A STRUCTURAL APPROACH TO NOETHER LATTICES

E. W. JOHNSON, J. A. JOHNSON, AND J. P. LEDIAEV

0. In this paper we explore the extent to which embedding and isomorphism questions about a Noether lattice \mathscr{L} can be reduced to questions about simpler structures associated with \mathscr{L}.

In § 1, we use a variation of Dilworth's congruence approach [2] to associate a collection of semi-local Noether lattices with a given Noether lattice \mathscr{L}. We show that these semi-localizations determine \mathscr{L} to within isomorphism (Corollary 1.5); thus embedding and isomorphism questions about \mathscr{L} are largely reduced to the semi-local case.

In § 2, we consider the influence on a semi-local Noether lattice \mathscr{L} of the substructure $\partial \mathscr{L}$ consisting of all elements, all of whose associated primes are maximal. Here we find that if $\partial \mathscr{L}$ can be embedded in a semi-local Noether lattice \mathscr{L}^{*}, then \mathscr{L} can be embedded in an extension $\overline{\mathscr{L}}$ of \mathscr{L}^{*}. Further, since $\partial \mathscr{L}$ splits in such a way that each component can be embedded in a localization of \mathscr{L}, \mathscr{L} can be embedded in the direct sum of local Noether lattices, each of which is an extension of a localization of \mathscr{L}. It follows that embedding problems for \mathscr{L} are largely dependent on the localizations of \mathscr{L}. The main tool of this section is that of an A-sequence [4]. The collection of all A-sequences in \mathscr{L} is closely related to the A-adic completion of a Noetherian ring.

1. Let \mathscr{L} be a Noether lattice, S a non-empty subset of \mathscr{L}, and $A \in \mathscr{L}$. If $A=Q_{1} \wedge \ldots \wedge Q_{k}$ is a normal decomposition of A where Q_{i} is P_{i}-primary, we set $A_{S}=\bigwedge\left\{Q_{i} ; P_{i} \leqq X\right.$, for some $\left.X \in S\right\}$. Since $\left\{P_{i} ; P_{i} \leqq X\right.$, for some $X \in S\}$ is an isolated set of primes of A, A_{S} is well-defined. We also note that $A_{S}=\bigwedge\left\{Q_{i} ; P_{i} \leqq X\right.$, for some $\left.X \in S\right\}$ is a normal decomposition of A_{S}, and $\left(A_{S}\right)_{s}=A_{s}$. We now set $I_{s}=I$ and $\mathscr{L}_{S}=\left\{B \in \mathscr{L} ; B=B_{s}\right\}$.

Lemma 1.1. The operation $A \rightarrow A_{s}$ has the following properties:

$$
\begin{gather*}
A \leqq B \text { implies } A_{S} \leqq B_{S} \tag{1.0}\\
(A \wedge B)_{S}=\left(A_{S} \wedge B_{S}\right)_{S} \tag{1.1}\\
(A \vee B)_{S}=\left(A_{S} \vee B_{S}\right)_{S} \tag{1.2}\\
(A \cdot B)_{S}=\left(A_{S} \cdot B_{S}\right)_{S} \tag{1.3}\\
\quad(A: B)_{s}=\left(A_{s}: B B_{S}\right)_{s} \tag{1.4}
\end{gather*}
$$

Received April 23, 1969 and in revised form, January 6, 1970.

The proofs are straightforward modifications of the special case $S=\{D\}$, which may be found in [2].

By (1.0), 0_{s} is a least element for \mathscr{L}_{s}. Since \mathscr{L}_{s} inherits the ascending chain condition from \mathscr{L}, it follows that every family of elements of \mathscr{L}_{S} has a greatest lower bound in \mathscr{L}_{s}. Consequently, \mathscr{L}_{s} is a complete lattice.

We denote the greatest lower and least upper bound operations in \mathscr{L}_{S} by \wedge_{S} and \vee^{s}, respectively. And we define the product of A and B in \mathscr{L}_{S} by $A \cdot{ }_{s} B=(A B)_{s}$.

Lemma 1.2. For elements $A, B \in \mathscr{L}_{S}$,
(i) $A \wedge B=(A \wedge B)_{S}=A \wedge{ }_{S} B$,
(ii) $(A \vee B)_{s}=A \vee{ }^{s} B$,
(iii) $A \cdot{ }_{s}\left(B \vee{ }^{s} C\right)=\left(A \cdot{ }_{s} B\right) \vee^{s}\left(A \cdot{ }_{s} C\right)$,
(iv) $A: B=(A: B)_{s}=A:{ }_{s} B$.

Proof of (i). $(A \wedge B)_{S} \leqq A_{S}$ and $(A \wedge B)_{S} \leqq B_{S}$, and so

$$
(A \wedge B)_{S} \leqq A_{S} \wedge_{S} B_{S}=A \wedge_{S} B
$$

Furthermore, $A \wedge_{s} B \leqq A$ and $A \wedge_{s} B \leqq B$, and so

$$
A \wedge_{s} B \leqq A \wedge B \leqq(A \wedge B)_{S}
$$

This establishes (i).
The remaining identities follow similarly.
Using the relations thus far developed, it is easy to see that \mathscr{L}_{S} is a Noether lattice: every element is the finite join of elements E_{S}, where E is principal in \mathscr{L}, and elements of this type are principal in \mathscr{L}_{s}. It is also seen that for elements $Q, P \in \mathscr{L}_{S}, Q$ is P-primary in \mathscr{L}_{S} if, and only if, Q is P-primary in \mathscr{L}.

