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Abstract. Two first-order logic theories are definitionally equivalent if and only if there
is a bijection between their model classes that preserves isomorphisms and ultraproducts
(Theorem 2). This is a variant of a prior theorem of van Benthem and Pearce. In Example
2, uncountably many pairs of definitionally inequivalent theories are given such that their model
categories are concretely isomorphic via bijections that preserve ultraproducts in the model
categories up to isomorphism. Based on these results, we settle several conjectures of Barrett,
Glymour and Halvorson.

§1. Introduction.

1.1. Classical definitional equivalence. The subject of the present paper is the notion
of (classical) definitional equivalence of first-order logic theories. There are various
definitions of this notion scattered in the literature. Most of these define the notion
for theories with disjoint languages only. We use the version defined in [22, definition
11], which does not require the languages to be disjoint. According to this definition,
definitional equivalence of theories is the symmetric and transitive closure of the
relation “definitional extension.” This notion of definitional equivalence is shown
to be the same as the more prevailing ones for disjoint languages. For example, it
coincides with inter-translatability [22, theorem 8] and “having a joint definitional
extension” [22, theorem 4]. We believe that making the vocabularies of theories
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2 HAJNAL ANDRÉKA ET AL.

disjoint is a superfluous administrative task. Besides, making vocabularies disjoint
masks important intuitive features in many cases. This would be the case in the present
paper, too, e.g., in Example 2 and Theorem 3.

Definitional equivalence is also defined by means of a bijection between two model
classes in [17, p. 56]. According to this definition, two theories are definitionally
equivalent when there is a bijection between their model classes such that connected
models are definitionally equivalent via the same definitions. This property is called
“model mergeability” in [22, definition 13] and is proved to coincide with definitional
equivalence as used in this paper [22, theorem 7]. One of the advantages of model
mergeability is that it is a kind of language-free in so far that it is insensitive to whether
the signatures of the two theories overlap or not. Model mergeability is a mix of
semantic and syntactic features.

A purely semantic characterization of definitional equivalence is given in [12], as
follows. Two theories on disjoint languages are definitionally equivalent if and only
if there is a third theory on the union of their languages such that both reduct-
formation functions, from the model class of the third theory to the model classes of
the two theories, respectively, are bijections. For variants of this characterization, see [7,
corollary 2] and [23, claim 4]. This semantic characterization is in terms of the concrete
reduct-formation functions between model classes. Theorem 2 in the present paper is
a similar characterization for definitional equivalence: two theories are definitionally
equivalent if and only if there is a bijection between their model classes that preserves
universes, isomorphisms and ultraproducts. This is a purely semantic characterization
of definitional equivalence similar to the one in [17] and different from the one in
[12]. The difference is that no third theory is used and arbitrary function is used in
place of the concrete reduct-formation one. The idea of using functions that preserve
isomorphisms and ultraproducts already occurs in [27] where relative interpretability
between first-order theories is characterized in place of definitional equivalence. For
more on this, see Remark 5.

1.2. Philosophy of science. Definability theory is used quite extensively in recent
philosophy of science papers (see, for example, [9, 13, 15, 19, 29]). In philosophy
of science, just as in mathematical logic, several notions of equivalence are used for
comparing theories. One is many-sorted definitional equivalence [4, 16, 24], which is
also called many-dimensional definitional equivalence [18, 28] or Morita-equivalence
[8, 15]. Many-sorted definitional equivalence allows one to re-define the universes
of models in a theory; therefore, it is rather important. To distinguish definitional
equivalence from many-sorted one, we sometimes call it classical definitional
equivalence. Another version of equivalence of theories is bi-interpretability (see [18,
28]). Categorical equivalence of theories [8, 29] is perhaps the weakest among the
equivalences used for comparing theories.

It is shown in [8] that classical definitional equivalence, many-sorted definitional
equivalence and categorical equivalence of theories are strictly weaker in this
order.1 Example 2 in this paper contains pairs of theories on finite signatures that
are categorically equivalent but not many-sorted definitionally equivalent (nor bi-
interpretable). With this, we answer Barrett and Halvorson’s questions [8, question
6.1] and [6, question 1, p. 77] concerning the importance of infinite signature in their

1 It is not clear to us how bi-interpretability fits into this sequence.
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counterexample. In this context, it is natural to ask how much weaker categorical
equivalence is than many-sorted definitional equivalence. Theorem 2 and especially its
corollaries Theorem 4 and Corollary 3 in the present paper provide a property P of
functors such that a functor establishing the categorical equivalence satisfies P if and
only if the theories are classically definitionally equivalent. This property is that the
functor is concrete and preserves ultraproducts. This is an answer to [7, the question
below corollary 2], [6, question 2] and [29, note 23].

The investigations in the present paper are also relevant to the so-called syntax–
semantics debate in philosophy of science. The issue here is, roughly, whether it is
better to consider theories occurring in science as collections of linguistical objects
(e.g., sentences of a given language), or as collections of structural objects of some
kind. For a summary of the debate, see [20, 23]. In this context, the need for a
semantic characterization of definitional equivalence was raised in [14]. Glymour [13]
pointed out that de Bouvère [12] contains such a characterization. Theorem 2 in the
present paper is another such semantic characterization. An advantage of Theorem 2
is that it gives intuition about what properties of theories are preserved by definitional
equivalence. Namely, by Theorem 2, a property of a theory is preserved when it can be
expressed in terms of universes, isomorphisms and ultraproducts of models. Glymour
[13, p. 296] conjectures that each of the following four properties is preserved by
classical definitional equivalence: having a one-element model, the model class being
closed under substructures, the model class being closed under unions of chains, and
having an equational axiomatization. Of these, the first property is clearly preserved by
definitional equivalence because it is expressed by using the universes of the models. We
show, after Theorem 3, that neither one of the remaining three properties is preserved
by classical definitional equivalence.

Halvorson [14, section 7] proposes the programme to investigate what structure a
model class naturally has and Glymour [13, p. 297] appreciates this programme. This
programme involves to endow the model class of a theory in such a way that from this
structure on the model class, the theory can be recovered up to definitional equivalence.
For propositional logic, Stone duality provides such a structure in the form of the Stone
topology on the model class. Stone duality has been generalized to first-order logic by
several authors, e.g., Makkai [26] and Awodey and Forssell [5]. Halvorson points out
the relevance of Stone duality for his programme and he mentions [5, 26]. Now, from the
model-structures proposed in these two papers, the first-order theory can be recovered
only up to the weaker many-sorted definitional equivalence. Theorem 2 in the present
paper suggests a structure on the model classes, we call this concrete ultracategory,
from which a theory can be recovered up to classical definitional equivalence (and not
only up to many-sorted definitional equivalence). See Remark 7. We do not know of
any other structure proposed in the literature on the model classes from which a theory
can be recovered up to classical definitional equivalence.

Example 2 points to an interesting difference between structural and language-
based equivalences of theories. Namely, Example 2 contains pairs of theories which
are not equivalent with respect to any finitely linguistic-based equivalence (see
the proof of Lemma 1), yet there is a bijection between their model classes that
preserves isomorphisms and ultraproducts up to isomorphism. If such a bijection
preserves ultraproducts not only up to isomorphism, then it establishes definitional
equivalence according to Theorem 2. This shows that preserving ultraproducts only up
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4 HAJNAL ANDRÉKA ET AL.

to isomorphism, which structural properties usually do, is not enough for establishing
classical definitional equivalence.

1.3. On the approach taken in the present paper. It is known that definability and
automorphisms are intimately connected. Though it is not true that a relation is
definable in a model if and only if all automorphisms of the model preserve the relation,
something close is true: a relation is definable if and only if all automorphisms of all
ultrapowers preserve (the corresponding ultrapower of) the relation (see [2, lemma
6.7.5]). This theorem has proved to be quite useful so far for establishing definability
and non-definability of relations.

