains, that

C↑k
2 (T ) ⊆ D↑k

2 (T ) implies C↑k+1
2 (T ) ⊆ D↑k+1

2 (T ).

To show D2(T ) ⊆ C2(T ), we first prove by induction that D1(P ) ⊆ C2(T ). Since

D1(P ) = C1(P ) = T , this is to show T ⊆ C2(T ). The base case is immediate since

both least fixpoint constructions start with the same least element ∅. Assume D↑k
1 (P ) ⊆

C↑k
2 (T ) for any (fixed) k ≥ 0, and we show it for k+1. By definition, a new K-atom K a is

added to Dk+1
1 (P ) because (i) OBO,D↑k

1 (P ) |= a, or (ii) there is a rule r ∈P with hd(r) =

K a such that bd+(r) ⊆ D↑k
1 (P ) and K(bd−(r))∩P = ∅. If case (i) applies, by induction

hypothesis (I.H.), it follows OBO,C↑k
2 (T ) |= a, and thus K a ∈ C↑k+1

2 (T ). Otherwise, K a

is derived only by rules as in case (ii). Note that since D↑k
1 (P ) ⊆ T , case (ii) implies

OBO,T |= a. If OBO,T |= ¬a, then OBO,T is unsatisfiable, violating the assumption that

OBO,T is satisfiable. Thus, we must have OBO,T �|= ¬a; then the same rule applied in case

(ii) above applies in the construction of C↑k+1
2 , since the condition (bd+(r) ⊆ D↑k

1 (P )

and K(bd−(r)) ∩ P = ∅) becomes (bd+(r) ⊆ C↑k
2 (T ) and K(bd−(r)) ∩ T = ∅)), which

holds by I.H. and the fact that T ⊆ P . Thus, D1(P ) (= T ) ⊆ C2(T ).

Once we obtain T ⊆ C2(T ), we are ready to conclude that lfp(ΦK (T, ·)2) with the oper-

ator ΦK (T, ·)2 defined on domain [T,KA(K )] is a subset of lfp(ΦK (T, ·)2) with the oper-

ator ΦK (T, ·)2 defined on domain KA(K ). This is because the construction of the former

least fixpoint starts from the least element T of the domain [T,KA(K )], and the con-

struction of the latter is guaranteed to reach a set T ′ ⊇ T , and by induction on both

sequences in parallel, we have D2(T ) ⊆ C2(T ).

Stable fixpoints of the operator ΦK can be related to three-valued MKNF models of

K in the following way.

Theorem 5

Let K = (O,P) be a hybrid MKNF knowledge base and (T, P ) be a partition. Let

further (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P }). Then, (M,N) is a three-valued

MKNF model of K iff (T, P ) is a consistent stable fixpoint of ΦK and OBO,lfp(ΦK (·,T )1)

is satisfiable.
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Note that in the formulation of approximator ΦK , stable fixpoints are partitions that

provide candidate interpretation pairs for three-valued MKNF models. The extra condi-

tion that OBO,lfp(ΦK (·,T )1) is satisfiable means that even if we make all not-atoms notφ

true when φ �∈ T , in the construction of lfp(ΦK (·, T )1), it still does not cause contra-

diction with the DL knowledge base O. This provides a key insight in the semantics of

hybrid MKNF knowledge bases.

Notice also that this theorem provides a naive method, based on guess-and-verify, to

compute three-valued MKNF models of a given hybrid MKNF knowledge base K – guess

a consistent partition (T, P ) of KA(K ) and check whether (T, P ) is a stable fixpoint of

ΦK and whether OBO,lfp(ΦK (·,T )1) is satisfiable. Observe that the complexity of checking

for one guessed partition is polynomial if the underlying DL is polynomial.