We note that if $A \in \mathscr{L}$ and $S \subseteq \mathscr{L}$, then there is a finite subset T of \mathscr{L} such that $A_{T}=A_{S}$. This is so because every prime of A_{S} is a prime of A, and $\left(A_{S}\right)_{T}=A_{T}$. Also, if $A_{T}=A_{S}$ and $T \subseteq U \subseteq S$, then $A_{U}=A_{S}$. Hence, if F is any finite subset of \mathscr{L}, then S has a finite subset T such that $A_{S}=A_{T}$ for all $A \in F$. As a consequence, we have the following lemma.

Lemma 1.3. Let A and B be elements of \mathscr{L} and $S \subseteq \mathscr{L}$. Let K be the set of primes associated with any of the elements $A_{S}, B_{S},(A \wedge B)_{S},(A \vee B)_{S}$, $(A B)_{s}$. If T is any subset of S such that each element of K is contained in an element of T, then
(i) $A_{S}, B_{S} \in \mathscr{L}_{T}$,
(ii) $A_{S} \wedge_{S} B_{S}=A_{S} \wedge_{T} B_{S}$,
(iii) $A_{S} \vee^{s} B_{S}=A_{S} \vee^{T} B_{S}$,
(iv) $A_{S} \cdot{ }_{S} B_{S}=A_{S} \cdot{ }_{T} B_{S}$,
(v) $A_{s}:{ }_{S} B_{S}=A_{S}:{ }_{T} B_{S}$,

Proof. Since each prime of $A_{S}, B_{S},(A \vee B)_{S},(A \wedge B)_{S}$, and $(A B)_{S}$ is
contained in an element of T, we have that $A_{S}=A_{T}, B_{S}=B_{T},(A \wedge B)_{S}$, $(A \vee B)_{S}$, and $(A B)_{S}$ are elements of \mathscr{L}_{T}. Then, for example,

$$
\begin{aligned}
A_{S} \vee^{S} B_{S}=\left(A_{S} \vee B_{S}\right)_{S}= & (A \vee B)_{S}=(A \vee B)_{T} \\
& =\left(A_{T} \vee B_{T}\right)_{T}=A_{T} \vee^{T} B_{T}=A_{S} \vee^{T} B_{S}
\end{aligned}
$$

(Lemma 1.2). The rest of the lemma follows similarly.
We are now in a position to prove the following.
Theorem 1.4. Let \mathscr{L} and \mathscr{L}_{*} be Noether lattices, $S \subseteq \mathscr{L}$, and ψ a map of S into \mathscr{L}_{*}. Assume that, for every finite subset T of S, there is given a multiplicative lattice morphism φ_{T} of \mathscr{L}_{T} into $\mathscr{L}_{* \psi(T)}$ in such a way that $T_{1} \subseteq T_{2}$ implies $\varphi_{T_{1}} \leqq \varphi_{T_{2}}$. Then there is a unique morphism φ_{S} of \mathscr{L}_{S} into $\mathscr{L}_{* \psi(S)}$ such that $\varphi_{T} \leqq \varphi_{S}$ for every finite subset T of S. Furthermore,
(i) φ_{S} is onto if each $\operatorname{map} \varphi_{T}$ is onto,
(ii) φ_{S} is one-to-one if each map φ_{T} is one-to-one,
(iii) φ_{S} preserves residuals if each $\operatorname{map} \varphi_{T}$ does,
(iv) φ_{S} takes primaries to primaries, primes to primes, and principal elements to principal elements if each map φ_{T} does.

Proof. Let S_{f} be the collection of finite subsets of S. Then $\mathscr{L}_{S}=\cup_{T \in S_{f}} \mathscr{L}_{T}$, and so the uniqueness of φ_{S} is immediate. Also, if $A \in \mathscr{L}_{T_{1}} \cap \mathscr{L}_{T_{2}}$ and if $T=T_{1} \cup T_{2}$, then $\mathscr{L}_{T_{1}} \cup \mathscr{L}_{T_{2}} \subseteq \mathscr{L}_{T}$ and $\varphi_{T_{1}}(A)=\varphi_{T}(A)=\varphi_{T_{2}}(A)$. Hence we can define φ_{S} on \mathscr{L}_{S} by $\varphi_{S}(A)=\varphi_{T}(A)$ if $A \in \mathscr{L}_{T}$ or, equivalently, $\varphi_{S}(A)=\bigwedge_{T \in S,} \varphi_{T}\left(A_{T}\right)$. Then, given $A, B \in \mathscr{L}_{S}$, there is only a finite number of primes associated with $A, B,(A \vee B)_{s}$, and $(A B)_{s}$, and so we can choose a finite subset T_{1} of S such that each prime of $A, B,(A \vee B)_{S}$, and $(A B)_{s}$ is contained in an element of T_{1}. Similarly, we can choose a finite subset T_{2} of S so that each prime of $\varphi_{S}(A)_{\psi(S)}, \varphi_{S}(B)_{\psi(S)},\left(\varphi_{S}(A) \vee \varphi_{S}(B)\right)_{\psi(S)}$, and $\left(\varphi_{S}(A) \varphi_{S}(B)\right)_{\psi(S)}$ is contained in an element of $\psi\left(T_{2}\right)$. Set $T=T_{1} \cup T_{2}$. Then by Lemma 1.3, $\varphi_{S}\left(A \vee^{s} B\right)=\varphi_{T}\left(A \vee^{T} B\right)=\varphi_{T}(A) \vee^{\psi(T)} \varphi_{T}(B)=$ $\varphi_{S}(A) \vee^{\psi(T)} \varphi_{S}(B)$, and similarly for $A \wedge_{S} B, A \cdot{ }_{S} B$. Hence φ_{S} is a morphism of \mathscr{L}_{S} into $\mathscr{L}_{* \psi(S)}$. It is immediate that φ_{S} is one-to-one if each map φ_{T} is one-to-one, and also that φ_{S} is onto if each φ_{T} is onto. If each φ_{T} preserves residuals (i.e., $\left.\varphi_{T}\left(A:_{T} B\right)=\varphi_{T}(A): \psi_{(T)} \varphi_{T}(B)\right)$, then φ_{S} preserves residuals by Lemma 1.3. Since the primaries and primes of \mathscr{L}_{S} are the primaries and primes of \mathscr{L} which are elements of \mathscr{L}_{S}, it is clear that φ_{S} preserves primes and primaries if each φ_{T} does.