This paper can be viewed as a search for a similar complete method for establishing
definitional equivalence and inequivalence of theories. Section 2 contains two examples.
The warm-up Example 1 shows that having the same classes of automorphism groups
does not entail definitional equivalence. It also motivates the notion of spectrum of
concrete automorphism groups. Example 2 shows that having the same spectrum
of concrete automorphism groups still does not entail definitional equivalence. It also
shows the importance of preserving ultraproducts. Section 3 contains a purely semantic
characterization of definitional equivalence (Theorem 2), which is also a complete
method for establishing definitional equivalence by using concrete automorphism
groups and ultraproducts. We then show how to use this method for establishing
definitional inequivalence of two theories from Example 2 (Theorem 3). Finally, we
make connections with related recent philosophy of science papers.

If not stated otherwise, we use the notation of Chang and Keisler [11].

§2. Testing with automorphism groups. We are in first-order logic. Two theories T1

and T2 are said to be definitionally equivalent when there are copies of these theories
with disjoint languages which have a joint definitional extension. A copy of a theory T
is a theoryT′ which is obtained fromT by renaming some elements of the vocabulary. A
definitional extension of a theory is the theory where some defined relations are added
to the language. For discussion of this definition of definitional equivalence of theories,
see the introduction and [22, definitions 10 and 19 and theorem 4]. Two theories are
said to be definitionally inequivalent when they are not definitionally equivalent. When
T is a theory, Mod(T) denotes the class of its models, and when K is a class of similar
models, Th(K) denotes its theory, i.e., the set of formulas valid in it. When M is a
model, Aut(M) denotes its concrete automorphism group, i.e., the universe of Aut(M)
is the set of all automorphisms of M (i.e., permutations of the universe of M which
leave all relations of M unchanged as sets) and the sole operation of Aut(M) is the
operation of composition.

Aut(T) = {Aut(M) : M ∈ Mod(T)}.

We begin with two examples. The first example serves to show that searching for
automorphism groups occurring in one but not the other of the theories is not a
complete method for showing failure of definitional equivalence.

Example 1 (Definitionally inequivalent theories with the same automorphism
groups). We present theories T1 and T2 such that Aut(T1) = Aut(T2) and T1 is not
definitionally equivalent to T2. The two theories have the same language; this language
contains two binary relation symbols S,R. The first theory, T1, states that at most one
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of S and R can be non-empty. The second theory, T2, states in addition that when R is
non-empty, it is asymmetric:

T1 = {∀xy¬S(xy) ∨ ∀xy¬R(xy)}, T2 = T1 ∪ {∀xy(R(xy) → ¬R(yx))}.

The two theories have the same automorphism groups because of the following. Let G
denote the class of automorphism groups of all models with one binary relation, i.e., G =
{Aut(〈M,S〉) : S ⊆M ×M}. Clearly, Aut(T1) = Aut(T2) = G because in any model
of T1 or T2 there is at most one nonempty relation and the empty relation does not affect
the automorphism group, soAut(T1) ∪ Aut(T2) ⊆ G. The other containment follows from
the fact that neither of the theories make any restriction on S.

To show that T1 and T2 are not definitionally equivalent, we will exhibit a concrete
group G that occurs as the automorphism group for finitely many models altogether, but
more models of T1 than of T2 have G as their automorphism group. Let the universe of G
consist of one member, the identity map onH = {0, 1}. There are 12 binary relations on
H altogether whose automorphism group consists only of the identity on H, 2 of these are
asymmetric. Thus there are 24 models in Mod(T1) with automorphism group G, because
in each such model of T1 either S is empty and R is one of the 12 binary relations or the
other way round. However, only 14 models in Mod(T2) have G as automorphism group
because either R is empty and S is one of the 12 above, or S is empty and R is one of the
two antisymmetric relations. This shows that there is no bijection between the models of
T1 and T2 which is such that corresponding models have the same automorphism group.
Therefore, they are not model mergeable and so not definitionally equivalent.

It may be interesting to have only infinite models for our theories. An easy modification
of T1 and T2 will do. Namely, we add both to T1 and to T2 the infinitely many sentences
that together state that their models are infinite. We then have to modify G. The universe
of the new G consists of all permutations on H = {0, 1, 2, ... }, the set of non-negative
integers, that leave 0 fixed.

The previous example suggests that multiplicity of concrete automorphism groups
has to be taken into account when testing definitional equivalence. We define the
spectrum of concrete automorphism groups of a theory T as a function that to each
permutation group associates the number of non-isomorphic models of T that have
this group as concrete automorphism group, i.e.,

AutSpec(T) := {〈G, �(G,T)〉 : G is a permutation group},

where

�(G,T) := |{M ∈ Mod(T) : Aut(M) = G}/∼= |.

Note that if two models have the same concrete automorphism group, then they must
have the same universe.

Definitionally equivalent theories have the same spectrum of concrete automorphism
groups. Therefore, for two theories to be definitional equivalent, it is necessary that
they have the same spectrum of concrete automorphism groups. The most natural way
of ensuring this is to require a bijection between their classes of models which preserves
concrete automorphism groups as well as isomorphisms. This leads to the notion of a
category of models formed from the models of a theory.

The most common way of forming a category from the models of a first-order logic
theory is to take the models of the theory as the objects of the category and take
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the elementary embeddings2 between these models as morphisms of the category.
Let Mod (T) denote this category of models of T. Often, it is useful to investigate a
category of models with fewer morphisms taken into account. The model-iso-category
Mod iso(T) of a theory is defined by having Mod(T) as its class of objects and having
as morphisms only the isomorphisms between models. The arguments in [29] point in
the direction to deal with the category of models when only isomorphisms are taken
as arrows, and not all elementary embeddings. The idea is that in many realistic cases,
just as ones dealt with in [29], the scientific theory is not defined by a first-order logic
theory, yet one has a clear sense of what models and isomorphisms between these
models can be.

Model categories come with a natural forgetful functor to the category Set of all
sets. These functors assign the universe M to a model M and they assign the “function
content” to a morphism between two models. These are so natural in model theory
that they are called the forgetful functor. For definitions, see [1, definition 5.1(1)].
A functor F between model categories is called a concrete functor iff it commutes
with these natural forgetful functors. Thus a functor F between model categories is
a concrete one iff the universes of connected models are the same and if connected
morphisms are the same as functions between the universes of models. Two model
categories are called concretely isomorphic iff there is a concrete isomorphism between
them.

Existence of concrete isomorphism between model-iso-categories is a natural
generalization of having the same spectrum of concrete automorphism groups. The
next theorem says that, in fact, it is not a generalization.

Theorem 1. Two theories have the same spectrum of concrete automorphism groups if
and only if their model-iso-categories are concretely isomorphic.

Proof. Let T1 and T2 be first-order theories and assume that AutSpec(T1) =
AutSpec(T2). We are going to define a concrete isomorphism b between their model-
iso-categories.

The identity element of a permutation group is always of the form {(a, a) : a ∈ A}
for some A; let us call this A the base of the permutation group. LetG,H be permutation
groups, let h : A→ B be a bijection between the bases of G and H, and define h(g) =
h ◦ g ◦ h–1 for all g ∈ G . Then it is easy to see that h is an isomorphism between G and
H; we say that it is the base-isomorphism induced by h. A base-isomorphism between
two permutation groups G,H is an isomorphism between them that is induced by some
h. We will also use the fact that if h : M → N is an isomorphism between the structures
M,N, then h is a base-isomorphism between their automorphism groups.

Let G be a class of representatives for the base-isomorphism classes of permutation
groups. That is, each permutation group has a base-isomorphic copy in G and the
elements of G are pairwise non-base-isomorphic. For any permutation group G ∈ G
choose �(G,T1)-many non-isomorphic models M(G, i) of T1, for i < �(G,T1), and
similarly choose �(G,T2) = �(G,T1) non-isomorphic models M′(G, i) of T2, with
concrete automorphism group G. Then the models M(G, i) for G ∈ G are pairwise
non-isomorphic, i.e., M(G, i) ∼= M(H, j) for some G,H, i, j implies G = H and i = j.
Similarly, the models M′(G, i) are pairwise non-isomorphic.