Proof

(⇐) Assume that (T, P ) is a consistent stable fixpoint of ΦK and OBO,lfp(ΦK (·,T )1) is

satisfiable. Let θ(x) denote lfp(ΦK (·, x)1), given x ⊆ KA(K ). Thus, OBO,lfp(ΦK (·,T )1)

is often written as OBO,θ(T ). By the definition of the operator ΦK (cf. Definition 7),

it can be seen that ΦK (·, T )1 coincides with ΦK (T, ·)2 except for the extra condition

OBO,T �|= ¬a (where hd(r) = Ka for some r ∈P) in the definition of the latter. Note that

the operator ΦK (T, ·)2 is defined on KA(K ). It then follows lfp(ΦK (T, ·)2) ⊆ θ(T ). Since
(T, P ) is a stable fixpoint of ΦK , lfp(ΦK (T, ·)2) = P and thus P ⊆ θ(T ). Then, that

OBO,θ(T ) is satisfiable implies that OBO,P is satisfiable, and because (T, P ) is consistent

and thus T ⊆ P , OBO,T is satisafiable as well. It follows that the pair

(M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P })
is an MKNF interpretation pair because ∅ ⊂ N ⊆M . As shown by Knorr et al . (2011),

for any Kξ ∈ KA(K ), Kξ ∈ T iff Kξ evaluates to t (under (M,N)), Kξ �∈ P iff Kξ

evaluates to f , and otherwise Kξ evaluates to u (also see the review of this property in

Section 4.2, or Liu and You 2017 for more details).

We now show that (M,N) is a three-valued MKNF model of K . First we show that

(M,N) satisfies π(K ). Since OBO,T = {π(O)} ∪ {ξ | Kξ ∈ T} and OBO,P = {π(O)} ∪
{ξ | Kξ ∈ P}, it follows (M,N) |= Kπ(O). Now consider any rule r ∈ P. Let hd(r) =

Ka. By the definition of ΦK (T, P )1, if bd
+(r) ⊆ T and K(bd−(r))∩P = ∅, then Ka ∈ T ;

for ΦK (T, P )2, if bd
+(r) ⊆ P , K(bd−(r)) ∩ T = ∅, and OBO,T �|= ¬a, then Ka ∈ P . The

case that hd(r) evaluates to t (under (M,N)) is automatic. If hd(r) evaluates to u, that

is, Ka ∈ P and Ka �∈ T , then bd(r) evaluates to u or f , since if bd(r) evaluates to t,

Ka ∈ lfp(ΦK (·, P )1)(= T ), resulting in a contradiction. If hd(r) evaluates to f , then

OBO,T |= ¬a, in which case bd(r) must evaluate to f as well, as otherwise Ka ∈ θ(T )
(= lfp(ΦK (·, T )1)) and thus OBO,θ(T ) is unsatisfiable, leading to a contradiction. As this

proof applies to all rules in P, we have (M,N) |= π(P), and with (M,N) |= Kπ(O),

(M,N) |= π(K ).

Next, assume for the sake of contradiction (M,N) is not a three-valued MKNF model

of K . Then there exists a pair (M ′, N ′) with M ⊆M ′ and N ⊆ N ′, where at least one

of the inclusions is proper and M ′ = N ′ if M = N , such that

(I, 〈M ′, N ′〉, 〈M,N〉)(π(K )) = t (3)
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for some I ∈M ′. Let (T ′, P ′) be induced by (M ′, N ′), that is,

(M ′, N ′) = ({I | I |= OBO,T ′}, {I | I |= OBO,P ′})
Clearly, T ′ ⊆ T and P ′ ⊆ P , where at least one of the inclusions is proper and T ′ = P ′ if
T = P . We show that (I, 〈M ′, N ′〉, 〈M,N〉)(π(K )) �= t (independent of I), which leads

to a contradiction.

Consider the case where T ′ ⊂ T . Let the sequence of intermediate sets of K-atoms in

the construction of lfp(ΦK (·, P )1) be S0, . . . , Sn(= T ). Assume step i (0 ≤ i ≤ n − 1)

is the first iteration in which at least one K-atom in T \ T ′, say Ka, is derived. By the

definition of ΦK (T, P )1, the derivation of Ka is either by OBO,Si
|= a, or by a rule

r ∈ P such that hd(r) = Ka, bd+(r) ⊆ Si, and K(bd−(r)) ∩ P = ∅. For the latter

case, by the assumption that i is the first iteration to derive any K-atoms in T \ T ′,
Si ⊆ T ′. It follows that bd(r) evaluates to t under (I, 〈M ′, N ′〉, 〈M,N〉) (independent of
I), but its head hd(r) evaluates to either f or u; thus rule r is not satisfied, resulting in a

contradiction to equation (3). If no K-atom in T \T ′ is ever derived by a rule in iteration

i, then it must be OBO,Si
|= a, and along with Si ⊆ T ′ and OBO,T ′ �|= a, we derive a

contradiction.

