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A STRUCTURAL APPROACH TO NOETHER LATTICES 

E. W. JOHNSON, J. A. JOHNSON, AND J. P. LEDIAEV 

0. In this paper we explore the extent to which embedding and isomorphism 
questions about a Noether lattice Jzf can be reduced to questions about 
simpler structures associated with ££. 

In § 1, we use a variation of Dilworth's congruence approach [2] to associate 
a collection of semi-local Noether lattices with a given Noether lattice «êf. 
We show that these semi-localizations determine ££ to within isomorphism 
(Corollary 1.5); thus embedding and isomorphism questions about ££ are 
largely reduced to the semi-local case. 

In § 2, we consider the influence on a semi-local Noether lattice oêf of the 
substructure d ££ consisting of all elements, all of whose associated primes are 
maximal. Here we find that if d«if can be embedded in a semi-local Noether 
lattice e£f *, then o£f can be embedded in an extension ££ of o£f *. Further, 
since d ££ splits in such a way that each component can be embedded in a 
localization of «if, jSf can be embedded in the direct sum of local Noether 
lattices, each of which is an extension of a localization of ££. It follows that 
embedding problems for jSf are largely dependent on the localizations of «if. 
The main tool of this section is that of an A -sequence [4]. The collection of 
all A -sequences in «if is closely related to the ^4-adic completion of a Noetherian 
ring. 

1. Let «if be a Noether lattice, S a non-empty subset of «if\ and A G «if\ If 
A = Qi A . . . A Qk is a normal decomposition of A where Qt is P r pr imary , 
we set A s = A {Qu Pi = X, for some X £ S}. Since {PU Pt 2g X, for some 
X 6 S} is an isolated set of primes of A, A s is well-defined. We also note that 
A s = A {Qi> Pi = X, for some X £ S} is a normal decomposition of A s, and 
(As)s = As. We now set I s = l a n d S£ 8 = {B e^f)B = Bs}. 

LEMMA 1.1. The operation A —* A s has the following properties: 

(1.0) A SB implies A s ^ B s, 

(1.1) (A AB)S = 04 f l A JB5)fl, 

(1.2) (il V B)s= (As V Bs)s, 

(1.3) ( i4-S) f l = (Aa-Bs)s, 

(1.4) ( 4 : S ) f l = (i4*:B*)a. 

Received April 23, 1969 and in revised form, January 6, 1970. 

657 

https://doi.org/10.4153/CJM-1970-072-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-072-9


658 E. W. JOHNSON, J. A. JOHNSON, AND J. P. LEDIAEV 

The proofs are straightforward modifications of the special case S = {D}, 
which may be found in [2]. 

By (1.0), 0S is a least element for if?
s . Since S£ s inherits the ascending 

chain condition from S£, it follows that every family of elements of S£ s has a 
greatest lower bound in S£s- Consequently, <=£?s is a complete lattice. 

We denote the greatest lower and least upper bound operations in i f s by 
A s and V s, respectively. And we define the product of A and B in ££s by 

A- SB = (AB)a. 

LEMMA 1.2. For elements A,B Ç i f 5 , 
( i ) i A 5 = ( ^ A 5 ) 5 = i A 5 5 , 

(ii) (4 V B)s = A VSB, 
(iii) il • S(B V 5 C) = (A • *B) V * (A • SC), 
(iv) i4:B = (4 :B)a = ,4 : S P. 

Proo/ of (i). (4 A 5 ) 5 ^ -4 s and (A A B) s ^ Bs, and so 

(4 AB)s^AsAsBs = A ASB. 

Furthermore, A A sB S A and A A s B ^ B, and so 

A ASB SA AB S {A AB)S. 

This establishes (i). 
The remaining identities follow similarly. 

Using the relations thus far developed, it is easy to see that i f \ is a Noether 
lattice: every element is the finite join of elements Es, where E is principal 
in S£, and elements of this type are principal in jSfs. I t is also seen that for 
elements Q, P £ J£ s, Q is P-primary in S£s if, and only if, Q is P-primary 
in if7. 