2 For the definition of elementary embedding, see [11, p. 84].
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Let M ∈ Mod(T1). There is a unique M(G, i) isomorphic to M, as follows. Let H
be the concrete automorphism group of M and let G ∈ G be base-isomorphic to H via
the base-isomorphism h : H → G. Then the automorphism group of h(M) is G ∈ G;
thus, h(M) is isomorphic to M(G, i) for some i, by our construction. Choose any
isomorphism f mapping M(G, i) to M and let us define

b(M) := f(M′(G, i)).

We show that b(M) is well-defined, i.e., it does not depend on which isomorphism f
we choose. Let g be any other isomorphism between M(G, i) and M; we show that
f(M′(G, i)) = g(M′(G, i)). Indeed, g = f ◦ α for α = f–1 ◦ g ∈ Aut(M(G, i)) = G.
But α ∈ G = Aut(M′(G, i)), so g(M′(G, i)) = f(α(M′(G, i))) = f(M′(G, i)).

We define b on the morphisms. Let h : M → N be an isomorphism between M,N ∈
Mod(T1). We have seen thatf : M(G, i) → M for somef,G, i and sog : M(G, i) → N

for g = h ◦ f. Thus, by definition, b(M) = f(M′(G, i)) and b(N) = g(M′(G, i)).
Hence, h : b(M) → b(N) is an isomorphism by g ◦ f–1 = h ◦ f ◦ f–1. We define

b(h) := h.

We now show that b is an isomorphism between the model-iso-categories of T1

and T2. First we show that the function b : Mod(T1) → Mod(T2) defined this way
is a bijection between Mod(T1) and Mod(T2). Indeed, let M′ ∈ Mod(T2) be any
model. There is a unique M′(G, i) isomorphic to it, say via f : M′(G, i) → M′.
Let M = f(M(G, i)), then M′ = b(M), by the definition of b. Thus, the range
of b is Mod(T2). To see that b is one-to-one, let M,N ∈ Mod(T1). Assume that
b(M) = b(N). By the definition of b, there are M(G, i),M(H, j) and isomorphisms
f : M(G, i) → M, g : M(H, j) → N such that b(M) = f(M′(G, i)) and b(N) =
g(M′(H, j)). By b(M) = b(N) then M′(G, i) is isomorphic to M′(H, j); therefore,
(G, i) = (H, j) and f(M′(G, i)) = g(M′(G, i)). Thus, f–1 ◦ g ∈ Aut(M′(G, i)) = G.
So, M = f(M(G, i)) = f((f–1 ◦ g)(M(G, i))) = g(M(G, i)) = g(M(H, j)) = N.

We turn to the proof for b being a bijection between the set of isomorphisms from
M to N and the set of isomorphisms from b(M) to b(N), for any M,N ∈ Mod(T1). To
show surjectivity, let h : b(M) → b(N). By the definition of b(M), we have that M =
f(M(G, i)) and b(M) = f(M′(G, i)), for some f,G, i . Thus, f : M′(G, i) → b(M),
and so h ◦ f : M′(G, i) → b(N), by h : b(M) → b(N). LetN′ = f(h(M(G, i)). By the
definition of b(N′) then b(N′) = (h ◦ f)(M′(G, i)) = b(N). Thus,N′ = N because b is
one-to-one on Mod(T1), i.e., N = (h ◦ f)(M(G, i)) = h(f(M(G, i))) = h(M). Thus,
h : M → N is an isomorphism and b(h) = h. By definition, it is clear that b is one-
to-one on the morphisms, and also that it preserves composition of morphisms in
both directions. This finishes the proof for b being a category theoretical isomorphism
between the model-iso-categories of T1 and T2. It is concrete, by its definition.

In the other direction, assume that b is a concrete isomorphism between Mod iso(T1)
and Mod iso(T2). Then Aut(M) = Aut(b(M)), and M ∼= N iff b(M) ∼= b(N), for all
M,N ∈ Mod(T1). Therefore, AutSpec(T1) = AutSpec(T2).

The next example shows that having the same spectrum of automorphism groups still
does not entail definitional equivalence. It is more refined than the previous one. We will
see that it shows, in a sense, a limit till we still can get failure of definitional equivalence
(compare Lemma 2 with Theorem 2). It also serves as a counterexample to Barrett
and Halvorson’s conjecture that, among first-order logic theories with finite signatures,
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categorical equivalence implies many-sorted (Morita) definitional equivalence. With
this, we answer in the negative [8, question 6.1] as well as [6, question 1, p. 77].

Example 2 (Uncountably many theories with the same model category). We present
continuum many complete theories on a finite similarity type with the same automorphism
spectrum such that no two of them are definitionally equivalent. Moreover, their model
categories are isomorphic via concrete functors which preserve ultraproducts up to
isomorphism, and further, no two of the theories are even many-sorted definitionally
(Morita) equivalent. (The latter notion will be introduced later, below Lemma 2.)

We work in the similarity type which contains one constant symbol 0, one unary
function symbol suc, and one unary relation symbol R. Let n be a natural number,
then sucn(x) denotes the term where suc is n-times applied to x, i.e., suc0(x) = x and
suc(n+1)(x) = suc(sucn(x)). For each subset S of the natural numbers �, let

T(S) := {R(sucn(0)) : n ∈ S} ∪ {¬R(sucn(0)) : n /∈ S} ∪ Th(〈�, 0, suc〉),

where 〈�, 0, suc〉 denotes natural numbers � with zero as 0 and the successor function
as suc.

A set S of natural numbers is called irregular if all finite patterns occur in it. In more
detail, let n > 0 be a positive number and let P ⊆ {0, 1, ..., n – 1}. We say that the P, n-
pattern occurs at x in S if {m < n : sucm(x) ∈ S} = P. For example, S = {0, 2, 4, 6, ...}
is not irregular, because the pattern {0, 1}, 2 does not occur in it (i.e., x, suc(x) ∈ S does
not hold for any x ∈ �).

There are continuum many irregular subsets of�. This can be seen as follows. Construct
an infinite sequence of 0, 1, x by first laying the two 0, 1-sequences of length 1 after each
other in alphabetical order, then mark the next number by an x, then lay the four 0, 1-
sequences of length 2 after each other in alphabetical order and mark the next number by
an x, etc. This sequence will begin like 〈0, 1, x, 0, 0, 0, 1, 1, 0, 1, 1, x, 0, 0, 0, ...〉. There are
infinitely many xs in this sequence and so there are continuum many ways of replacing the
xs with 0 or 1. Each of the continuum many 0, 1-sequences that are obtained this way is
a characteristic function of an irregular set. This proves that there are at least continuum
many irregular sets. There can be at most continuum many irregular subsets of � since
there are continuum many subsets of �.

We are going to show that the model categories Mod (T(S)) for irregular sets S are
isomorphic to each other in a strong constructive way (see Lemma 2).

We say thatN is an induced subalgebra ofMwhen theR-free part ofN is a subalgebra
of the R-free part of M and the R-relation of N is that of M restricted to the universe
of N. For the definition of elementary submodel, see [11, p. 84].

Lemma 1. Let S ⊆ � be irregular. Then (i) and (ii) below hold.

(i) The elementary submodels of a model ofT(S) are exactly its induced subalgebras.
(ii) T(S) is a complete theory.

Proof. LetN denote the set of natural numbers with 0 as constant 0 and the successor
function as unary distinguished function suc, and let Z denote the set of integers with
the successor function as unary distinguished function suc. Note that Z does not have
0 in its language. Any model of Th(〈�, 0, suc〉) is a disjoint union of one copy of N
together with some copies of Z. When k is negative, suck(x) = y means suc–k(y) = x,
and we say that suck(x) exists when such a y exists. In models of Th(〈�, 0, suc〉) such
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a y is unique when it exists. When N is a model of Th(〈�, 0, suc〉), by a Z-part of N
we mean a subset of N of the form {sucn(a) : n ∈ �} ∪ {suc–n(a) : n ∈ �} for some
a ∈ N . By a Z-model we mean Z together with a unary relation R and by 〈N, S〉 we
mean N expanded with S as the unary relation R. We are going to prove the following
statement (∗).