For the case where P ′ ⊂ P , the proof is similar. Consider the sequence of intermediate

sets of K-atoms Q0, . . . , Qn(= P ) in the iterative construction of lfp(ΦK (T, ·)2). Let
j (0 ≤ j ≤ n− 1) be the first iteration in which at least one K-atom in P \P ′ is derived
(thus Qj ⊆ P ′). Let Ka be such a K-atom. Assume it is derived by a rule r ∈ P with

hd(r) = Ka, such that OBO,T �|= ¬a, bd+(r) ⊆ Qj , and K(bd−(r)) ∩ T = ∅. Then, the
body of rule r evaluates to t or u in (I, 〈M ′, N ′〉, 〈M,N〉). Since Ka �∈ P ′, hd(r) = Ka

evaluates to f, and thus (I, 〈M ′, N ′〉, 〈M,N〉)(π(r)) �= t. If in iteration j no fresh K-

atoms are derived by rules, then we must have OBO,Qj
|= a, and along with Qj ⊆ P ′ and

OBO,P ′ �|= a, we reach a contradiction. Note that the above proof is naturally applicable

when T ′ = P ′ because T = P , in which case evaluation reduces to two-valued. As both

cases lead to a contradiction, (M,N) is therefore a three-valued MKNF model of K .

(⇒) Let (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P }) be a three-valued MKNF model

of K . Recall again that given an MKNF interpretation pair (M ′, N ′), there exists a parti-
tion (X,Y ) induced by (M ′, N ′), in that (M ′, N ′) = ({I | I |= OBO,X}, {I | I |= OBO,Y }),
such that for any Ka ∈ KA(K ), Ka ∈ X iff Ka evaluates to t (under (M ′, N ′)),
Ka �∈ Y iff Ka evaluates to f , and otherwise Ka evaluates to u. When (M,N) is a

three-valued MKNF model of K , the partition induced by (M,N) is just (T, P ) such

that (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P }). Since (M,N) is a three-valued

MKNF model, (T, P ) is consistent.

We now show that (T, P ) is a stable fixpoint of ΦK . First, we show that (T, P ) is a

fixpoint of ΦK . By definition, T ⊆ ΦK (T, P )1. Assume T ⊂ ΦK (T, P )1 and let Ka �∈ T
and Ka ∈ ΦK (T, P )1. Then there exists a rule r with hd(r) = Ka such that Ka can be

derived due to satisfied body of rule r. It then follows (M,N) �|= π(r), contradicting to

the three-valued MKNF model condition; thus T = ΦK (T, P )1. Similarly, we can show

P = ΦK (T, P )2. If (T, P ) is not a stable fixpoint, then either T �= lfp(ΦK (·, P )1) or

P �= lfp(ΦK (T, ·)2). For the former case, since T is a fixpoint of ΦK (·, P )1, there exists

T ′ ⊂ T such that T ′ = lfp(ΦK (·, P )1). Consider the partition (T ′, P ), for which we can

construct an MKNF interpretation pair (M ′, N), whereM ′ = {I | I |= OBO,T ′} andM ⊂
M ′. It can be checked that (I, 〈M ′, N〉, 〈M,N〉)(π(K )) = t, for any I ∈M ′. If M = N ,
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one can verify that (I, 〈M ′,M ′〉, 〈M,M〉)(π(K )) = t for any I ∈ M ′. Thus, (M,N) is

not a three-valued MKNF model of K , a contradiction, and thus T = lfp(ΦK (·, P )1).
Similarly, we can show P = lfp(ΦK (T, ·)2). Therefore, (T, P ) is a stable fixpoint of ΦK ,

and a consistent one.

Finally, since (M,N) is a three-valued MKNF model of K , in the construction

of lfp(ΦK (T, ·)2) the extra condition OBO,T �|= ¬a in the definition of ΦK (T, ·)2
always holds whenever the body of the relevant rule evaluates to t. It follows

P = lfp(ΦK (·, T )1)(= θ(T )), and since OBO,P is satisfiable, OBO,θ(T ) is satisfiable

as well.