Now, assume that each φ_{T} preserves principal elements. Let E be principal in \mathscr{L}_{S}. Then E_{T} is principal in $\mathscr{L}_{T}=\left(\mathscr{L}_{S}\right)_{T}$, and thus $\varphi_{T}\left(E_{T}\right)$ is principal in $\mathscr{L}_{* \psi(T)}$. From this we conclude that $\varphi_{S}(E)$ is principal in $\mathscr{L}_{* \psi(S)}$ (Lemma 1.3).

Let $\mathscr{M}(\mathscr{L})$ denote the set of all maximal elements of \mathscr{L}.
Corollary 1.5. Let \mathscr{L} and \mathscr{L}_{*} be Noether lattices and ψ a map of $\mathscr{M}(\mathscr{L})$ onto $\mathscr{M}\left(\mathscr{L}_{*}\right)$. Assume that for each finite subset S of $\mathscr{M}(\mathscr{L})$ there is a morphism
φ_{S} of \mathscr{L}_{S} into $\mathscr{L}_{* \psi(S)}$ in such a way that $S_{1} \subseteq S_{2}$ implies $\varphi_{S_{1}} \leqq \varphi_{S_{2}}$. Then there is a unique morphism φ of \mathscr{L} into \mathscr{L}_{*} such that $\varphi_{S} \leqq \varphi$ for all $S \in \mathscr{M}(\mathscr{L})_{f}$. As in Theorem 1.4, φ inherits the special properties of the maps φ_{s}. In particular, φ is a Noether lattice embedding (in the sense of [1]) if each of the maps φ_{S} is.

We note that for $S \in \mathscr{M}(\mathscr{L})_{f}, \mathscr{L}_{S}$ is a semi-local Noether lattice. Hence, a Noether lattice is determined by its semi-localizations.
2. We are now interested primarily in semi-local Noether lattices. For such a Noether lattice \mathscr{L}, we let $\partial \mathscr{L}$ denote the subset consisting of I and all elements A such that every associated prime is a maximal element. We use $\partial \mathscr{L}{ }^{0}$ to denote $\partial \mathscr{L} \cup\{0\}$. Then $\partial \mathscr{L}{ }^{0}$ is a complete, modular, multiplicative lattice. In this section, we use $\partial \mathscr{L}$ to reduce the embedding problem for a semi-local Noether lattice to the local case. Before we begin, however, we require some definitions.
(2.0). If $\left\{B_{i}\right\}$ is any sequence of elements of \mathscr{L} and $A \in \mathscr{L}$, then $\left\{B_{i}\right\}$ is an A-sequence if, given $n \geqq 1$, it follows that $B_{i} \vee A^{n}$ is constant for large i.
(2.1). An A-sequence $\left\{B_{i}\right\}$ is a regular A-sequence if, given n, it follows that $B_{i} \vee A^{n}$ is constant for all $i \geqq n$.
(2.2). An A-sequence $\left\{B_{i}\right\}$ is a completely regular A-sequence if $B_{n+1} \vee A^{n}=B_{n}$ for all $n \geqq 1$.
(2.3). \mathscr{L} is A-complete if, given any completely regular A-sequence $\left\{B_{i}\right\}$, it follows that $B_{n}=\left(\bigwedge_{i} B_{i}\right) \vee A^{n}$ for all $n \geqq 1$.

If $\left\{B_{i}\right\}$ is any A-sequence and if $C_{i}=\bigwedge_{j}\left(B_{j} \vee A^{i}\right)$, then $\left\{C_{i}\right\}$ is a completely regular A-sequence. This follows since if $B_{j} \vee A^{i}$ and $B_{j} \vee A^{i+1}$ are constant for $j \geqq k$, then $C_{i}=B_{j} \vee A^{i}=\left(B_{j} \vee A^{i+1}\right) \vee A^{i}=C_{i+1} \vee A^{i}$.

We note that if $\bigwedge_{i}\left(B \vee A^{i}\right)=B$ for all $B \in \mathscr{L}$, then a sequence $\left\{B_{i}\right\}$ of elements of \mathscr{L} is an A-sequence if, and only if, $\left\{B_{i}\right\}$ is a Cauchy sequence relative to the metric: $d(D, C)=1 / 2^{n} \quad$ if $D \vee A^{n}=C \vee A^{n}$ and $D \vee A^{n+1} \neq C \vee A^{n+1}$.

Lemma 2.1. Let A, B, and C be elements of \mathscr{L}. Then there is a positive integer k such that $A \wedge\left(B \vee C^{n}\right) \leqq(A \wedge B) \vee A C^{n-k}$ for all $n \geqq k$.