In (∗) as well as later on, we will use ultraproducts [11, chap. 4]. As in [11], when
U is an ultrafilter on the set I and 〈Mi : i ∈ I 〉 is an I-sequence of similar models,∏
U 〈Mi : i ∈ I 〉, or sloppily just

∏
U Mi , denotes the U-ultraproduct of the models

Mi and yU denotes the equivalence-class of y in ΠUMi , for y ∈ Πi∈IMi . When each
Mi = A for some A, we call

∏
U Mi an ultrapower of A and we denote it by ΠUA.

(∗) Assume thatM is a countable model ofT(S) and U is a nonprincipal ultrafilter
on a countable set I. Then ΠUM is isomorphic to a disjoint union of a copy of
〈N, S〉 with continuum many copies of each possible Z-model.

Indeed, (∗) is true because each Z-model can be put together in the ultrapower from
its finite parts which are patterns occurring in M, and in fact, each such pattern occurs
infinitely many times in M. In more detail: Let 〈Z, R〉 be any Z-model; we show that
continuum many disjoint copies of it occurs in the ultrapower of M. We may assume
that I = � because I is countable. For each n > 0 let Rn := {m ≤ 2n : m – n ∈ R}.
The pattern Rn, 2n + 1 occurs in S because S is irregular. In fact, each pattern occurs
in an irregular set infinitely many times because each finite pattern has infinitely many
different extensions to other finite patterns and each of these patterns occurs in the
irregular set. LetXn be the set of xs whereRn, 2n + 1 occurs in S and letYn := {x + n :
x ∈ Xn}. First we show that in ΠUM each element of ΠUYn lies on a copy of 〈Z, R〉.
Indeed, let xn ∈ Xn and yn := xn + n for all n ∈ �. Let y := 〈yn : n ∈ �〉, and let k ∈ Z

be arbitrary. We will show that suck(yU ) exists and k ∈ R iff R(suck(yU )) in ΠUM.
By our definitions, for all n such that 2n ≥ k we have that k ∈ R iff k + n ∈ Rn iff
xn + k + n ∈ S iff yn + k ∈ S iffR(suck(yn)) in M. Since U is nonprincipal on I = �,
this means that R(suck(yU )) in ΠUM. We have seen that yU is in a copy of 〈Z, R〉
for all y ∈ Πn∈�Yn. Since each Yn is countably infinite, the cardinality of ΠUYn is
continuum (see [11, proposition 4.3.9]). Since each copy of 〈Z, R〉 is countable, this
means that ΠUM contains continuum many disjoint copies of 〈Z, R〉, and we are done
with proving (∗).

Proof of (i): An elementary submodel of M has to be an induced subalgebra.
Conversely, assume that N is an induced subalgebra of M; we show that it is an
elementary submodel. We will use the testing method in [11, proposition 3.1.2]. Thus,
assume that ϕ(x̄, y) is a first-order logic formula in the language of M, assume that
ā is an appropriate sequence of elements of N, and M |= ∃yϕ(ā, y). We have to show
the existence of a′ ∈ N such that M |= ϕ(ā, a′). We have ΠUM |= ∃yϕ(d (ā), y) since
the diagonal (or natural) embedding d of a model into its ultrapower is an elementary
one [11, corollary 4.1.13]. Let b ∈ ΠUM be such that ΠUM |= ϕ(d (ā), b). Now, ΠUN
is an induced subalgebra of ΠUM, by N being an induced subalgebra of M. There
are infinitely many Z-parts in ΠUN that do not contain any element of d (ā) and that
are isomorphic to the Z-part of ΠUM containing b, by (∗). Take an automorphism of
ΠUM that interchanges the Z-part of b with any of such a Z-part of ΠUN and leaves
anything else fixed. There is such an automorphism by the choice of the Z-part of
ΠUN and since M ∈ ModT(S). Let c be the image of b under such an automorphism,
then ΠUM |= ϕ(d (ā), c), since the automorphism leaves the elements of d (ā) fixed.
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Then M |= ϕ(ā, a′) for some a′ ∈ N by the fundamental theorem of ultraproducts [11,
theorem 4.1.9(ii)] since c ∈ ΠUN. We have shown that N is an elementary submodel
of M.

Proof of (ii): Assume that M,N ∈ ModT(S); we have to show that N is elementarily
equivalent to M. We may assume that M and N are countable, by the downward
Löwenheim–Skolem–Tarski theorem [11, corollary 2.1.4]. Now, M and N are
elementarily equivalent by (∗), since they have isomorphic ultrapowers. The proof
of Lemma 1 is complete.

By using Lemma 1, we now specify a functor F between the model categories of
T(S) and T(Z), for any irregular sets S and Z. Let M = 〈M, 0, suc, R〉 ∈ Mod(T(S)).
We define

F (M) := 〈M, 0, suc, (R \ {suck(0) : k ∈ S}) ∪ {suck(0) : k ∈ Z}〉.
That is, F (M) is defined to be M except that R on the N-part of M is changed to be the
R of the N-part of a T(Z) model. For an elementary embedding f : M → N between
M,N ∈ Mod(T(S)), let us define

F (f) := f.

Lemma 2. Let S and Z be irregular sets and let F be the function defined above.

(i) F is a concrete isomorphism between Mod (T(S)) and Mod (T(Z)).
(ii) F preserves ultraproducts of models up to isomorphism, i.e., F takes an

ultraproduct of models of T(S) to a model isomorphic to the corresponding
ultraproduct of the F-images of the models.

Proof. F is a functor, since (f is an elementary embedding of M into N if and only if
it is an elementary embedding of F (M) into F (N)), by Lemma 1 and the construction
of F. Thus F is a concrete isomorphism by its construction.

To show that F preserves ultraproducts up to isomorphism, let U be an ultrafilter on
a set I and let Mi ∈ Mod(T(S)) for all i ∈ I . We will define an isomorphism j between
F (ΠUMi) and ΠUF (Mi). Let Ni denote the N-part of Mi , for each i ∈ I . Then each
Ni is isomorphic to 〈N, {suck(0) : k ∈ S}〉 by Mi ∈ ModT(S). Let y := 〈yi : i ∈ I 〉 ∈
Πi∈IMi . We define

j(yU ) := yU if {i ∈ I : yi /∈ Ni} ∈ U.
To define j on the rest, assume first that U is not �+-complete. Then by a
straightforward modification of the proof of (∗) we get that both ΠUNi and ΠUF (Ni)
consist of one N-model together with continuum many copies of all possible Z-models.
If U is �+-complete, then both ΠUNi and ΠUF (Ni) consist of one N-model only by
[11, proposition 4.2.4]. In both cases, there is an isomorphism between F (ΠUNi) and
ΠUF (Ni). We define

j be any isomorphism between F (ΠUNi) and ΠUF (Ni)

and be identity on the rest. It is not difficult to check that j : F (ΠUMi) → ΠUF (Mi)
is an isomorphism. This finishes the proof of Lemma 2.

We have seen that, for any two irregular sets S and Z, the model categories of
T(S) and T(Z) are rather close to each other in a constructive way. We now turn to
definability issues between T(S) and T(Z). In logic, there are two weaker versions
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of definitional equivalence between theories in use. One is called many-dimensional
[16, 28] or many-sorted [4, 24] definitional equivalence, and it is also called Morita
equivalence of theories [8, 15]. The other is called bi-interpretability between theories
[18, 28]. Both notions are weaker than definitional equivalence between first-order
logic theories in the sense that when T1 and T2 are definitionally equivalent, then
they are also many-dimensionally equivalent and bi-interpretable. For a comparison
of these notions, see [8]. We will rely on the definitions in the mentioned references; we
do not recall them.

Corollary 1.

(i) All the theories T(S) with S irregular have the same spectrum of automorphism
groups.

(ii) There is an uncountable set S of irregular sets such that no T(S) and T(Z)
for distinct S,Z ∈ S are definitionally equivalent, many-sorted definitionally
equivalent or bi-interpretable.