Example 8

Consider a hybrid MKNF knowledge base K = ({¬a},P), where P consists of

Ka← Kb. Kb← not b.

The least stable fixpoint of ΦK is (T, P ) = (∅, {Kb}), which is consistent but does not

correspond to a three-valued MKNF model since OB{¬a},lfp(ΦK (·,T )1) is unsatisfiable.

6 A richer approximator for the well-founded semantics

A question arises whether richer approximators for MKNF knowledge bases exist. For

any two approximators A and B on L2, A is richer than B (or more precise than B,

in the terminology of Denecker et al . 2004), denoted B ≤p A, if for all (x, y) ∈ L2,

B(x, y) ≤p A(x, y).

There is a practical motivation for the question. Let (x, y) and (x′, y′) be the least

stable fixpoints of B and A respectively. That A is richer than B means (x, y) ≤p (x′, y′).
If A is strictly richer than B, and if (x′, y′) indeed corresponds to the well-founded

MKNF model, then (x, y) cannot possibly correspond to the well-founded MKNF model.

In this case, while (x′, y′) can be computed iteratively for A, it cannot be computed

iteratively for B. Then, more complex reasoning method must be applied to compute the

well-founded MKNF model. We now define such a richer approximator.

Definition 8

Let K = (O,P) be a hybrid MKNF knowledge base. Define the operator ΨK on

(2KA(K ))2 as follows: ΨK (T, P ) = (ΨK (T, P )1,ΨK (T, P )2), where

ΨK (T, P )1 = ΦK (T, P )1
ΨK (T, P )2 = {Ka ∈ KA(K ) | OBO,P |= a} ∪
{hd(r) | r ∈P : hd(r) = Ka, OBO,T �|= ¬a, bd+(r) ⊆ P, K(bd−(r)) ∩ T = ∅,
� ∃r′ ∈P : Kb← bd(r′) is positive, where Ka ∈ bd(r′), s.t. OBO,T |= ¬b, bd(r′)\
{Ka} ⊆ T}

Operator ΨK differs from ΦK in the second projection operator, with an extra con-

dition for deriving Ka (the last two lines in the definition above), which says that if for

some positive rule r′ with Kb as the head and Ka in the body, the objective atom b is

already false and the rule’s body excluding Ka is already true, then, since the rule must

be satisfied, Ka must be false and thus should not be derived as possibly true. Notice

that this is like embedding the unit propagation rule in automated theorem proving into

an approximator.
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Example 9

Let K = ({¬b},P), where P is

Kb← Ka,Ke. Ke← not p. Ka← not c. Kc← not a.

The least stable fixpoint of ΦK is (T, P ) = ({Ke}, {Ke,Ka,Kc}), while the least stable
fixpoint of operator ΨK is (T ′, P ′) = ({Ke,Kc}, {Ke,Kc}), which corresponds to the

well-founded MKNF model of K . Note that (T ′, P ′) is also a stable fixpoint of ΦK ; but

because it is not the least, it cannot be computed by the standard iterative process.

Proposition 4

Operator ΨK is an approximator for TK .

Proof

We can verify that ΨK is ⊆-monotone on (2KA(K ))2. Let (T1, P1) ⊆p (T2, P2). That

ΨK (T1, P1)1 ⊆ ΨK (T2, P2)1 is immediate by definition. To show ΨK (T2, P2)2 ⊆
ΨK (T1, P1)2, we check all conditions in the definition of ΨK (T, P )2; in particular, let us

consider the following conditions in the definition of ΨK (T, P )2:

OBO,T �|= ¬a (4)

� ∃r′ ∈P : Kb← bd(r′) is positive, where Ka ∈ bd(r′),

s.t. OBO,T |= ¬b and bd(r′) \ {Ka} ⊆ T (5)

which may block a K-atom K a in the definition (cf. the second subset in the definition)

to be included. There are three conditions in these expressions (one in (4) and two in (5))

that are determined by the following relationships under (T1, P1) ⊆p (T2, P2): OBO,T2
|=

OBO,T1
and T2 |= T1. It is then easy to check that ΨK (T2, P2)2 ⊆ ΨK (T1, P1)2, and

we therefore have ΨK (T1, P1) ⊆p ΨK (T2, P2). Furthermore, ΨK approximates TK ,

since by definition ΨK (I, I)1 ⊇ ΨK (I, I)2, and it follows that whenever ΨK (I, I) is

consistent, ΨK (I, I) = (TK (I),TK (I)).