Proof. By the Artin-Rees Lemma for Noether lattices [3],

$$
(A \vee B) \wedge\left(B \vee C^{n}\right) \leqq\left[(A \vee B) \wedge\left(B \vee C^{k}\right)\right]\left(B \vee C^{n-k}\right) \vee B
$$

for some k and for all $n \geqq k$. Then

$$
\begin{aligned}
& A \wedge\left(B \vee C^{n}\right) \leqq(A \vee B) \wedge\left(B \vee C^{n}\right) \\
& \quad \leqq\left(\left(A \wedge\left(B \vee C^{k}\right)\right) \vee B\right)\left(B \vee C^{n-k}\right) \vee B=\left(A \wedge\left(B \vee C^{k}\right)\right) C^{n-k} \vee B
\end{aligned}
$$ and so

$$
\begin{aligned}
A \wedge\left(B \vee C^{n}\right) \leqq & A \wedge\left(\left(A \wedge\left(B \vee C^{k}\right)\right) C^{n-k} \vee B\right) \\
& \leqq\left(A \wedge\left(B \vee C^{k}\right)\right) C^{n-k} \vee(A \wedge B) \leqq(A \wedge B) \vee A C^{n-k}
\end{aligned}
$$

Corollary 2.2. Let A_{1}, \ldots, A_{s} and C be elements of \mathscr{L}. Then for some k and for all $n \geqq k$,

$$
\bigwedge_{i=1}^{s}\left(A_{i} \vee C^{n}\right) \leqq\left(\bigwedge_{i=1}^{s} A_{i}\right) \vee C^{n-k}
$$

Proof. By induction, we can assume that

$$
\bigwedge_{i=1}^{s-1}\left(A_{i} \vee C^{n}\right) \leqq\left(\bigwedge_{i=1}^{s-1} A_{i}\right) \vee C^{n-k_{1}} \quad \text { for all } n \geqq k_{1} .
$$

By Lemma 2.1, we can choose k_{2} such that

$$
\begin{aligned}
\left(\left(\bigwedge_{i=1}^{s-1} A_{i}\right) \vee C^{n-k_{1}}\right) \wedge\left(A_{s} \vee C^{n-k_{1}}\right) & =\left(\left(\bigwedge_{i=1}^{s-1} A_{i}\right) \wedge\left(A_{s} \vee C^{n-k_{1}}\right)\right) \vee C^{n-k_{1}} \\
& \leqq\left(\bigwedge_{i=1}^{s} A_{i}\right) \vee C^{n-k_{1}-k_{2}} \vee C^{n-k_{1}} \\
& =\left(\bigwedge_{i=1}^{s} A_{i}\right) \vee C^{n-k_{1}-k_{2}}
\end{aligned}
$$

for all $n \geqq k_{1}+k_{2}$. Thus

$$
\begin{aligned}
\bigwedge_{i=1}^{s}\left(A_{i} \vee C^{n}\right) & \leqq\left(\left(\bigwedge_{i=1}^{s-1} A_{i}\right) \vee C^{n-k_{1}}\right) \wedge\left(A_{s} \vee C^{n}\right) \\
& \leqq\left(\left(\bigwedge_{i=1}^{s-1} A_{i}\right) \vee C^{n-k_{1}}\right) \wedge\left(A_{s} \vee C^{n-k_{1}}\right) \\
& \leqq\left(\bigwedge_{i=1}^{s} A_{i}\right) \vee C^{n-k},
\end{aligned}
$$

for all $n \geqq k=k_{1}+k_{2}$.
Corollary 2.3. Let A, B, and C be elements of \mathscr{L}. Then, for some k and all $n \geqq k$,

$$
\left(A \vee C^{n}\right):\left(B \vee C^{n}\right) \leqq(A: B) \vee C^{n-k}
$$

Proof. If B is principal, we choose k such that

$$
\left(A \vee C^{n}\right) \wedge B \leqq(A \wedge B) \vee B C^{n-k}
$$

for all $n \geqq k$ (Lemma 2.1). Then $\left(\left(A \vee C^{n}\right): B\right) B=\left(A \vee C^{n}\right) \wedge B \leqq(A \wedge B) \vee B C^{n-k}=\left((A: B) \vee C^{n-k}\right) B$ and hence $\left(A \vee C^{n}\right):\left(B \vee C^{n}\right) \leqq\left(A \vee C^{n}\right): B \leqq(A: B) \vee C^{n-k}$, for all $n \geqq k$.

If B is arbitrary, we write B as the join $B=B_{1} \vee \ldots \vee B_{s}$ of principal elements. Then

$$
\begin{aligned}
\left(A \vee C^{n}\right):\left(B \vee C^{n}\right)=\left(A \vee C^{n}\right): B & =\left(A \vee C^{n}\right):\left(B_{1} \vee \ldots \vee B_{s}\right) \\
& =\bigwedge_{i=1}^{8}\left(A \vee C^{n}\right): B_{i} \leqq \bigwedge_{i=1}^{s}\left(\left(A: B_{i}\right) \vee C^{n-k i}\right),
\end{aligned}
$$

where k_{i} is chosen for B_{i} as above. Let $k^{\prime}=\max \left\{k_{1}, \ldots, k_{s}\right\}$. Then

$$
\begin{aligned}
\bigwedge_{i=1}^{s}\left(\left(A: B_{i}\right) \vee C^{n-k_{i}}\right) & \leqq \bigwedge_{i=1}^{s}\left(\left(A: B_{i}\right) \vee C^{n-k^{\prime}}\right) \\
& \leqq\left(\bigwedge_{i=1}^{s}\left(A: B_{i}\right)\right) \vee C^{n-k^{\prime}-k^{\prime \prime}},
\end{aligned}
$$

for some $k^{\prime \prime}$ and all $n \geqq k^{\prime}+k^{\prime \prime}$. Since $\bigwedge_{i=1}^{s}\left(A: B_{i}\right)=A:\left(\bigvee_{i=1}^{s} B_{i}\right)=A: B$, we have $\left(A \vee C^{n}\right):\left(B \vee C^{n}\right) \leqq(A: B) \vee C^{n-k}$, for all $n \geqq k=k^{\prime}+k^{\prime \prime}$.

