A STRUCTURAL APPROACH TO NOETHER LATTICES

E. W. JOHNSON, J. A. JOHNSON, AND J. P. LEDIAEV

0. In this paper we explore the extent to which embedding and isomorphism questions about a Noether lattice \mathscr{L} can be reduced to questions about simpler structures associated with \mathscr{L} .

In § 1, we use a variation of Dilworth's congruence approach [2] to associate a collection of semi-local Noether lattices with a given Noether lattice \mathscr{L} . We show that these semi-localizations determine \mathscr{L} to within isomorphism (Corollary 1.5); thus embedding and isomorphism questions about \mathscr{L} are largely reduced to the semi-local case.

In § 2, we consider the influence on a semi-local Noether lattice \mathscr{L} of the substructure $\partial \mathscr{L}$ consisting of all elements, all of whose associated primes are maximal. Here we find that if $\partial \mathscr{L}$ can be embedded in a semi-local Noether lattice \mathscr{L}^* , then \mathscr{L} can be embedded in an extension $\overline{\mathscr{L}}$ of \mathscr{L}^* . Further, since $\partial \mathscr{L}$ splits in such a way that each component can be embedded in a localization of \mathscr{L} , \mathscr{L} can be embedded in the direct sum of local Noether lattices, each of which is an extension of a localization of \mathscr{L} . It follows that embedding problems for \mathscr{L} are largely dependent on the localizations of \mathscr{L} . The main tool of this section is that of an A-sequence [4]. The collection of all A-sequences in \mathscr{L} is closely related to the A-adic completion of a Noetherian ring.

1. Let \mathscr{L} be a Noether lattice, S a non-empty subset of \mathscr{L} , and $A \in \mathscr{L}$. If $A = Q_1 \wedge \ldots \wedge Q_k$ is a normal decomposition of A where Q_i is P_i -primary, we set $A_s = \bigwedge \{Q_i; P_i \leq X, \text{ for some } X \in S\}$. Since $\{P_i; P_i \leq X, \text{ for some } X \in S\}$ is an isolated set of primes of A, A_s is well-defined. We also note that $A_s = \bigwedge \{Q_i; P_i \leq X, \text{ for some } X \in S\}$ is a normal decomposition of A_s , and $(A_s)_s = A_s$. We now set $I_s = I$ and $\mathscr{L}_s = \{B \in \mathscr{L}; B = B_s\}$.

LEMMA 1.1. The operation $A \rightarrow A_s$ has the following properties:

(1.0) $A \leq B \text{ implies } A_s \leq B_s,$

(1.1)
$$(A \wedge B)_s = (A_s \wedge B_s)_s,$$

- (1.2) $(A \lor B)_{s} = (A_{s} \lor B_{s})_{s},$
- (1.3) $(A \cdot B)_{s} = (A_{s} \cdot B_{s})_{s},$
- (1.4) $(A:B)_{s} = (A_{s}:B_{s})_{s}.$

Received April 23, 1969 and in revised form, January 6, 1970.

The proofs are straightforward modifications of the special case $S = \{D\}$, which may be found in [2].

By (1.0), 0_s is a least element for \mathscr{L}_s . Since \mathscr{L}_s inherits the ascending chain condition from \mathscr{L} , it follows that every family of elements of \mathscr{L}_s has a greatest lower bound in \mathscr{L}_s . Consequently, \mathscr{L}_s is a complete lattice.

We denote the greatest lower and least upper bound operations in \mathscr{L}_s by \wedge_s and \vee^s , respectively. And we define the product of A and B in \mathscr{L}_s by $A \cdot {}_s B = (AB)_s$.