We note that if A G i f and 5 Ç i f , then there is a finite subset P of i f 
such that ^4^ = ^ ^ . This is so because every prime of A s is a prime of ̂ 4, 
and ( i s ) r = i r . Also, if A T = A s and P C £7 C 5, then 4̂ ^ = 4̂ 5. Hence, 
if P is any finite subset of i f , then S has a finite subset P such that 4̂ ^ = yl r 

for all A Ç P. As a consequence, we have the following lemma. 

LEMMA 1.3. L ^ A and B be elements of J£ and S C i f . Let K be the set of 
primes associated with any of the elements A s, B s, (A A B) s, (A V B) s, 
(AB) s. If T is any subset of S such that each element of K is contained in an 
element of P, then 

(i) AS,BS e^T, 
(ii) A S A S B S = ASATBS, 

(iii) As VSBS = As VTBS, 
(iv) A s • sB s = A s • TB S, 

(v) As'.sBs = AS'-TBS, 

Proof. Since each prime of A s, B s, {A V B) s, (A A B) s, and (AB) s is 

https://doi.org/10.4153/CJM-1970-072-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-072-9


NOETHER LATTICES 659 

contained in an element of T, we have that A s = A T, B s = BT, (A A B) s, 
(A V B) s, and (AB) s are elements of S£ T. Then, for example, 

As Vs Bs = (As V Bs)s = (A V 5 ) a = U V S ) r 

(Lemma 1.2). The rest of the lemma follows similarly. 

We are now in a position to prove the following. 

THEOREM 1.4. Let S£ and S£* be Noether lattices, S C <£, and \p a map of S 
into S£?*. Assume that, for every finite subset T of S, there is given a multiplicative 
lattice morphism <pT of S£ T into S£^^T) in such a way that T\ Ç T2 implies 
<PT\ == <PTt- Then there is a unique morphism (ps of S£ s into S£^^S) such that 
<PT Û <Psfor every finite subset T of S. Furthermore, 

(i) <ps is onto if each map <pT is onto, 
(ii) <ps is one-to-one if each map <pT is one-to-one, 

(iii) <ps preserves residuals if each map (pT does, 
(iv) <ps takes primaries to primaries, primes to primes, and principal elements 

to principal elements if each map <pT does. 

Proof. Let Sf be the collection of finite subsets of S. Then S£ s = U ^ s / 
and so the uniqueness of <ps is immediate. Also, ii A € S£Tx C\ S£ T2 and if 
T = TX\J T2, then S£Tl \JS£Tl C i f r and <pTi(A) = <pT(A) = ç^iA). 
Hence we can define cps on S£s by <Ps(A) = <pT(A) if A Ç S£T or, equiva
lent^ , <ps(A) = /\T£S/<PT(AT). Then, given A,B Ç S£s, there is only a 
finite number of primes associated with A, B, (A V B)s, and (AB) s, and 
so we can choose a finite subset 7 \ o f 5 such that each prime of A,B, (A V B) s, 
and (AB) s is contained in an element of 7Y Similarly, we can choose a finite 
subset T2 of 5 so that each prime of (ps(A)f(s), <ps(B)t(S), (<Ps(A) V <PS(B))MS), 

and (PSC4)PS( JB) )* (5 ) is contained in an element of \f/(T2). Set T = TX\J T2. 
Then by Lemma 1.3, <ps(A V s B) = <pT(A V T B) = <pT(A) V* ( r ) <pT(B) = 
ç>sC4) V* ( r ) <Ps(B), and similarly for 4̂ A 5 B, A • <jJ3. Hence <ps is a mor
phism of S£ s intOoèf^cs)- It is immediate that <p,sis one-to-one if each map (pT 

is one-to-one, and also that <ps is onto if each <pT is onto. If each ^ preserves 
residuals (i.e., cpT(A:TB) = (PT(A)\^{T)^T(B)), then <ps preserves residuals 
by Lemma 1.3. Since the primaries and primes of S£ s are the primaries and 
primes of S£ which are elements of S£ s, it is clear that cps preserves primes 
and primaries if each cpT does. 

Now, assume that each <pT preserves principal elements. Let E be principal 
in S£s. Then ET is principal mS£ T = (S£S)T, and thus <pT(ET) is principal 
in S£*^{T)- From this we conclude that <p s (E) is principal mSf*f( s) (Lemma 1.3). 

L e t ^ # ( i f ) denote the set of all maximal elements of S£. 