We show that ΨK is more precise than ΦK .

Proposition 5

Given any hybrid MKNF knowledge base K , ΦK ⊆p ΨK .

Proof

This is due to the extra condition in the definition of ΨK (T, ·)2, which is not present in the

definition of ΦK (T, ·)2. A stronger condition produces a subset for the second component

of the resulting pair. Thus, if (T1, P1) ⊆p (T2, P2), from ΨK (T, x)1 = ΦK (T, x)1 for any

x ⊆ KA(K ), it follows that ΦK (T1, P1) ⊆p ΨK (T2, P2).

Operator ΨK is strong as well.

Proposition 6

Let K = (O,P) be a hybrid MKNF knowledge base and (T, P ) be a consistent stable

fixpoint of ΨK such that OBO,T is satisfiable. Then ΨK is a strong approximator for

(T, P ).
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Proof

Let (T, P ) be a consistent stable fixpoint of ΨK such that OBO,T is satisfiable. We need

to prove (C1(P ), C1(T )) = (D1(P ), D2(T )). The proof is identical to that of Proposition

3 except for the proof of D1(P ) ⊆ C2(T ), which needs to be updated according to

the definition of operator ΨK (T, ·)2. Recall that the goal is to show T ⊆ C2(T ). The

base case is again immediate. Assume D↑k
1 (P ) ⊆ C↑k

2 (T ) for any (fixed) k ≥ 0, and

we show it for k + 1. By definition, a K-atom K a is added to Dk+1
1 (P ) because (i)

OBO,D↑k
1 (P ) |= a, or (ii) there is a rule r ∈ P with hd(r) = K a such that bd+(r) ⊆

D↑k
1 (P ) and K(bd−(r)) ∩ P = ∅. Again, if case (i) applies, by induction hypothesis

(I.H.), OBO,C↑k
2 (T ) |= a and thus K a ∈ C↑k+1

2 (T ). Otherwise, K a is derived by a rule r,

as in case (ii). Since D↑k
1 (P ) ⊆ T and K(bd−(r))∩P = ∅, case (ii) implies OBO,T |= a. If

OBO,T |= ¬a, then OBO,T is unsatisfiable, which is a contradiction. Thus, we must have

OBO,T �|= ¬a. Now consider the condition

� ∃r′ ∈P : Kb← bd(r′) is positive, where Ka ∈ bd(r′), s.t. OBO,T |=
¬b, bd(r′) \ {Ka} ⊆ T

in the definition of ΨK (T, ·)2. By definition, Ka is not derived by rule r in applying

ΨK (T, ·)2 if such a rule r′ exists. Since OBO,T |= a, from bd(r′) \ {Ka} ⊆ T we derive

bd(r′) ⊆ T , and therefore Kb can be derived by rule r′ resulting in Kb ∈ T , but at

the same time we have OBO,T |= ¬b, and thus OBO,T is unsatisfiable, a contradiction.

Hence, such a rule r′ does not exist. Therefore, the same rule applied in case (ii) for

D↑k+1
1 above applies in the construction of C↑k+1

2 , since the condition (bd+(r) ⊆ D↑k
1 (P )

and K(bd−(r)) ∩ P = ∅) becomes (bd+(r) ⊆ C↑k
2 (T ) and K(bd−(r)) ∩ T = ∅)), which

holds by I.H. and T ⊆ P . Thus, D1(P ) (= T ) ⊆ C2(T ).

Finally, like Theorem 5, the stable fixpoints of the operator ΨK can be related to

three-valued MKNF models of K as well.

Theorem 6

Let K = (O,P) be a hybrid MKNF knowledge base and (T, P ) be a partition. Let

further (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P }). Then, (M,N) is a three-valued

MKNF model of K iff (T, P ) is a consistent stable fixpoint of ΨK and OBO,lfp(ΨK (·,T )1)

is satisfiable.