LEMMA 1.2. For elements $A, B \in \mathcal{L}_s$,

(i) $A \wedge B = (A \wedge B)_s = A \wedge_s B$,

(ii) $(A \lor B)_s = A \lor {}^s B$,

(iii) $A \cdot {}_{s}(B \vee {}^{s}C) = (A \cdot {}_{s}B) \vee {}^{s}(A \cdot {}_{s}C),$

(iv) $A:B = (A:B)_{s} = A:_{s}B.$

Proof of (i). $(A \land B)_{s} \leq A_{s}$ and $(A \land B)_{s} \leq B_{s}$, and so

 $(A \wedge B)_{s} \leq A_{s} \wedge_{s} B_{s} = A \wedge_{s} B.$

Furthermore, $A \wedge_s B \leq A$ and $A \wedge_s B \leq B$, and so

 $A \wedge_{s} B \leq A \wedge B \leq (A \wedge B)_{s}.$

This establishes (i).

The remaining identities follow similarly.

Using the relations thus far developed, it is easy to see that \mathscr{L}_s is a Noether lattice: every element is the finite join of elements E_s , where E is principal in \mathscr{L} , and elements of this type are principal in \mathscr{L}_s . It is also seen that for elements $Q, P \in \mathscr{L}_s$, Q is P-primary in \mathscr{L}_s if, and only if, Q is P-primary in \mathscr{L} .

We note that if $A \in \mathscr{L}$ and $S \subseteq \mathscr{L}$, then there is a finite subset T of \mathscr{L} such that $A_T = A_S$. This is so because every prime of A_S is a prime of A, and $(A_S)_T = A_T$. Also, if $A_T = A_S$ and $T \subseteq U \subseteq S$, then $A_U = A_S$. Hence, if F is any finite subset of \mathscr{L} , then S has a finite subset T such that $A_S = A_T$ for all $A \in F$. As a consequence, we have the following lemma.

LEMMA 1.3. Let A and B be elements of \mathcal{L} and $S \subseteq \mathcal{L}$. Let K be the set of primes associated with any of the elements A_s , B_s , $(A \land B)_s$, $(A \lor B)_s$, $(AB)_s$. (AB)_s. If T is any subset of S such that each element of K is contained in an element of T, then

(i) $A_s, B_s \in \mathscr{L}_T$,

- (ii) $A_s \wedge B_s = A_s \wedge B_s$,
- (iii) $A_s \vee {}^s B_s = A_s \vee {}^T B_s$,
- (iv) $A_s \cdot {}_s B_s = A_s \cdot {}_r B_s$,
- (v) $A_s: {}_sB_s = A_s: {}_TB_s,$

Proof. Since each prime of $A_{s}, B_{s}, (A \vee B)_{s}, (A \wedge B)_{s}$, and $(AB)_{s}$ is

contained in an element of T, we have that $A_s = A_T$, $B_s = B_T$, $(A \land B)_s$, $(A \lor B)_s$, and $(AB)_s$ are elements of \mathcal{L}_T . Then, for example,

$$A_{s} \vee^{s} B_{s} = (A_{s} \vee B_{s})_{s} = (A \vee B)_{s} = (A \vee B)_{T}$$
$$= (A_{T} \vee B_{T})_{T} = A_{T} \vee^{T} B_{T} = A_{s} \vee^{T} B_{s}$$

(Lemma 1.2). The rest of the lemma follows similarly.

We are now in a position to prove the following.

THEOREM 1.4. Let \mathscr{L} and \mathscr{L}_* be Noether lattices, $S \subseteq \mathscr{L}$, and ψ a map of S into \mathscr{L}_* . Assume that, for every finite subset T of S, there is given a multiplicative lattice morphism φ_T of \mathscr{L}_T into $\mathscr{L}_{*\psi(T)}$ in such a way that $T_1 \subseteq T_2$ implies $\varphi_{T_1} \leq \varphi_{T_2}$. Then there is a unique morphism φ_S of \mathscr{L}_S into $\mathscr{L}_{*\psi(S)}$ such that $\varphi_T \leq \varphi_S$ for every finite subset T of S. Furthermore,

- (i) φ_s is onto if each map φ_T is onto,
- (ii) φ_s is one-to-one if each map φ_T is one-to-one,
- (iii) φ_s preserves residuals if each map φ_T does,
- (iv) φ_s takes primaries to primaries, primes to primes, and principal elements to principal elements if each map φ_T does.