Now, let $\partial_{C}(\mathscr{L})=\left\{A \in \mathscr{L} ; A \geqq C^{n}\right.$, for some $\left.n\right\}$, so that $\partial_{C}(\mathscr{L})$ is a sub-multiplicative lattice of \mathscr{L}. Let $\mathscr{J}(\mathscr{L})$ denote the greatest lower bound of the collection of maximal elements of \mathscr{L}.

Theorem 2.4. Let C and C_{*} be elements of Noether lattices \mathscr{L} and \mathscr{L}_{*}, respectively, and $\partial \varphi$ a morphism of $\partial_{C}(\mathscr{L})$ into $\partial_{C *}\left(\mathscr{L}_{*}\right)$ such that $\partial_{\varphi}(C)=C_{*}$. If \mathscr{L}_{*} is C_{*}-complete and $C_{*} \leqq \mathscr{J}\left(\mathscr{L}_{*}\right)$, then $\partial \varphi$ extends uniquely to a morphism φ of \mathscr{L} into \mathscr{L}_{*}. Furthermore:
(i) φ preserves residuals if $\partial \varphi$ preserves residuals;
(ii) φ is one-to-one if $\partial \varphi$ is one-to-one and $C \leqq \mathscr{J}(\mathscr{L})$;
(iii) If $\partial \varphi$ maps $\partial_{C}(\mathscr{L})$ onto $\partial_{C *}\left(\mathscr{L}_{*}\right), \mathscr{L}$ is C-complete, and either ∂_{φ} is one-to-one or \mathscr{L} / C is finite-dimensional, then φ maps \mathscr{L} onto $\mathscr{L} *$.
Proof. Set $\varphi(A)=\bigwedge_{n} \partial \varphi\left(A \vee C^{n}\right)$. Then

$$
\partial \varphi\left(A \vee C^{n+1}\right) \vee C_{*}^{n}=\partial \varphi\left(A \vee C^{n+1}\right) \vee \partial \varphi\left(C^{n}\right)=\partial \varphi\left(A \vee C^{n}\right)
$$

and so $\left\{\partial_{\varphi}\left(A \vee C^{n}\right)\right\}$ is a completely regular C_{*}-sequence in \mathscr{L}_{*}. Since \mathscr{L}_{*} is C_{*}-complete, it follows that

$$
\varphi(A) \vee C_{*}^{n}=\bigwedge_{i} \partial \varphi\left(A \vee C^{i}\right) \vee C_{*}^{n}=\partial \varphi\left(A \vee C^{n}\right)
$$

for all n. Then

$$
\begin{aligned}
\varphi(A) \vee \varphi(B) \vee C_{*}^{n}=\partial \varphi\left(A \vee C^{n}\right) & \vee \partial \varphi\left(B \vee C^{n}\right) \\
& =\partial \varphi\left(A \vee B \vee C^{n}\right)=\varphi(A \vee B) \vee C_{*}^{n}
\end{aligned}
$$

for all n. Hence, by the intersection theorem and the relation $C_{*} \leqq \mathscr{J}\left(\mathscr{L}_{*}\right)$, it follows that

$$
\begin{aligned}
& \varphi(A) \vee \varphi(B)=\bigwedge_{n}\left(\varphi(A) \vee \varphi(B) \vee C_{*}{ }^{n}\right) \\
&=\bigwedge_{n}\left(\varphi(A \vee B) \vee C_{*}{ }^{n}\right)=\varphi(A \vee B) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
(\varphi(A) \varphi(B)) \vee C_{*^{n}}=\left(\left(\varphi(A) \vee C_{*}^{n}\right)(\varphi(B)\right. & \left.\left.\vee C_{*}^{n}\right)\right) \vee C_{*}^{n} \\
=\left(\partial \varphi\left(A \vee C^{n}\right) \partial \varphi\left(B \vee C^{n}\right)\right) \vee \partial \varphi\left(C^{n}\right) & =\partial \varphi\left(\left(\left(A \vee C^{n}\right)\left(B \vee C^{n}\right)\right) \vee C^{n}\right) \\
& =\partial \varphi\left(A B \vee C^{n}\right)=\varphi(A B) \vee C_{*^{n}},
\end{aligned}
$$

for all n, and thus $\varphi(A) \varphi(B)=\varphi(A B)$.

To see that φ preserves meets, we use Corollary 2.2 to choose k so that $\left(A \vee C^{n}\right) \wedge\left(B \vee C^{n}\right) \leqq(A \wedge B) \vee C^{n-k}$, for all $n \geqq k$. Then
$\varphi(A) \wedge \varphi(B) \leqq\left(\varphi(A) \vee C_{*}{ }^{n}\right) \wedge\left(\varphi(B) \vee C_{*}{ }^{n}\right)=\partial \varphi\left(A \vee C^{n}\right) \wedge \partial \varphi\left(B \vee C^{n}\right)$ $=\partial \varphi\left(\left(A \vee C^{n}\right) \wedge\left(B \vee C^{n}\right)\right) \leqq \partial \varphi\left((A \wedge B) \vee C^{n-k}\right)=\varphi(A \wedge B) \vee C_{*}^{n-k}$, for all $n \geqq k$. Thus $\varphi(A) \wedge \varphi(B) \leqq \wedge_{n}\left(\varphi(A \wedge B) \vee C_{*}^{n-k}\right)=\varphi(A \wedge B)$. Since φ is clearly isotone, it follows that $\varphi(A \wedge B)=\varphi(A) \wedge \varphi(B)$.