Proof

The proof here follows the structure of the proof of Theorem 5, but with critical differ-

ences in dealing with approximator ΨK . If a part of proof of Theorem 5 can be applied,

we will make a reference to it, otherwise we will give a detailed proof even if parts of it

repeat the same from the proof for Theorem 5.

(⇐) Assume that (T, P ) is a consistent stable fixpoint of ΨK and OBO,lfp(ΨK (·,T )1) is

satisfiable. Let θ(x) denote lfp(ΨK (·, x)1), given x ⊆ KA(K ). Let P ∗ = lfp(ΦK (T, ·)2),
then by the definition of operator ΦK , P ∗ ⊆ θ(T ), and by Proposition 5, ΨK (T, P ∗)2 ⊆
ΦK (T, P ∗)2, that is, ΨK (T, P ∗)2 ⊆ P ∗ and thus P ∗ is a pre-fixpoint of ΨK (T, ·)2;
therefore P ⊆ P ∗ and then P ⊆ θ(T ). Since OBO,θ(T ) is satisfiable, it follows that OBO,P

is satisfiable, and because T ⊆ P , OBO,T is also satisfiable. It follows that the pair

(M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P })
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is an MKNF interpretation pair because ∅ ⊂ N ⊆ M . Recall the property by Knorr

et al . (2011): given the above interpretation pair, for any Kξ ∈ KA(K ), Kξ ∈ T iff Kξ

evaluates to t (under (M,N)), Kξ �∈ P iff Kξ evaluates to f , and otherwise Kξ evaluates

to u.

We show that (M,N) is a three-valued MKNF model of K . First we show that (M,N)

satisfies π(K ). The proof that (M,N) |= Kπ(O) is straightforward. For rules in P, recall

the following definition of ΨK (x, y)2:

ΨK (x, y)2 = {Ka ∈ KA(K ) | OBO,y |= a} ∪
{hd(r) | r ∈P : hd(r) = Ka, OBO,x �|= ¬a, bd+(r) ⊆ y, K(bd−(r)) ∩ x = ∅,
� ∃r′ ∈P : Kb← bd(r′) is positive, where Ka ∈ bd(r′), s.t. OBO,x |= ¬b, bd(r′)
\ {Ka} ⊆ x}

where the only difference from ΦK is the extra condition in the last two lines above. It

can be checked that this extra condition does not effect the proof used for Theorem 5.

Namely, for any rule r ∈P, it is satisfied if hd(r) evaluates to t; if hd(r) evaluates to u,

which means Ka ∈ P and Ka �∈ T , then bd(r) evaluates to u or f , since if bd(r) evaluates

to t, Ka ∈ lfp(ΨK (·, P )1)(= T ), resulting in a contradiction; if hd(r) evaluates to f ,

then OBO,T |= ¬a, in which case bd(r) evaluates to f as well, as otherwise Ka ∈ θ(T )
(= lfp(ΨK (·, T )1)) and thus OBO,θ(T ) is unsatisfiable, again a contradiction. Hence, we

conclude that (M,N) |= π(P), and therefore (M,N) |= π(K ).

Now, assume for the sake of contradiction that (M,N) is not a three-valued MKNF

model of K . Then there exists an MKNF interpretation pair (M ′, N ′) with M ⊆ M ′

and N ⊆ N ′, where at least one of the inclusions is proper and M ′ = N ′ if M = N , such

that

(I, 〈M ′, N ′〉, 〈M,N〉)(π(K )) = t (6)

for some I ∈M ′. Let (T ′, P ′) be induced by (M ′, N ′), that is,

(M ′, N ′) = ({I | I |= OBO,T ′}, {I | I |= OBO,P ′})
Clearly, T ′ ⊆ T and P ′ ⊆ P , where at least one of the inclusions is proper and T ′ = P ′ if
T = P . We show that (I, 〈M ′, N ′〉, 〈M,N〉)(π(K )) �= t (independent of I), which leads

to contradiction.