Proof. Let S_t be the collection of finite subsets of S. Then $\mathscr{L}_{S} = \bigcup_{T \in S_{t}} \mathscr{L}_{T}$. and so the uniqueness of φ_s is immediate. Also, if $A \in \mathscr{L}_{T_1} \cap \mathscr{L}_{T_2}$ and if $T = T_1 \cup T_2$, then $\mathscr{L}_{T_1} \cup \mathscr{L}_{T_2} \subseteq \mathscr{L}_T$ and $\varphi_{T_1}(A) = \varphi_T(A) = \varphi_{T_2}(A)$. Hence we can define φ_s on \mathscr{L}_s by $\varphi_s(A) = \varphi_T(A)$ if $A \in \mathscr{L}_T$ or, equivalently, $\varphi_s(A) = \bigwedge_{T \in S_I} \varphi_T(A_T)$. Then, given $A, B \in \mathscr{L}_s$, there is only a finite number of primes associated with A, B, $(A \lor B)_s$, and $(AB)_s$, and so we can choose a finite subset T_1 of S such that each prime of A, B, $(A \lor B)_s$, and $(AB)_s$ is contained in an element of T_1 . Similarly, we can choose a finite subset T_2 of S so that each prime of $\varphi_s(A)_{\psi(s)}, \varphi_s(B)_{\psi(s)}, (\varphi_s(A) \lor \varphi_s(B))_{\psi(s)}, (\varphi_s(A) \lor \varphi_s(B))_{\psi(s)}$ and $(\varphi_s(A)\varphi_s(B))_{\psi(s)}$ is contained in an element of $\psi(T_2)$. Set $T = T_1 \cup T_2$. Then by Lemma 1.3, $\varphi_S(A \vee {}^s B) = \varphi_T(A \vee {}^T B) = \varphi_T(A) \vee {}^{\psi(T)} \varphi_T(B) =$ $\varphi_{\mathfrak{S}}(A) \vee^{\psi(T)} \varphi_{\mathfrak{S}}(B)$, and similarly for $A \wedge_{\mathfrak{S}} B$, $A \cdot_{\mathfrak{S}} B$. Hence $\varphi_{\mathfrak{S}}$ is a morphism of \mathscr{L}_s into $\mathscr{L}_{*\psi(s)}$. It is immediate that φ_s is one-to-one if each map φ_T is one-to-one, and also that φ_s is onto if each φ_T is onto. If each φ_T preserves residuals (i.e., $\varphi_T(A: B) = \varphi_T(A):_{\psi(T)}\varphi_T(B)$), then φ_S preserves residuals by Lemma 1.3. Since the primaries and primes of \mathscr{L}_s are the primaries and primes of \mathscr{L} which are elements of \mathscr{L}_{s} , it is clear that φ_{s} preserves primes and primaries if each φ_T does.

Now, assume that each φ_T preserves principal elements. Let E be principal in \mathscr{L}_s . Then E_T is principal in $\mathscr{L}_T = (\mathscr{L}_s)_T$, and thus $\varphi_T(E_T)$ is principal in $\mathscr{L}_{*\psi(T)}$. From this we conclude that $\varphi_s(E)$ is principal in $\mathscr{L}_{*\psi(S)}$ (Lemma 1.3).

Let $\mathscr{M}(\mathscr{L})$ denote the set of all maximal elements of \mathscr{L} .

COROLLARY 1.5. Let \mathcal{L} and \mathcal{L}_* be Noether lattices and ψ a map of $\mathcal{M}(\mathcal{L})$ onto $\mathcal{M}(\mathcal{L}_*)$. Assume that for each finite subset S of $\mathcal{M}(\mathcal{L})$ there is a morphism φ_S of \mathcal{L}_S into $\mathcal{L}_{*\psi(S)}$ in such a way that $S_1 \subseteq S_2$ implies $\varphi_{S_1} \leq \varphi_{S_2}$. Then there is a unique morphism φ of \mathcal{L} into \mathcal{L}_* such that $\varphi_S \leq \varphi$ for all $S \in \mathcal{M}(\mathcal{L})_f$. As in Theorem 1.4, φ inherits the special properties of the maps φ_S . In particular, φ is a Noether lattice embedding (in the sense of [1]) if each of the maps φ_S is.