To see that φ preserves residuals if $\partial \varphi$ does, we use Corollary 2.3 to choose k so that $\left(A \vee C^{n}\right):\left(B \vee C^{n}\right) \leqq(A: B) \vee C^{n-k}$, for all $n \geqq k$. Then

$$
\begin{aligned}
& (\varphi(A): \varphi(B)) \leqq\left(\varphi(A) \vee C_{*}^{n}\right):\left(\varphi(B) \vee C_{*}^{n}\right)=\partial \varphi\left(A \vee C^{n}\right): \partial \varphi\left(B \vee C^{n}\right) \\
& \quad=\partial \varphi\left(\left(A \vee C^{n}\right):\left(B \vee C^{n}\right)\right) \leqq \partial \varphi\left((A: B) \vee C^{n-k}\right)=\varphi(A: B) \vee C_{*}^{n-k},
\end{aligned}
$$

for all $n \geqq k$. Thus $\varphi(A): \varphi(B) \leqq \bigwedge_{n}\left(\varphi(A: B) \vee C_{*}^{n-k}\right)=\varphi(A: B)$. Also, since φ is isotone, we have $\varphi(A: B) \varphi(B)=\varphi((A: B) B) \leqq \varphi(A)$, so that $\varphi(A: B) \leqq \varphi(A): \varphi(B)$. Hence $\varphi(A: B)=\varphi(A): \varphi(B)$, if $\partial \varphi$ preserves residuals.

Assume now that $\partial \varphi$ is one-to-one and that $C \leqq \mathscr{J}(\mathscr{L})$. Then $\varphi(A)=\varphi(B)$ implies $\partial \varphi\left(A \vee C^{n}\right)=\varphi(A) \vee C_{*}^{n}=\varphi(B) \vee C_{*}{ }^{n}=\partial \varphi\left(B \vee C^{n}\right)$, for all n. Hence $A \vee C^{n}=B \vee C^{n}$, for all n, and therefore

$$
A=\bigwedge_{n}\left(A \vee C^{n}\right)=\bigwedge_{n}\left(B \vee C^{n}\right)=B
$$

We now assume that \mathscr{L} is C-complete and that $\partial_{\varphi} \operatorname{maps} \partial_{C}(\mathscr{L})$ onto $\partial_{C_{*}}\left(\mathscr{L}_{*}\right)$. If $\partial \varphi$ is one-to-one and $D_{*} \in \mathscr{L}_{*}$, then for each i there is a unique $D_{i} \geqq C^{i}$ such that $\partial \varphi\left(D_{i}\right)=D_{*} \vee C_{*}{ }^{i}$. Further, since

$$
\partial \varphi\left(D_{i+1} \vee C^{i}\right)=\left(D_{*} \vee C_{*}^{i+1}\right) \vee C_{*}^{i}=\partial \varphi\left(D_{i}\right)
$$

we have that $\left\{D_{i}\right\}$ is a completely regular C-sequence in \mathscr{L}. If $D=\bigwedge{ }_{i} D_{i}$, then $D \vee C^{i}=D_{i}$ for all i, and so

$$
\varphi(D) \vee C_{*}^{i}=\varphi\left(D \vee C^{i}\right)=\varphi\left(D_{i}\right)=D_{*} \vee C_{*}^{i}
$$

for all i, and therefore $\varphi(D)=\bigwedge_{i}\left(\varphi(D) \vee C_{*}{ }^{i}\right)=\bigwedge_{i}\left(D_{*} \vee C_{*}^{i}\right)=D_{*}$. On the other hand, if \mathscr{L} / C is finite-dimensional, then \mathscr{L} / C^{i} is finite-dimensional for all i [3]. In this case, if $D_{*} \in \mathscr{L}_{*}$ we choose $D_{i}{ }^{\prime} \geqq C^{i}$ for each i such that $\varphi\left(D_{i}{ }^{\prime}\right)=D_{*} \vee C_{*}{ }^{i}$, but of course $D_{i}{ }^{\prime}$ need not be uniquely determined. Set $\bar{D}_{i}=\bigwedge_{j \leqq i} D_{j}^{\prime}$. Then $\left\{\bar{D}_{i}\right\}$ is a decreasing sequence in \mathscr{L} such that

$$
\varphi\left(\bar{D}_{i}\right)=\varphi\left(\bigwedge_{j \leqq i} D_{j}^{\prime}\right)=\bigwedge_{j \leqq i} \varphi\left(D_{j}^{\prime}\right)=\bigwedge_{j \leqq i}\left(D_{*} \vee C_{*}^{j}\right)=D_{*} \vee C_{*}{ }^{i}
$$

Then by the descending chain condition in \mathscr{L} / C^{i}, it follows that $\left\{\bar{D}_{i}\right\}$ is a C-sequence. Set $D_{i}=\bigwedge_{j}\left(\bar{D}_{j} \vee C^{i}\right)$, and $D=\bigwedge_{i} D_{i}$. Then $\left\{D_{i}\right\}$ is a completely regular C-sequence with $\varphi\left(D_{i}\right)=D_{*} \vee C_{*}{ }^{i}$, for all i. Therefore, $D_{*} \leqq D_{*} \vee C_{*}{ }^{i}=\varphi\left(D_{i}\right) \leqq \varphi\left(D \vee C^{i}\right)=\varphi(D) \vee C_{*}{ }^{i}$. Hence

$$
D_{*} \leqq \bigwedge_{n}\left(\varphi(D) \vee C_{*}^{n}\right)=\varphi(D) \leqq \bigwedge_{n} \varphi\left(D_{n}\right)=\bigwedge_{n}\left(D_{*} \vee C^{n}\right)=D_{*}
$$

If \mathscr{L} is a semi-local Noether lattice, then $\mathscr{L} / \mathscr{J}(\mathscr{L})$ is finite-dimensional. Also, in this case, $\partial_{\mathcal{J}}(\mathscr{L})=\partial(\mathscr{L})$. Hence we have the following result.