COROLLARY 1.5. Let S£ and S£* be Noether lattices and \f/ a map of\Jt(S£) 
onto<Jl'(S£\). Assume that for each finite subset S of^é{S£) there is a morphism 
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(Psof^s intoJ£*^(s) in such a way that Si C S2 implies (pSi Ikvsi- Then there 
is a unique morphism cp of ££ into J£* such that <p s S <p for all S Ç *Jt{££ ) /. 
As in Theorem 1.4, cp inherits the special properties of the maps <p s. In particular, 
cp is a Noether lattice embedding {in the sense of [1]) if each of the maps <ps is. 

We note that for 5 £ ^(oSf )/, J?f s is a semi-local Noether lattice. Hence, 
a Noether lattice is determined by its semi-localizations. 

2. We are now interested primarily in semi-local Noether lattices. For such 
a Noether lattice ,if, we let d ££ denote the subset consisting of I and all 
elements A such that every associated prime is a maximal element. We use 
do£f ° to denote d Jzf U {0}. Then d ££ ° is a complete, modular, multiplicative 
lattice. In this section, we use dJ£ to reduce the embedding problem for a 
semi-local Noether lattice to the local case. Before we begin, however, we 
require some definitions. 

(2.0). If {B i] is any sequence of elements of i f and A £ <j£f, then {B i] is 
an ^4-sequence if, given n ^ 1, it follows that Bt V An is constant for large i. 

(2.1). An A -sequence [B t) is a regular A -sequence if, given n, it follows that 
Bi V An is constant for all i ^ n. 

(2.2). An ^4-sequence {Bt} is a completely regular yl-sequence if 
Bn+i V An = Bn for all n è 1. 

(2.3). .if is ^4-complete if, given any completely regular A -sequence {J3*}, 
it follows that Bn = (A* -BO V An for all » ^ 1 . 

If {Bt} is any ^4-sequence and if Ct = /\j(Bj V 4̂*)> then {C*} is a com
pletely regular ^4-sequence. This follows since if Bj V A1 and £y V Ai+1 are 
constant for j ^ fe, then C* = Bj V 4* = ( 5 , V Ai+1) V A* = Ci+i V A*. 

We note that if /\t(B V -4*) = 5 for all B 6 i f , then a sequence {£*} of 
elements of i f is an A -sequence if, and only if, {B^} is a Cauchy sequence 
relative to the metric: d(D, C) = 1/2W if D V An = C V An and 
D V An+l 5* C V An+\ 

LEMMA 2.1. Let A, B, and Cbe elements of££. Then there is a positive integer k 
such that A A (B V C*) ^ (A A B) V AC1-* for all n ^ k. 

Proof. By the Artin-Rees Lemma for Noether lattices [3], 

(A V B) A (B V C1) ^ [(A V B) A (B V C*)](B V C*-*) V 5 , 

for some & and for all n ^ &. Then 

g ((il A (5 V C*)) V B)(B V C*-*) V B = ( i A ( 5 V C*))C*-* V 5 , 

and so 

4 A (^ V Cw) ^ A A ((A A (B V &))&-* V 5 ) 

< ( i A ( ^ V C*))^-* V ( i A 5 ) g ( i A 5 ) V i4C*-*. 
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COROLLARY 2.2. Let Au . . . , As and C be elements of ££. Then for some k 
and for all n ^ &, 

A (AtV Cn) ^ ( A i j v Cn~\ 
i=i \ t=i / 

Proof. By induction, we can assume that 
s-l / s-l \ 

A (At V Cn) S I A A A V Cn~kl for all n ^ h. 
i=l \ i=l / 

By Lemma 2.1, we can choose k2 such that 

\\^^i) v cr*1) A (4, v cn~kl) = (( A ^ j A (A, v r-*1)) v r-*1 

s(è/') \ / r,n~lcl~li'î \/ r<n—ki 

for all n "^ ki -\- k2. Thus 

A (4, v o ^ (('A A,) v r-*1) A wf v n 

^ ( ( ' A ^ , ) V Cn~kl) A(ASV Cn-kl) 

g (Â-4<) v r-fc, 
for sll n ^ k = h+ k2. 