Proof. (i) follows from Lemmas 1 and 2. Each of definitional equivalence, many-
sorted definitional equivalence and bi-interpretability of two theories can be specified
by the use of finitely many formulas on the language of the theories (see the references
given for their definitions). Therefore, a concrete theory can be definitionally equivalent
to at most countably many theories on a given other similarity type. This implies that of
the continuum many theories T(S) on the same language; there are continuum many
pairwise non-equivalent theories (neither many-sorted equivalent nor bi-interpretable).
This finishes the proof of Corollary 1. With this, the presentation of Example 2 is
finished.

The essence of Example 2 above is that the model categories of T(S) for irregular
sets S are almost the same because the R on the N-parts do not play a role in this
category. However, the R on the N-part can code more “information” than available
(syntactical) translations between theories and therefore many such theories have to
be definitionally inequivalent.

Remark 3 (F does not preserve ultraproducts). The functor F constructed above
Lemma 2 does not preserve ultraproducts; it preserves ultraproducts only up to
isomorphism. This follows from Theorem 2 in the next section and Corollary 1(ii). We
now want to provide a concrete example that shows that F does not preserve ultraproducts.
Recall the continuum many irregular sets constructed above Lemma 1. Let S0 and S1

be the irregular sets we obtain by filling all the xs with 0 and by filling all the xs with
1, respectively. Then S0 ⊆ S1 and S1 \ S0 is infinite. Let Ni := 〈�, 0, suc, Ri〉 where
Ri = {suck(0) : k ∈ Si} for i = 0, 1. Consider the functor F between T(S0) and T(S1).
Then F (N0) = N1 by definition of F. Let X ⊆ � be an infinite set which is disjoint from
S0 but is contained inS1, let U be a nonprincipal ultrafilter on I = � such thatX ∈ U and
let y = 〈suck(0) : k ∈ �〉. ThenR(yU ) does not hold in F (ΠUN0), whileR(yU ) holds in
ΠUF (N0) showing that the two structures are not the same (though, isomorphic). We will
see in the next section that in fact T(S0) is not definitionally equivalent to T(S1) because
there is no concrete isomorphism between their model categories that would preserve
ultraproducts (see Theorem 3).

Remark 4 (More striking example). We can modify the above example to give a more
striking counterexample to the conjecture in [8] which at the same time is analogous to
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the example in the proof of [8, theorem 5.7]. The similarity type of T1 and T2 will be as
in Example 2. The first theory, T1 states only that 0 is not in relation R:

T1 = {¬R(0)}.

For defining T2, take any irregular set S such that 0 ∈ S, and then T2 is

T2 = {R(0) → ϕ : ϕ ∈ T(S)}.

That is, the models of T2 are those of T1 together with all the models of T(S). Now,
T1 is finitely axiomatized, while it is easy to see that T2 cannot be axiomatized finitely
(e.g., by showing that the complement of Mod(T2) is not closed under ultraproducts).
Since intertranslatability is an essence of definitional equivalence both for the classical
and the many-sorted versions, as, e.g., Halvorson [15] argues, being finitely axiomatized
is preserved, for theories of finite similarity types, by the weaker many-sorted (Morita)
definitional equivalence also. So, T1 and T2 are not Morita definitionally equivalent.
However, their model categories are equivalent, in fact isomorphic, as in [8, theorem 5.7]:
a model category consists of isolated islands of Mod (Th(M)) for the models M of the
theory (because if there is a morphism between M and N then M and N are elementarily
equivalent since this morphism is an elementary embedding of M into N). Now, by
Lemma 1, the extra island of Mod (T2) is isomorphic to any one of the continuum many
islands Mod (T(Z)) of Mod (T1) where Z is an irregular set with 0 /∈ Z.

§3. Testing with automorphism groups and ultraproducts. We are ready to turn to
the positive results of this paper. Lemma 2 suggests that, besides automorphism groups,
ultraproducts have to be taken into account in testing definitional equivalence. Indeed,
Theorem 2 gives such a characterization making our search for a complete testing
method successful.

The following theorem is a semantic characterization of definitional equivalence. It
is a slight modification of the theorem in [27] which is a semantic characterization of
restricted interpretations between theories. For a closely related theorem, see also [21,
theorem 12.1].

Theorem 2. Two theories T1 and T2 are definitionally equivalent if and only if there is a
bijection b between their model classes that satisfies the following two conditions.

(i) An isomorphism between different models of T1 is an isomorphism between their
b-images and vice versa. In particular, the universes of M and b(M) are the same.

(ii) Ultraproducts are preserved by b in the sense that b(
∏
U Mi) =

∏
U b(Mi) for

all ultrafilters U and models Mi in Mod(T1).

Proof. The proof follows that of [27, theorem]. Let assume first that the languages
of T1 and T2 are disjoint. Assume that we have a bijection b satisfying (i) and (ii). We
define a class K of models in the similarity type as the union of the similarity types of
T1 and T2 and we will show that the first-order logic theory of K is a joint definitional
extension for both T1 and T2. For a model M ∈ Mod(T1), let

M = 〈M, b(M)〉

denote the model whose universe is the joint universe of M and b(M), the relation and
function symbols of the language of T1 are interpreted as in M, and the relation and
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function symbols of the language of T2 are interpreted as in b(M). Let

K = {〈M, b(M)〉 : M ∈ Mod(T1)}.
We will show that K is axiomatizable, i.e., K = ModThK. We use [11, corollary
6.1.16(i)], which states that a class is elementary if and only if it is closed under taking
ultraproducts and isomorphic images, and the complement is closed under ultrapowers.
Now,K is closed under ultraproducts and isomorphisms by conditions (ii) and (i), since
Mod(T1) is elementary. Assume that A = 〈M,N〉 is such that an ultrapower ΠUA is
in K. We have to show that A ∈ K. Now, ΠUA = 〈ΠUM,ΠUN〉, and then ΠUA ∈ K
means that ΠUN = b(ΠUM). By condition (ii) we have b(ΠUM) = ΠUb(M). Thus we
have ΠUN = ΠUb(M). This implies N = b(M) since any structure B can be recovered
from ΠUB. We have seen that K is an elementary class; let

T = Th(K).

Now, we show that T is a definitional extension of T1. When the language of T2 has
only one non-logical symbol, this follows immediately from Beth’s definability theorem
(see [11, theorem 2.2.22]), since for each M ∈ Mod(T1) there is at most one relation
satisfying T, namely that of b(M). However, a generalized version of Beth’s theorem
is well-known as folklore: if the R-free reduct of each model of T can be extended to
at most one model of T, then T explicitly defines each member of R by a formula on
the language of the R-free reducts.3 The proof that T is a definitional extension of T2

is completely analogous. Thus, T1 and T2 are definitionally equivalent theories.
Assume now that the languages of T1 and T2 are not disjoint. Rename the symbols

in the language of T2 so that the new symbols be distinct from any one used in T1 and
T2, call the new theory T′

2. Now, there is a natural bijection b1 : Mod(T2) → Mod(T′
2)

satisfying conditions (i) and (ii), and b1 ◦ b : Mod(T1) → Mod(T′
2) also satisfies (i)

and (ii). These bijections are between models of theories of disjoint languages. Apply
the previous case to b1 and b1 ◦ b, and use that definitional equivalence is a transitive
relation by [22].

Remark 5 (Relationship of Theorem 2 with the van Benthem and Pearce result).
The theorem in [27], call it BP-theorem for van Benthem and Pearce theorem, seems
to be neither stronger nor weaker than Theorem 2. It is not weaker because the kind
of interpretation it deals with is restricted interpretation which is in between classical
and Morita-interpretation. It is not stronger because it deals with interpretation and not
with equivalence. In more detail, assume that there is a bijection between Mod(T1) and
Mod(T2) satisfying (i) and (ii) of Theorem 2. By applying the BP-theorem, we get that
there are two restricted interpretations, one from T1 to T2 and the other from T2 to T1.
However, we know that mutual interpretability even with strong properties does not imply
definitional equivalence (see, e.g., [3]). Although the BP-theorem does not seem to imply
Theorem 2, the proof of Theorem 2 here is just a slight modification of the proof of the
BP-theorem in [27, p. 296].