Corollary 2.5. Let \mathscr{L} be a semi-local Noether lattice and \mathscr{L}_{*} an arbitrary Noether lattice. Let $\partial \varphi$ be a morphism of $\partial \mathscr{L}$ into \mathscr{L}_{*} with $\partial \varphi(\mathscr{J}(\mathscr{L}))=$ $C_{*} \leqq \mathscr{J}\left(\mathscr{L}_{*}\right)$. If \mathscr{L}_{*} is C_{*}-complete, then $\partial \varphi$ extends to a morphism φ of \mathscr{L} into \mathscr{L}_{*}. Further, φ maps \mathscr{L} onto \mathscr{L}_{*} if $\partial \varphi$ maps $\partial \mathscr{L}$ onto $\partial \mathscr{L}_{*}$ and \mathscr{L} is \mathscr{J}-complete. And φ is one-to-one if $\partial \varphi$ is one-to-one.

Proof. If $\partial \varphi(\mathscr{J}(\mathscr{L}))=C_{*}$, then $A \geqq \mathscr{J}^{n}$ implies $\partial \varphi(A) \geqq \partial \varphi\left(\mathscr{J}^{n}\right)=$ $\left(\partial_{\varphi}(\mathscr{J})\right)^{n}=C_{*}{ }^{n}$, and thus ∂_{φ} is a morphism of $\partial_{\mathscr{y}} \mathscr{L}$ into $\partial_{C *}(\mathscr{L})$ with $\partial \varphi(\mathscr{J})=C_{*}$.

Hence, a semi-local Noether lattice \mathscr{L} which is $\mathscr{J}(\mathscr{L})$-complete is determined by $\partial \mathscr{L}$. It will be shown later that a semi-local Noether lattice \mathscr{L} is embedable in a semi-local Noether lattice \mathscr{L}^{*} which is $\mathscr{J}\left(\mathscr{L}^{*}\right)$-complete and has the property that $\partial \mathscr{L} \cong \partial \mathscr{L}^{*}$. In fact, if \mathscr{L} is the lattice of ideals of a Noetherian ring R, then \mathscr{L}^{*} is the lattice of ideals of the completion R^{*} of R in the Jacobson radical topology. For the present, however, we are interested in the structure of semi-local Noether lattices \mathscr{L} which are $\mathscr{J}(\mathscr{L})$-complete.

Lemma 2.6. Let \mathscr{L} be a semi-local Noether lattice which is $\mathscr{J}(\mathscr{L})$-complete, and let P be a maximal prime of \mathscr{L}. Then \mathscr{L} is P-complete.

Proof. Let $\left\{A_{i}\right\}$ be a completely regular P-sequence in \mathscr{L}. Then $\left\{A_{i}\right\}$ is decreasing, and so by the descending chain condition in $\mathscr{L} / \mathscr{J}(\mathscr{L})^{n},\left\{A_{i}\right\}$ is a $\mathscr{J}(\mathscr{L})$-sequence. For each i, set $B_{i}=\bigwedge_{j}\left(A_{j} \vee \mathscr{J}(\mathscr{L})^{i}\right)$. Then $A_{j} \leqq B_{i} \leqq A, \vee \mathscr{J}(\mathscr{L})^{i} \leqq A_{i}$, for large j, and thus $\bigwedge_{i} B_{i}=\bigwedge_{i} A_{i}$. Since \mathscr{L} is $\mathscr{J}(\mathscr{L})$-complete, the result follows.

Corollary 2.7. Let \mathscr{L} be a semi-local Noether lattice which is $\mathscr{J}(\mathscr{L})$ complete. If P is any maximal prime of \mathscr{L}, then $\mathscr{L}_{P}=\mathscr{L}_{\{P\}}$ is P-complete.

Proof. Let $\left\{A_{i}\right\}$ be any completely regular P-sequence in \mathscr{L}_{P}. Then $\left\{A_{i}\right\}$ is a completely regular P-sequence in \mathscr{L}, and so for each $n, A_{n}=\left(\bigwedge_{i} A_{i}\right) \vee P^{n}$. Hence $A_{n}=\left(A_{n}\right)_{P}=\left(\left(\bigwedge_{i} A_{i}\right) \vee P^{n}\right)_{P}=\left(\bigwedge_{i} A_{i}\right) \vee^{P} P^{n}$. It follows that \mathscr{L}_{P} is P-complete.

Theorem 2.8. Let \mathscr{L} be a semi-local Noether lattice which is \mathscr{J} ($\mathscr{L})$-complete. Let P_{1}, \ldots, P_{k} be the maximal primes of \mathscr{L}. Then \mathscr{L} is the direct sum of the local Noether lattices $\mathscr{L}_{1}=\mathscr{L}_{P_{i}}$.