Consider the case where T ′ ⊂ T . As in the proof of Theorem 5, this part

of proof relies on the fixpoint construction of lfp(ΨK (·, P )1). Since by definition

ΨK (T, P )1 = ΦK (T, P )1, the construction of lfp(ΨK (·, P )1) is identical to that of

lfp(ΦK (·, P )1), the same proof of Theorem 5 for this part can be applied here, which

shows (I, 〈M ′, N ′〉, 〈M,N〉)(π(K )) �= t.

For the case of P ′ ⊂ P , consider the sequence of intermediate sets of K-atoms

Q0, . . . , Qn(= P ) in the iterative construction of lfp(ΨK (T, ·)2). Let j (0 ≤ j ≤ n − 1)

be the first iteration in which at least one K-atom, say Ka ∈ P \ P ′, is derived

(thus Qj ⊆ P ′). Assume further it is derived by a rule r ∈ P with hd(r) = Ka,

such that OBO,T �|= ¬a, bd+(r) ⊆ Qj , K(bd−(r)) ∩ T = ∅, and � ∃r′ ∈ P : Kb ←
bd+(r′) which is positive, where Ka ∈ bd(r′), s.t. OBO,T |= ¬b and bd+(r′) \ {Ka} ⊆ T .
Then, it can be seen that the body of rule r evaluates to t or u in (I, 〈M ′, N ′〉, 〈M,N〉).
Since Ka �∈ P ′, hd(r) = Ka evaluates to f, and thus (I, 〈M ′, N ′〉, 〈M,N〉)(π(r)) �= t. If
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in iteration j no fresh K-atoms are derived by rules, then we must have OBO,Qj
|= a,

and along with Qj ⊆ P ′ and OBO,P ′ �|= a, we have a contradiction. Note that the above

proof naturally applies when T ′ = P ′ because of T = P , in which case evaluation reduces

to two-valued. We therefore conclude that (M,N) is a three-valued MKNF model of K .

(⇒) Let (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,P }) be a three-valued MKNF model

of K . As mentioned earlier, the following property holds: for any Kξ ∈ KA(K ), Kξ ∈ T
iff Kξ evaluates to t (under (M,N)), Kξ �∈ P iff Kξ evaluates to f , and otherwise Kξ

evaluates to u.

By Theorem 5, (T, P ) is a consistent stable fixpoint of ΦK and OBO,lfp(ΦK (·,T )1) is

satisfiable. By definition, ΨK (·, x)1 is the same operator as ΦK (·, x)1 for all x ⊆ KA(K ),

and it follows OBO,lfp(ΨK (·,T )1) is also satisfiable and T = lfp(ΨK (·, P )1). Thus, for

(T, P ) to be a stable fixpoint of ΨK , we only need to show P = lfp(ΨK (T, ·)2). Let P ′ =
lfp(ΨK (T, ·)2). By definition (due to the extra condition in the definition of ΨK (T, ·)2),
P ′ ⊆ P . For a contradiction, assume P ′ ⊂ P . Let Ka ∈ P and Ka �∈ P ′. Then, by
the definition of ΨK (T, ·)2, the reason for Ka �∈ P ′ is that, for any rule r ∈ P with

hd(r) = Ka such that OBO,T �|= ¬a, bd+(r) ⊆ P , and K(bd−(r)) ∩ T = ∅, there exists

a rule r′ ∈ P : Kb ← bd+(r′) which is positive, where Ka ∈ bd(r′) s.t. OBO,T |= ¬b
and bd+(r′) \ {Ka} ⊆ T . If Ka ∈ T , then OBO,T |= b and OBO,T is thus unsatisfiable,

contradicting to the fact that (M,N) is an MKNF interpretation pair. If Ka �∈ T , since
Ka ∈ P , the truth value of Ka is undefined in (M,N), and thus r′ is not satisfied by

(M,N); again a contradiction. Thus, P ′ = P , and therefore (T, P ) is a stable fixpoint

of ΨK .

7 Summary, related work and remarks

The primary goal of this paper is to show that the alternating fixpoint operator formu-

lated by Knorr et al. (2011) for hybrid MKNF knowledge bases is in fact an approximator

of AFT, which can therefore be applied to characterize the well-founded semantics, two-

valued semantics, as well as three-valued semantics for hybrid MKNF knowledge bases,

and enables a better understanding of the relationships between these semantics in terms

of a lattice structure.