Remark 6 (Automorphism groups and elementary embeddings in Theorem 2).
The word “different” can be omitted from condition (i) of Theorem 2 and the theorem
remains true. This is true because condition (i) implies that the automorphism groups are
preserved by b in the sense that Aut(M) = Aut(b(M)) for all M ∈ Mod(T1). Indeed, if

3 We give a short proof of this in the Appendix.
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α ∈ Aut(M), then let f : M → M′ be any isomorphism where M′ is different from M;
there is always such an f. Then both f and α ◦ f are isomorphisms between b(M) and
b(M′) by condition (ii); thus, α = α ◦ f ◦ f–1 is an automorphism of b(M). In a sense,
this corollary about the automorphism groups is the essential part of condition (i).

Also, Theorem 2 remains true if in (i) we require to preserve all elementary embeddings
in place of all isomorphisms. The reason is that elementary embeddings are preserved by
definitional equivalence.

The proof of the following theorem intends to illustrate the use of Theorem 2 for
proving definitional inequivalence. Recall the definitions of S0 and S1 from Remark 3.

Theorem 3. T(S0) and T(S1) are not definitionally equivalent.

Proof. Let b : Mod(S0) → Mod(S1) be any bijection that preserves isomorphisms
between distinct models. (We note that there is such a function b [see Lemma 2].)
It preserves automorphism groups also (see Remark 3). We will show that b cannot
preserve all ultrapowers. By Theorem 2, this will prove that T(S0) and T(S1) are not
definitionally equivalent.

Let M = 〈�, 0, suc, S0〉 ∈ Mod(T(S0)). Let b(M) = 〈�, o, F,R〉 and let U be any
nonprincipal ultrafilter on�. First we show that b(ΠUM) �= ΠUb(M) if b(M) contains
any copy of a Z-model. Indeed, assume that F k(n) exists for all k ∈ Z for some
n ∈ �. Let 〈Z, P〉 be the Z-model that is isomorphic to the induced subalgebra of
b(M) with universe {F k(n) : k ∈ Z}. By (∗) in the proof of Lemma 1, ΠUb(M)
contains infinitely many copies of this Z-model. Therefore, the image of the Z-model
in b(M) under the diagonal embedding can be interchanged with a distinct copy of this
Z-model in ΠUb(M). On the other hand, all automorphisms of ΠUM leave the
diagonal embedding of M unchanged. Thus b(ΠUM) cannot be ΠUb(M) since the
two have different automorphism groups. Therefore, we assume in the rest

(1) � = {F n(o) : n ∈ �} and thus R = {F n(o) : n ∈ S1}.

Next we show that b(ΠUM) �= ΠUb(M) if F (y) /∈ {suck(y) : k ∈ Z} for some y ∈
ΠU�. Indeed, assume the latter. Choose an automorphism of ΠUM that interchanges
the copy of the Z-model containing y with another copy that does not contain either y
or F (y) and is identity on the rest. There is such an automorphism by (∗) in the proof
of Lemma 1. Now, this is not an automorphism of ΠUb(M) since F is one-to-one in
b(M) (by b(M) ∈ Mod(T(S1))). Therefore, we assume in the rest

(2) F (y) ∈ {suck(y) : k ∈ Z} for all y ∈ ΠU�.

Now, (2) implies that there is a bound on “how far F can jump,” i.e., there is N0 ∈ �
such that for all n ∈ � we have

(2a) F (n) = n + k implies |k| < N0.

Indeed, let J := {k ∈ Z : F (n) = n + k for some n ∈ �} and assume that J is infinite.
Let f : � → J be a bijection; there is such a bijection because J is countably infinite.
For all j ∈ J let nj ∈ � be such that F (nj) = nj + j and let yi := nf(i) for all i ∈ �.
Let y := 〈yi : i ∈ �〉. Then F (yU ) /∈ {suck(yU ) : k ∈ Z} because U is nonprincipal.
This contradicts (2), and thus J is finite, which implies the existence of the bound N0.

Next we show that b(ΠUM) �= ΠUb(M) if F does not agree with suc on copies
of Z-models in ΠUM all elements of which are in R or no elements of which are
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in R. Indeed, assume R(sucm(y)) in ΠUM for all m ∈ Z. There is k ∈ Z such that
F (y) = suck(y), by (2). There is an automorphism α in ΠUM that “shifts with 1
step in Y := {sucm(y) : m ∈ Z},” i.e., α(z) = suc(z) for all z ∈ Y , because R(z) for
all z ∈ Y . Now, if F (z) �= suck(z) for some z ∈ Y , then α is not an automorphism
in ΠUb(M). So, assume that F (z) = suck(z) for all z ∈ Y . Now, if k /∈ {1, – 1}, then
Y �= {Fm(y) : m ∈ Z} = {sucmk(y) : m ∈ Z}. However, there is an automorphism �
of ΠUb(M) that “shifts {Fm(y) : m ∈ Z} with one step” and leaves all the other
elements fixed. This � is not an automorphism of ΠUM. We show now that F (z) =
suc–1(z) for all z ∈ Y cannot happen. Indeed, assume that F (z) = suc–1(z) for all
z ∈ Y . Then there is an “N0-long descending F-chain in b(M),” i.e., there is n ∈ �
such that F (k) = k – 1 for all n – N0 ≤ k ≤ n in b(M). Then F has to stay below n
since then on, by (2a) and F being one-to-one, i.e., F k(n) ≤ n for all k ∈ �. This again
contradicts F being one-to-one. The same argument works if ¬R(sucm(y)) in ΠUM
for all m ∈ Z. By the above, we assume in the rest

(3) F (z) = suc(z) for all z ∈ Y := {suck(y) : k ∈ Z} if y ∈ ΠU� is such that
either R(z) in ΠUM for all z ∈ Y or ¬R(z) in ΠUM for all z ∈ Y .

Now, (3) has implications on the behavior of F on long R-chains or ¬R-chains in
M, as follows. Let us say that 〈y + k : k < n〉 = 〈y, y + 1, y + 2, ..., y + n – 1〉 is an
n-long R-chain in M beginning with y if R(y + k) in M for all k < n. The definition
of a ¬R-chain is analogous. First we show the existence of a bound N such that for all
R-chains longer than 2N , F agrees with suc on the chain, except for N-long chains at
the beginning and at the end of the chain, and the same holds for ¬R-chains.

(3a) There is N > N0 such that for all R-chains longer than 2N and beginning
with y we have F (suck(y)) = suck+1(y) for all y +N ≤ k ≤ y + n – N and
the same holds for ¬R-chains, too.

Indeed, assume that there is no such bound. Then n is not such a bound for any n ∈ �,
i.e., there is an m-long R-chain with beginning y such that m ≥ 2n and F (suck(y)) �=
suck+1(y) for some y + n ≤ k ≤ y +m – n. For each n ∈ �, let yn := suck(y) for such
a chain and let z = 〈yn : n ∈ �〉. Then in the ultrapower ΠUM we have F (z) �= suc(z),
while R(suck(z)) for all k ∈ Z. This contradicts (3). The proof for the ¬R-chains is
analogous. This completes the proof of (3a).

From now on we assume that N is as in (3a). Next we prove that if there is an
n ≥ 3N -long R-chain ending with y – 1 and there is an n ≥ 3N -long ¬R-chain starting
with y + 1, then the behavior of F is rather close to that of suc in these chains.
Namely, F k(o) = k in the interval [y – n +N, y + n – N ] except in [y – N, y +N ],
and F enumerates the elements of [y – N, y +N ].

(3b) Assume that n > 3N and there is an n-long R-chain in M ending with y – 1
and there is an n-long ¬R-chain starting with y + 1. Then F k(o) = k for all
y – n +N ≤ k ≤ y – N and y +N ≤ k ≤ y + n – N . Further, {F k(o) : y –
N ≤ k ≤ y +N} = {k : y – N ≤ k ≤ y +N}.