COROLLARY 2.3. Le£ ^4, B, and C be elements of ££. Then, for some k and all 
n ^ k, 

(A V Cn):(B V C1) ^ (A:B) V C*-*. 

Proof, If JB is principal, we choose & such that 

(A V C ) A B è (A A B) V SC*-* 

for all n ^ k (Lemma 2.1). Then 

((4 V C"):B)B = (A V C1) AB ^(A AB) V BC"~* = ( ( 4 : 3 ) V Cw-*)£ 

and hence ( i V ( ? ) : ( 5 V C") ^ ( i V 0)\B ^ ( 4 :S ) V C*~\ for all 
n ^ k. 

If JB is arbitrary, we write B as the join B = B\ V . . . V Bs of principal 
elements. Then 

(i4 V Cn):(£ V C) = (i4 V Cn):5 = (4 V C"):(5i V . . . V 5.) 
S S 

= A (AV C*)-3t g A {(A:Bt) V C*-*'), 
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where kt is chosen for Bt as above. Let kr = max{&i, . . . , &,}. Then 
s s 

A ((ASt) V CT**) ^ A ((A:Bt) V CT*') 

g ( Â (i4-J3,)) V C*-*'-*", 

for some jfe" and all n *£> V + k"'. Since /\l-i(A:Bt) = A:(Vs
i=iBi) = A:B, 

we have (4 V Cw):(£ V C1) S (A:B) V C*-*, for all n è * = V + *". 

Now, let dc(J?) = {A £ ^;A ^ Cn, for some w}, so that dc(^) is a 
sub-multiplicative lattice of «if. Let ^X( «if ) denote the greatest lower bound 
of the collection of maximal elements of «if. 

THEOREM 2.4. Let C and C* be elements of Noether lattices ££ andJ£*, respec
tively, and d(p a morphism of dc(J£) into dC!ls(,if*) such that d<p(C) = C*. If 
J£* is da-complete and C* :g J (J^*), then dy extends uniquely to a morphism <p 
of ^ into J£*. Furthermore: 

(i) <p preserves residuals if dip preserves residuals; 
(ii) (p is one-to-one if d<p is one-to-one and C ^ J^ (J£); 

(iii) If dcp maps dc(<^) onto dc*(<^*), ^ is C-complete, and either d<p is 
one-to-one or ££/C is finite-dimensional, then <p maps ^ onto J£*. 

Proof. Set <p(A) = /\nà<p(A V C1). Then 

d<p(A V C"+1) V C*w = dcp(A V C*+1) V dcpiC1) = d<p(A V Cw), 

and so {d<p(A V C1)} is a completely regular C*-sequence in ££*. Since ££* is 
CVcomplete, it follows that 

<p(A) V C*n = j\idip(A V CO V CV = d^(i4 V C1) 

for all w. Then 

<p(A) V <?(£) V C*n = dp (4 V Cn) V d<p(B V Cw) 

= d<p(A V B V Cw) = *>(i4 V 5 ) V C*w, 

for all n. Hence, by the intersection theorem and the relation C* rg ^ / («i f*) , 
it follows that 

v(A) V ?(S) = A fo(A) V *>(B) v"c*n) 
n 

= A («,(4 y B) V C*") = ? ( 4 V B). 
n 

Similarly, 

(<p(A)<p(B))]v C*« = ((<p(A) V C*»)(*»(5) V C*»)) V C** 
= (d<pG4 v c)d<p(B v C")) v a*>(C) = <5?((G4 v c*)(3 v c)) v C") 

= Ô ^ - B VC») = *»(4.B) V C*re, 

for all n, and thus <s (.4)^(2?) = <p(AB). 
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To see that <p preserves meets, we use Corollary 2.2 to choose k so that 
(A V C") A (5 V C1) g (A A B) V C*-fc, for all w ^ . Then 

<p{A) A *>(5) ^ (*>(ii) V C*n) A (*>(5) V C*w) = d*>(i4 V CO A d<p(B V Cw) 

= d<p((A V C1) A (B V C1)) S d<p((A A B) V Cw"*) = ^(i4 A 5 ) V C**"*, 

for all n ^ k. Thus ^ ( 4 ) A <p(B) g A»(*>(^ A 5 ) V C*w-*) = *>(i4 A S ) . 
Since <p is clearly isotone, it follows that <p(̂ 4 A B) = <?G4) A <p(B). 