Since this alternating fixpoint operator can map a consistent state to an inconsistent

one, the desire to support operators like this motivated us to develop a mild generalization

of AFT. As a result, all approximators defined on the entire product bilattice are well

defined without the assumption of symmetry as required in the original AFT. In this

paper, we studied the subtle issue whether consistent stable fixpoints can be preserved in

the generalized AFT, and showed that for both approximators formulated in this paper

for hybrid MKNF knowledge bases, consistent stable fixpoints are indeed carried over.

The alternating fixpoint construction by Knorr et al. aims at an iterative computation

of the well-founded model. In Liu and You (2017), this construction is related to a notion

called stable partition which exhibits properties corresponding to three-valued MKNF

models. Based on the notion of stable partition, the relations between the alternating

fixpoint construction and three-valued MKNF models are established. In this work, we

do not use stable partition, instead we characterize three-valued MKNF models directly

in terms of stable fixpoints of two appropriate approximators. In this way, we are able to

show that the two approximators that are defined on the entire product bilattice capture
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the consistent stable fixpoints that lead to three-valued MKNF models, even though

these approximators may have inconsistent stable fixpoints.

The only other work that treats inconsistency in AFT explicitly is Bi et al . (2014),

where in case of inconsistency, instead of computing (lfp(A(·, v)1), lfp(A(u, ·)2)) on

the respective domains [⊥, v] and [u,	], one computes (lfp(A(·, v)1), A(u, v)2) because

lfp(A(u, ·)2) may no longer be defined on [u,	]. By computing A(u, v)2 for the second

component of the resulting pair, non-minimal elements may be computed as sets of pos-

sibly true atoms when inconsistency arises.

The possibility of accommodating inconsistencies in AFT was first raised in Denecker

et al . (2000). The precision order when applied to inconsistent pairs can be regarded

as an order that measures the “degree of inconsistency”, or “degree of doubt”. If two

inconsistent pairs satisfy (x, y) ≤p (x′, y′), the latter can be viewed at least as inconsis-

tent as the former. In a more general context, researches have been trying to address

questions like “where is the inconsistency”, “how severer is it”, and how to make changes

to an inconsistent theory (see, e.g., Bona and Hunter 2017). A deeper understanding of

inconsistencies in the context of AFT presents an interesting future direction.

In answer set programming, researchers have studied paraconsistent semantics. A no-

ticeable example is the semi-stable semantics proposed by Sakama and Inoue (1995)

for extended disjunctive logic programs, where a program transformation, called epis-

temic transformation, is introduced which embodies a notion of “believed to hold”. The

semantics is then characterized and enhanced by Amendola et al. 2016 using pairs of

interpretations in the context of the logic of here-and-there (Pearce and Valverde 2008).

For hybrid MKNF knowledge bases, Kaminski et al. (2015) propose a five-valued and a

six-valued semantics for paraconsistent reasoning with different kinds of inconsistencies.

An interpretation in this context is called a p-interpretation which evaluates a formula

to true, false, or inconsistent. Since these semantics are formulated using the semantic

structure consisting of pairs of interpretations, it is interesting to see whether appro-

priate approximators can be formulated to characterize intended models (of course, for

the non-disjunctive case only since current AFT does not support disjunctive rules). In

particular, since the alternating fixpoint constructions are already defined for Kamin-

ski et al.’s five-valued and six-valued semantics, it may be possible to recast such an

alternating fixpoint operator by an approximator. If successful, an interesting result

would be that the underlying approximator defines not only the well-founded seman-

tics but also five-valued and six-valued stable semantics. Furthermore, like Ji et al .

(2017), due to the lattice structure of stable fixpoints, it may be possible to develop

a DPLL-style solver for these knowledge bases based on a computation of unfounded

atoms.

For disjunctive hybrid MKNF knowledge bases, the state-of-the-art reasoning method

is still based on guess-and-verify as formulated by Motik and Rosati (2010). The lack

of conflict-directed reasoning methods has prevented the theory from being tested in

practice. Before any attempt to build a solver, one critical issue to study is the notion of

unfounded sets for disjunctive hybrid MKNF knowledge bases, which has recently been

investigated by Killen and You (2021), and another one is to develop a conflict-driven

search engine for computing MKNF models.
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