Indeed, assume that n and y are as in (3b). There is an n ≥ 2N -long R-chain beginning
with y – n, so by (3a) we have F (y – n + k) = y – n + k + 1 for all y – n +N ≤ k ≤
y – N . Let v := y – n +N . Then

F (v + k) = v + k + 1 for all k ≤ n – 2N. (a)
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ThenF (w) /∈ {k : v < k ≤ v + n – 2N} for allw < v since F is one-to-one by b(M) |=
T(S1). By n – 2N ≥ N > N0 and (2a) then F (w) ≤ v for all w < v and hence F
enumerates [0, v], i.e.,

{F k(o) : k ≤ v} = {k : k ≤ v}. (b)

There is m ∈ � such that v = Fm(o), by (1). As before, by (2a) and (a) we have that
m ≤ v and then m = v by (b). Thus, F v(o) = v and by (a) we have F k(o) = k for all
v ≤ k ≤ y – N . The rest of (3a) can be obtained similarly.

We are ready to show b(ΠUM) �= ΠUb(M), finishing the proof of Theorem 3. Let
X be the infinite set where S0 and S1 differ. Then X is disjoint from S0 and X ⊆ S1,
by definition. Let xn denote the nth member of X according to the natural ordering
of �. Then ¬R(xn) in M by xn /∈ S0 and the definition of R in M. Also, R(xn – k – 1)
and ¬R(xn + k) for all k < n, because the 0, 1-sequences between two xs are laid by
alphabetical order; thus, before the nth x ∈ X there are n many 1s and after it there
are n + 1 many 0s. Let x := 〈xn : n ∈ �〉. Then xU is contained in ΠUM in a copy of
the Z-model 〈Z, {k : k < 0}〉, i.e., all members of the Z-model below xU are in R, and
no member after xU , including xU is in R.

How does the set C := {suck(xU ) : k ∈ Z} look like in ΠUb(M)? Note that we
cannot assume F = suc and o = 0 in b(M). Thus, for example, we cannot infer
R(xn) in b(M) from xn ∈ S1. However, we can use our assumptions (1)–(3) and their
implications. Especially, we can use (3b). Let n ≥ 3N , where N is the bound in (3b).
We have seen in the previous paragraph that, in M, the assumptions hold for y = xn.
By (1), the definition of S1, and (3b) then R(F k(o)) for xn – n +N ≤ k ≤ xn – N
and ¬R(F k(o)) for xn +N ≤ k ≤ xn + n – N , in b(M). Also, by (3b) we get that
F agrees with suc “below” suc–N (xU ) and “above” sucN (xU ), in ΠUb(M). Further,
F enumerates the interval I := [suc–N (xU ), sucN (xU )]. However, there is a difference
between ΠUM and ΠUb(M) concerning I. Namely, in ΠUM exactly N elements of
I are in R because ¬R(xn) in M. At the same time, due to the definition of S1, by
(1) we get R(F w(o)) for all w ∈ X . Hence, exactly N + 1 elements are in R in the
corresponding intervals in b(M), so exactlyN + 1 elements of I are in R, in ΠUb(M).

For all n ∈ � let yn ∈ � be similar to xn in that ¬R(yn), there is an n-long R-chain
ending with yn – 1, there is an n-long ¬R-chain starting with yn + 1, and such that
neither yn nor any element of these chains belong to X. There are such yns by the
construction of S0, S1. Let y := 〈yn : n ∈ �〉. Then there is an automorphism in ΠUM
that interchanges xU with yU . We will show that there is no automorphism in ΠUb(M)
that interchanges suc–N (xU ) and suc–N (yU ). Indeed, such an automorphism has to be
a bijection between the intervals I and J because it can be seen that F enumerates
J := [suc–N (yU ), sucN (yU )] in ΠUb(M) and F agrees with suc outside J. We have seen
that there are N + 1 elements of I that are in R in ΠUb(M). It can be seen just the
same way that there are only N elements of J because ¬R(yU ) in ΠUb(M). Therefore,
no bijection between I and J can preserve R. The proof of Theorem 3 is complete.

We close the paper with some implications of the results for questions raised in the
wider literature.

Glymour [13] raises an interesting question about definitional equivalence. The
common understanding is that definitionally equivalent theories have essentially the
same content and we would think that all important properties are shared by them.
Theorem 2 implies that a property of a theory is preserved by definitional equivalence
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when it can be expressed in terms of universes, isomorphisms and ultraproducts
of its models. Therefore, having a one-element model, having only finite models,
being categorical in a power or being complete are preserved by classical definitional
equivalence (since two models are elementarily equivalent if and only if they have
isomorphic ultrapowers). Glymour [13, p. 296] conjectures that also the model class
being closed under substructures, the model class being closed under unions of chains,
and having an equational axiomatization are preserved. We now show that neither one
of these three properties is preserved by definitional equivalence.

Indeed, let T1 be the empty theory on the language with one constant symbol c. Let
T2 be the definitional extension of T1 with ∀x(R(x) ↔ [∃yz(y �= z) ∧ x = c]. Then
Mod(T1) is closed under taking substructures but Mod(T2) is not. The counterexample
to preservation of unions of chains is similar in spirit. Let T1 be the empty theory on
the language with a binary relation symbol≤. LetT2 be the definitional extension ofT1

with defining R to be the set of ≤-minimal elements when there is a ≤-maximal element
and R is the empty set when there is no≤-maximal element (i.e.,∀x[R(x) ↔ (∃y∀z(z ≤
y) ∧ ∀z(z ≤ x))]). Clearly, T1 is closed under taking unions of chains. However, T2

is not closed under taking unions of chains, as the following models show. For each
natural number n let Mn have the set of natural numbers smaller than n as universe, let
≤ be the “smaller” relation and let only 0 be in relation R. Then each Mn is a model
of T2 but their union is not a model of T2 since it does not have a maximal element
yet R is nonempty in it. For showing that having an equational axiomatization is not
preserved by definitional equivalence, one could take groups as counterexamples; this
is mentioned in [17, p. 56]. Indeed, let T1 be the class of semigroups in which inverses
exist and let T2 be its extension with the inverse operation and the zero element as
constant. Then T1 does not have a universal axiomatization because its model class is
not closed under subalgebras, while T2 is an equational class.

It is known that definitionally equivalent theories have isomorphic Lindenbaum–
Tarski formula-algebras; they only differ from each other in what definable properties
they take to be as basic ones. The proofs above show that this latter choice can influence
the existence of axiom systems of given forms. For example, being substructure is not
preserved by definitional expansion because in this notion the basic relations are
treated differently from the rest, namely being a substructure is formulated in terms
of basic relations only. Similarly for homomorphism, union, etc. However, being an
elementary substructure is preserved by definitional expansion because in the definition
of elementary substructure all definable relations are treated alike (and indeed, this
notion can be characterized by means of isomorphisms and ultraproducts as follows:
N is an elementary substructure of M if and only if N ⊆M and there is an ultrafilter
U such that ΠUN is isomorphic to ΠUM via an isomorphism that is identity on the
diagonal image of N in ΠUN).

The following corollary of Theorem 2 states that an associated structure to be defined
below, namely the concrete ultracategory of a theory, is an invariant characteristic to
definitional equivalence of first-order logic theories.

By a concrete ultracategory, we mean a triple (C,F, p) where (C,F ) is a
concrete category,4 and the additional structure p is a system of infinitary functions
〈pU : U an ultrafilter〉 on Ob(C ) such that if U is an ultrafilter on the set I
then F (pU (mi)i∈I ) = ΠUF (mi) for all m : I → Ob(C ). A functor between two

4 For the notions of a concrete category and a concrete functor, see [1, chap. 5].
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ultracategories (C,F, p) and (C ′, F ′, p′) is a concrete functor between (C,F )
and (C ′, F ′) that preserves all the functions pU . Two concrete ultracategories
are isomorphic if there is a functor between them that is a category theoretical
isomorphism.