To see that <p preserves residuals if dcp does, we use Corollary 2.3 to choose k 
so that (A V C*):(5 V Cw) g ( 4 : 5 ) V C*-*, for all » à *. Then 

(p(4):*>(5)) £ (*>(i4) V C*w):(<?(5) V C*n) = d*>(i4 V Cn):d<p(B V C*) 

= d^((4 V C*):(B V C*)) ^ d^ ( (4 :5 ) V Cn~k) = ^ ( 4 : 5 ) V C*"-fc, 

for all » ^ k. Thus ^ ( 4 ) : ^ ( 5 ) £ /\H(<p(A:B) V C*n~k) = ^ ( 4 : 5 ) . Also, 
since <p is isotone, we have <p(A:B)<p(B) = <p((A:B)B) ^ <p(A), so that 
<^?(4:5) g (p(A)i(p(B). Hence <p(A:B) = <p(^4):<p(5), if d<p preserves residuals. 

Assume now that d<p is one-to-one and that C :g <f ( «Sf ). Then <p (4 ) = <p (5) 
implies d^(4 V C") = *>(4) V C*w = ç>(5) V C*n = a^>(5 V C1), for all n. 
Hence A V C* = 5 V Cn, for all », and therefore 

4 = A (A V C*) = A (5 V C") = 5 . 
n n 

We now assume that ££ is C-complete and that dip maps dc(oêf ) onto 
dc*(>£f*)' If d<p is one-to-one and -D* G «èf*, then for each i there is a unique 
Z>< à C* such that d<p(Z>0 = Z>* V C*<. Further, since 

d<p(Di+1 V CO = CD* V C**+1) V C*« = dviDi), 

we have that {Dt} is a completely regular C-sequence in oSf. If Z) = /\iDif 

then D V C* = -D< for all i, and so 

<P(D) v a * = vip v co = *>(£>*) = z>* v c**, 
for all i, and therefore *>(£) = A < ( ^ ) V C*0 = A i ( D * V C * , ) = Z>*. 
On the other hand, if <j£f/C is finite-dimensional, then«=£f/C* is finite-dimensional 
for all i [3]. In this case, if D* £ «Sf * we choose D / ^ C* for each i such that 
ip{Di) — D* V C*4, but of course £>/ need not be uniquely determined. Set 
Di = /\jgiD/. Then {Df} is a decreasing sequence ini^f such that 

vlpt) = J AD A = A ^(p/) = A (p* v c*0 = z>* v c*'. 

Then by the descending chain condition in JS?'/C*, it follows that {Z)*} is a 
C-sequence. Set Dj = /\j(Dj V C'), and D = /\iDt. Then {Df} is a com
pletely regular C-sequence with <p(Dt) = D* V C**, for all i. Therefore, 
D*^D*V C*1 = ^(PO ^ ^(5> V CO = ipQO) V a*. Hence 

D * ^ A (v(D) V C*n) = ^(2?) g A p(£>n) = A ( D , v n = 2?*. 
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If ĉ f is a semi-local Noether lattice, then oSfIf («if ) is finite-dimensional. 
Also, in this case, d / ( J ^ ) = d{J£). Hence we have the following result. 

COROLLARY 2.5. Let J£ be a semi-local Noether lattice and J£* an arbitrary 
Noether lattice. Let d<p be a morphism of d J£ into S£* with d<p(f(J£)) = 
C* tk c/(<^*)- If <$£* is C*-complete, then d<p extends to a morphism ip of J£ 
into oâf*. Further, <p maps f£ onto J£* if dp maps d ££ onto d ^£* and J?f is 

-complete. And y is one-to-one if dip is one-to-one. 

Proof. If d<p(J(&)) = C*, then A è Jn implies d<p(A) è M < / w ) = 
(d<p(^/))n = C*n, and thus d<p is a morphism of d/eSf into dc*(^) with 

Hence, a semi-local Noether latticed which is ̂ («if)-complete is determined 
by d «if. It will be shown later that a semi-local Noether lattice J?f is embed-
able in a semi-local Noether lattice i f* which is ^(Jzf*)-complete and has 
the property that dJ^ — dJ^*. In fact, if <=£f is the lattice of ideals of a 
Noetherian ring R, then i f * is the lattice of ideals of the completion R* of R 
in the Jacobson radical topology. For the present, however, we are interested 
in the structure of semi-local Noether lattices «Jèf which are f (J^) -complete. 