Proof. Let A be any element of $\partial \mathscr{L}$. Then A has a decomposition $A=Q_{1} \wedge \ldots \wedge Q_{k}$ where, for each i, either Q_{i} is P_{i}-primary or $Q_{i}=I$. Since each of the primes of A is maximal, it follows that the decomposition is unique and that $A=Q_{1} \wedge \ldots \wedge Q_{k}=Q_{1} \ldots Q_{k}$. Consequently, the map $\left(Q_{1}, \ldots, Q_{k}\right) \rightarrow Q_{1} \wedge \ldots \wedge Q_{k}$ of $\partial \mathscr{L}_{1} \oplus \ldots \oplus \partial \mathscr{L}_{k}$ to $\partial \mathscr{L}$ is a multiplicative lattice isomorphism.

The maximal primes of $\mathscr{L}^{*}=\mathscr{L}_{1} \oplus \ldots \oplus \mathscr{L}_{k}$ are the elements $\left(I, \ldots, P_{i}, \ldots, I\right)$, thus $\partial \mathscr{L}^{*}=\partial \mathscr{L}_{1} \oplus \ldots \oplus \partial \mathscr{L}_{k}$ and $\partial \mathscr{L}^{*} \cong \partial \mathscr{L}$. Also, each component \mathscr{L}_{i} of \mathscr{L}^{*} is P_{i}-complete (Lemma 2.7), and hence \mathscr{L}^{*} is \mathscr{J}-complete. It follows (Corollary 2.5) that $\mathscr{L} \cong \mathscr{L}^{*}=\mathscr{L}_{1} \oplus \ldots \oplus \mathscr{L}_{k}$.

Theorem 2.9. Let \mathscr{L} be a semi-local Noether lattice. Then \mathscr{L} is a sublattice of a Noether lattice \mathscr{L}_{*} which is semi-local and $\mathscr{J}\left(\mathscr{L}_{*}\right)$-complete, and has the property that $\partial \mathscr{L} \cong \partial \mathscr{L}_{*}$.

Proof. Let P_{1}, \ldots, P_{k} be the maximal elements of \mathscr{L}, and set $\mathscr{L}_{i}=\mathscr{L}_{P_{i}}$, $i=1, \ldots, k$. In [4] it was shown that any local Noether lattice (\mathscr{L}_{i}, P_{i}) can be embedded in a local Noether lattice $\left(\mathscr{L}_{i}{ }^{*}, P_{i}{ }^{*}\right)$ which is $P_{i}{ }^{*}$-complete in such a way that $\partial \mathscr{L}_{i} \cong \partial \mathscr{L}_{i}{ }^{*}$. We use that result and set

$$
\mathscr{L}_{*}=\mathscr{L}_{1}^{*} \oplus \ldots \oplus \mathscr{L}_{k}^{*}
$$

It follows that \mathscr{L}_{*} is $\mathscr{J}\left(\mathscr{L}_{*}\right)$-complete. Also, since

$$
\partial \mathscr{L} \cong \partial \mathscr{L}_{P_{1}} \oplus \ldots \oplus \partial \mathscr{L}_{P_{k}} \cong \partial \mathscr{L}_{1}^{*} \oplus \ldots \oplus \partial \mathscr{L}_{k}^{*}
$$

it follows from Corollary 2.5 that \mathscr{L} is embedded in \mathscr{L}_{*} in the desired way.
Theorem 2.10. Let ($\mathscr{L}, P_{1}, \ldots, P_{k}$) and ($\mathscr{L}^{*}, P_{1}{ }^{*}, \ldots, P_{k}{ }^{*}, \ldots, P_{n}{ }^{*}$) be semi-local Noether lattices. Assume that, for each $i=1, \ldots, k$ there is a morphism φ_{i} of $\mathscr{L}_{P_{i}}$ into $\mathscr{L}^{*_{P_{i}}}$. If \mathscr{L}^{*} is $\mathscr{J}\left(\mathscr{L}^{*}\right)$-complete, then there is a morphism φ of \mathscr{L} into \mathscr{L}^{*}. Further, φ is one-to-one if each φ_{i} is one-to-one.

Proof. In this case, there is a natural morphism $\partial \varphi$ of

$$
\partial \mathscr{L}=\partial \mathscr{L}_{P_{1}} \oplus \ldots \oplus \partial \mathscr{L}_{P k}
$$

into $\partial \mathscr{L}^{*}=\partial \mathscr{L}^{*}{ }_{P_{1}} * \oplus \ldots \oplus \partial \mathscr{L}^{*}{ }_{P k^{*}} \oplus \oplus \ldots \oplus \partial \mathscr{L}^{*}{ }_{P_{n}}$ defined by $\partial \varphi\left(A_{1}, \ldots, A_{k}\right)=\left(\varphi_{i}\left(A_{i}\right), \ldots, \varphi_{k}\left(A_{k}\right), I, I, \ldots, I\right)$.
The result follows from Corollary 2.5.

References

1. K. P. Bogart, Structure theorems for regular local Noether lattices, Michigan Math. J. 15 (1968), 167-176.
2. R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498.
3. E. W. Johnson, A-transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc. 137 (1969), 125-140.
4. E. W. Johnson and J. A. Johnson, M-primary elements of a local Noether lattice, Can. J. Math. 22 (1970), 327-331.
5. O. Zariski and P. Samuel, Commutative algebra, Vol. II, The University Series in Higher Mathematics (Van Nostrand, Princeton, N.J.-Toronto-London-New York, 1960).

University of Iowa, Iowa City, Iowa;
University of Houston,
Houston, Texas;
University of Iowa,
Iowa City, Iowa