Let T be a theory. Its concrete ultracategory is (C,F, p) where (C,F ) is Mod iso(T)
with the natural forgetful functor, and for all ultrafilters U on I and all systems
(Mi)i∈I we have pU ((Mi)i∈I ) = ΠUMi . Notice that an isomorphism between the
ultracategories of two theories preserves only the universes of the models (through the
forgetful functors) and the behaviour of isomorphisms and ultraproducts as functions
on Mod iso(T).

Theorem 4. Two first-order logic theories are definitionally equivalent if and only if their
concrete ultracategories are isomorphic.

Proof. This is just a reformulation of Theorem 2.

We note that one can define the concrete ultracategory of a theory to contain all
elementary embeddings in place of all isomorphisms only, as is usual. Theorem 4 is
true with this modified definition, too. The reason is that elementary embeddings are
preserved by definitional equivalence.

Remark 7 (Connection with Stone duality). Halvorson [14, sec. 7] proposes the
programme to investigate what structure a model class naturally has. This program involves
to endow the model class of a theory in such a way that from this structure on the model
class, the theory can be recovered up to definitional equivalence. Theorem 4 offers an
answer, namely concrete ultracategory of a theory. In category theoretical logic, Makkai
[26, theorem 4.1] offers the notion of (abstract) ultracategory and Awodey and Forssell [5]
offer the notion of topological groupoid in place of our concrete ultracategory. These three
structures are quite similar to each other, so there seems to be a convergence here in finding
a natural structure on the model classes. Unlike our concrete ultracategory, Makkai’s
ultracategory and Awodey and Forssell’s topological groupoids characterize first-order
theories only up to many-sorted definitional equivalence, which is weaker than classical
definitional equivalence. Halvorson [14] points out the connection of his programme with
generalizing Stone duality from propositional logic to predicate logic. We believe that a
full-fledged Stone duality can be based on Theorem 4. See also [16, 25, 26] and [8, p. 576].

Definability theory is used quite extensively in recent philosophy of science papers to
investigate what symmetries tell about theories and how to compare “structure” (see,
for example, [7, 10, 15, 19]). When one theory is an expansion of the other, there is a
natural functor between their model categories. This is the “reduct-formation” functor
denoted by Π in [7, above example 9]. It is shown in [7] that the question investigated
in the present paper gets rather nice answers in this special case. We now show how
one of the attractive theorems in [7] follows from Theorem 2. In fact, Theorem 2 in the
present paper is a generalization of [7, corollary 2] to the general case concerning two
arbitrary theories.

Corollary 2 (Corollary 2 in [7]). Let T+ be an expansion of T. Then T+ is
definitionally equivalent to T if and only if the reduct-formation functor Π is an
equivalence between their model iso-categories.

Proof. The reduct-formation functor Π is a concrete functor and it always preserves
isomorphisms and ultraproducts “forwards,” i.e., from T+ to T. It is a bijection up to
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isomorphism if and only if it is a bijection because the range of Π is always closed
under isomorphisms. Thus, if Π is a category theoretical equivalence, then each model
of T has a unique expansion in Mod(T+); therefore, Π preserves isomorphisms and
ultraproducts also backwards. Thus, if Π is a category theoretical equivalence, then it
satisfies (i) and (ii) in Theorem 2; hence, T and T+ are definitionally equivalent. The
other direction is easy.

Categorical equivalence of theories is investigated in [8] as a weaker form of
definitional equivalence. Two theories are defined to be categorically equivalent iff
there is a categorical equivalence between their model categories. It is shown in [8]
that categorical equivalence, many-dimensional (Morita) equivalence and definitional
equivalence are strictly stronger in this order. The question naturally arises about how
“large” the gaps between them are and under what additional properties these are the
same.

According to Corollary 2, the reduct-formation functor Π bridges the gap
between definitional equivalence and categorical equivalence between a theory and
its expansion. It is asked in [7, below corollary 2] what special property P of Π allows
it to fill the gap between categorical and definitional equivalence of theories. Theorem
2 gives an answer to this question. The answer it offers is that this special property P

of Π is that it is a concrete functor which preserves ultraproducts in both directions
when it is an equivalence.

Question 2 in [6] asks for an additional property P of functors such that two theories
are definitionally equivalent iff there is a category theoretical equivalence between their
model categories which has propertyP. This question is also mentioned in [29, note 23],
where it is written: “It is not known how much weaker categorical isomorphism is than
definitional equivalence, or Morita equivalence, which is a weakening of definitional
equivalence that allows one to define new sorts.” Now, Corollary 3 below says, roughly,
that categorical equivalence is just as much weaker than definitional equivalence as it
misses how ultraproducts behave and what the universes of models as well as the set
theoretical contents of morphisms are. In other words, two theories are definitionally
equivalent if and only if there is an equivalence between their model categories which
is a concrete isomorphism and preserves ultraproducts. We note that [19, theorem 3]
gives an answer to the above questions that is different in spirit from our Corollary 3.

Corollary 3. Two theories T1 and T2 are definitionally equivalent if and only if there
is a concrete ultraproduct-preserving functor F that is an equivalence between Mod (T1)
and Mod (T2).

Ultraproducts are intimately connected to first-order logic. It would be interesting
to see whether analogous theorems hold for other languages where ultraproducts can
be omitted or replaced with some other additional structure. Hudetz [19, 20] contain
interesting generalizations and results in the direction of broadening definability theory
in order to be more applicable in philosophy of science. These results may be used
perhaps to get an analogue of Theorem 2 in which ultraproducts do not occur.

§A. Appendix. The following generalized version of Beth’s theorem is well-known
as folklore. Both [26, 27] use this generalized version of Beth’s theorem without proof.
Since Theorem 2 relies heavily on this folklore theorem, here we give a short proof for
it. For simplicity, we assume that we have only relation symbols.
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Theorem 5. Assume that T is a theory on the language Σ ∪R and the Σ-reduct of each
model of T has at most one extension to a model of T. Then each element of R is explicitly
definable in T by a Σ-formula.

Proof. Let T′ denote the theory T where each relation symbol R ∈ R is replaced by
a new relation symbol R′ not occurring in the language of T (and having the same
arity). ThenT ∪ T′ |= ∀x̄[R(x̄) ↔ R′(x̄)] for allR ∈ R, since theR-free reduct of each
model of T has at most one expansion to a model of T. LetR ∈ R be arbitrary. By the
compactness theorem, there is a finite subset T0 of T such that T0 ∪ T′

0 |= ∀x̄[R(x̄) ↔
R′(x̄)]. Therefore, R has to occur in T0, since otherwise both the empty set and the
biggest relation of the same rank as R can be chosen in a model to satisfy T0. Since T0

is finite, it contains only finitely many elements from R, let the set of these elements be
R0 := {R1, ... , Rn}, and we may assume R1 is R. By the usual Beth’s theorem, there is
a formula ϕR on the language Σ ∪ {R2, ... , Rn} which defines R in T0. Now, let T1 be
the theory we obtain from T0 by replacing R in it everywhere with ϕR. Then T1 follows
from T0, onlyR2, ... , Rn occur in T1 and T1 ∪ T′

1 |= ∀x̄[R2(x̄) ↔ R′
2(x̄)]. By the usual

Beth’s theorem, there is a formula ϕR1 on the language Σ ∪ {R3, ... , Rn} which defines
R1 in T1. And so on. At the end we get Tn–1 on the language Σ ∪ {Rn} and a formula
ϕRn on the language Σ which definesRn in Tn–1. Let �n be ϕRn, let �n–1 be the formula
we get from ϕRn–1 by replacing Rn in it by �n, etc. Then �1 is in the language Σ which
defines R in T0 ⊆ T.
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[22] Lefever, K., & Székely, G. (2019). On generalization of definitional equivalence

to non-disjoint languages. Journal of Philosophical Logic, 48(4), 709–729.
[23] Lutz, S. (2017). What was the syntax–semantics debate in the philosophy of

science about? Philosophy and Phenomenological Research, 95(2), 319–352.
[24] Madarász, J. X. (2002). Logic and Relativity (in the Light of Defin-
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