We note that for $S \in \mathcal{M}(\mathcal{L})_{f}$, \mathcal{L}_{S} is a semi-local Noether lattice. Hence, a Noether lattice is determined by its semi-localizations.

2. We are now interested primarily in semi-local Noether lattices. For such a Noether lattice \mathscr{L} , we let $\partial \mathscr{L}$ denote the subset consisting of I and all elements A such that every associated prime is a maximal element. We use $\partial \mathscr{L}^0$ to denote $\partial \mathscr{L} \cup \{0\}$. Then $\partial \mathscr{L}^0$ is a complete, modular, multiplicative lattice. In this section, we use $\partial \mathscr{L}$ to reduce the embedding problem for a semi-local Noether lattice to the local case. Before we begin, however, we require some definitions.

(2.0). If $\{B_i\}$ is any sequence of elements of \mathscr{L} and $A \in \mathscr{L}$, then $\{B_i\}$ is an A-sequence if, given $n \ge 1$, it follows that $B_i \lor A^n$ is constant for large *i*.

(2.1). An A-sequence $\{B_i\}$ is a regular A-sequence if, given n, it follows that $B_i \vee A^n$ is constant for all $i \ge n$.

(2.2). An A-sequence $\{B_i\}$ is a completely regular A-sequence if $B_{n+1} \vee A^n = B_n$ for all $n \ge 1$.

(2.3). \mathscr{L} is A-complete if, given any completely regular A-sequence $\{B_i\}$, it follows that $B_n = (\bigwedge_i B_i) \lor A^n$ for all $n \ge 1$.

If $\{B_i\}$ is any A-sequence and if $C_i = \bigwedge_j (B_j \lor A^i)$, then $\{C_i\}$ is a completely regular A-sequence. This follows since if $B_j \lor A^i$ and $B_j \lor A^{i+1}$ are constant for $j \ge k$, then $C_i = B_j \lor A^i = (B_j \lor A^{i+1}) \lor A^i = C_{i+1} \lor A^i$.

We note that if $\bigwedge_i (B \lor A^i) = B$ for all $B \in \mathscr{L}$, then a sequence $\{B_i\}$ of elements of \mathscr{L} is an A-sequence if, and only if, $\{B_i\}$ is a Cauchy sequence relative to the metric: $d(D, C) = 1/2^n$ if $D \lor A^n = C \lor A^n$ and $D \lor A^{n+1} \neq C \lor A^{n+1}$.

LEMMA 2.1. Let A, B, and C be elements of \mathscr{L} . Then there is a positive integer k such that $A \wedge (B \vee C^n) \leq (A \wedge B) \vee AC^{n-k}$ for all $n \geq k$.

Proof. By the Artin-Rees Lemma for Noether lattices [3],

 $(A \lor B) \land (B \lor C^{n}) \leq [(A \lor B) \land (B \lor C^{k})](B \lor C^{n-k}) \lor B,$

for some k and for all $n \ge k$. Then

 $A \wedge (B \vee C^{n}) \leq (A \vee B) \wedge (B \vee C^{n})$ $\leq ((A \wedge (B \vee C^{k})) \vee B)(B \vee C^{n-k}) \vee B = (A \wedge (B \vee C^{k}))C^{n-k} \vee B,$ and so

$$\begin{array}{l} A \land (B \lor C^{n}) \leq A \land ((A \land (B \lor C^{k}))C^{n-k} \lor B) \\ \leq (A \land (B \lor C^{k}))C^{n-k} \lor (A \land B) \leq (A \land B) \lor AC^{n-k}. \end{array}$$