LEMMA 2.6. Let ^f be a semi-local Noether lattice which is ^ {^)-complete, 
and let P be a maximal prime of ££. Then££ is P-complete. 

Proof. Let {.4*} be a completely regular P-sequence in „$f. Then {At} is 
decreasing, and so by the descending chain condition in ££/<${££)n, {At} is 
a </( i f ) -sequence. For each i, set Bt = /\J(AJ V j \ l £ )'). Then 
Aj g Bt ^ Aj V J{££y g 4 , , for large j , and thus / \*£* = A*-4*- S i n c e 

i f is ̂ ( i f ) -complete, the result follows. 

COROLLARY 2.7. Le/ J£ be a semi-local Noether lattice which is ^ / ( i f )-
complete. If P is any maximal prime of <$£, then^£' P = J£{P}is P-complete. 

Proof. Let {At} be any completely regular P-sequence in i f P. Then {^} 
is a completely regular P-sequence in i f , and so for each n, An = (/\ ^ t) V P n . 
Hence A = (An)P = ((A«^<) V PW)P = (A<^<) V P P * . It follows that 
££P is P-complete. 

THEOREM 2.8. Letf£ be a semi-local Noether lattice which is </ (J£ )-complete. 
Let P i , . . . , Pk be the maximal primes of i f \ Then ££ is the direct sum of the 
local Noether lattices ££i — if }

P i . 

Proof. Let A be any element of d££. Then A has a decomposition 
A = Qi A . . . A Qjt where, for each i, either Qt is P r primary or Qt = / . 
Since each of the primes of 4̂ is maximal, it follows that the decomposition 
is unique and that A = Qi A . . . A Q* = Qi. . . Q*. Consequently, the map 
(<2i, . . . , ( ? * ) - » Qi A . . . A & of d^x 0 . . . 0 d^k to d i f is a multi
plicative lattice isomorphism. 
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The maximal primes of «Sf * = ££\ © . . . © =£fk are the elements 

(/,..., Pu . . . , J), thus aif* = aifi © ... © d&k and dif7* s aif. 
Also, each component «if * of J*f * is P rcomplete (Lemma 2.7), and hence «if* 
i s / - comple te . It follows (Corollary 2.5) that «if ^«if* = i f i © . . . © «if&. 

THEOREM 2.9. Let££ be a semi-local Noether lattice. ThenJ^ is a sublattice of a 
Noether latticed* which is semi-local and J^ {J£ *)-complete, and has the property 
that a i f ^ a if*. 

Proof. Let Pi , . . . , Pk be the maximal elements of «if, and set «if * = S£Pi, 
i = 1, . . . , k. In [4] it was shown that any local Noether lattice (iff, P*) 
can be embedded in a local Noether lattice («if**, P*) which is P/"-complete 
in such a way that d J^ t = d J£ *. We use that result and set 

i^* = i f i* © . . . © if**. 

It follows that «if* is ̂ / ( «if*)-complete. Also, since 

a i f ^ dJSfPl © . . . © di fp* ^ d i f i * © . . . © dJfk*, 

it follows from Corollary 2.5 that ££ is embedded in J£* in the desired way. 

THEOREM 2.10. Let ( i f , Pu..., Pk) and ( if*, Pi*, . . . , P**, . . . , Pn*) 
be semi-local Noether lattices. Assume that, for each i — 1, . . . , k there is a 
morphism <pi of J£Pi into ££*Pi*. If J£* is <fl(^*)-complete, then there is a 
morphism <p of' f£ into ££*. Further, <p is one-to-one if each <pt is one-to-one. 

Proof. In this case, there is a natural morphism dcp of 

d^ = d£?Pl © . . . © doSfp, 

into d^* = d^*Pl* © . . . © d<^*Pk* © . . . © d^*Pn* defined by 

d<p(Au ...,Ak) = (<Pi(Ai), . . . , <pk(Ak), 1,1,.. . , I). 

The result follows from Corollary 2.5. 
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