COROLLARY 2.2. Let A_1, \ldots, A_s and C be elements of \mathcal{L} . Then for some k and for all $n \geq k$,

$$\bigwedge_{i=1}^{s} (A_{i} \vee C^{n}) \leq \left(\bigwedge_{i=1}^{s} A_{i}\right) \vee C^{n-k}.$$

Proof. By induction, we can assume that

$$\bigwedge_{i=1}^{s-1} (A_i \vee C^n) \leq \left(\bigwedge_{i=1}^{s-1} A_i\right) \vee C^{n-k_1} \quad \text{for all } n \geq k_1.$$

By Lemma 2.1, we can choose k_2 such that

$$\left(\left(\bigwedge_{i=1}^{s-1} A_i\right) \vee C^{n-k_1}\right) \wedge (A_s \vee C^{n-k_1}) = \left(\left(\bigwedge_{i=1}^{s-1} A_i\right) \wedge (A_s \vee C^{n-k_1})\right) \vee C^{n-k_1}$$
$$\leq \left(\bigwedge_{i=1}^{s} A_i\right) \vee C^{n-k_1-k_2} \vee C^{n-k_1}$$
$$= \left(\bigwedge_{i=1}^{s} A_i\right) \vee C^{n-k_1-k_2}$$

for all $n \ge k_1 + k_2$. Thus

$$\bigwedge_{i=1}^{s} (A_{i} \vee C^{n}) \leq \left(\left(\bigwedge_{i=1}^{s-1} A_{i} \right) \vee C^{n-k_{1}} \right) \wedge (A_{s} \vee C^{n})$$

$$\leq \left(\left(\bigwedge_{i=1}^{s-1} A_{i} \right) \vee C^{n-k_{1}} \right) \wedge (A_{s} \vee C^{n-k_{1}})$$

$$\leq \left(\bigwedge_{i=1}^{s} A_{i} \right) \vee C^{n-k},$$

$$h = h + h$$

for all $n \geq k = k_1 + k_2$.

COROLLARY 2.3. Let A, B, and C be elements of \mathcal{L} . Then, for some k and all $n \geq k$,

$$(A \lor C^n): (B \lor C^n) \leq (A:B) \lor C^{n-k}$$

Proof. If B is principal, we choose k such that

$$(A \lor C^n) \land B \leq (A \land B) \lor BC^{n-k}$$

for all $n \ge k$ (Lemma 2.1). Then

 $((A \lor C^n):B)B = (A \lor C^n) \land B \leq (A \land B) \lor BC^{n-k} = ((A:B) \lor C^{n-k})B$ and hence $(A \lor C^n):(B \lor C^n) \leq (A \lor C^n):B \leq (A:B) \lor C^{n-k}$, for all $n \geq k$.

If B is arbitrary, we write B as the join $B = B_1 \vee \ldots \vee B_s$ of principal elements. Then

$$(A \lor C^{n}):(B \lor C^{n}) = (A \lor C^{n}):B = (A \lor C^{n}):(B_{1} \lor \ldots \lor B_{s})$$
$$= \bigwedge_{i=1}^{s} (A \lor C^{n}):B_{i} \leq \bigwedge_{i=1}^{s} ((A:B_{i}) \lor C^{n-ki}),$$

where k_i is chosen for B_i as above. Let $k' = \max\{k_1, \ldots, k_s\}$. Then

$$\bigwedge_{i=1}^{s} ((A:B_{i}) \lor C^{n-k_{i}}) \leq \bigwedge_{i=1}^{s} ((A:B_{i}) \lor C^{n-k'})$$
$$\leq \left(\bigwedge_{i=1}^{s} (A:B_{i})\right) \lor C^{n-k'-k''}$$

for some k'' and all $n \ge k' + k''$. Since $\bigwedge_{i=1}^{s} (A:B_i) = A: (\bigvee_{i=1}^{s} B_i) = A:B$, we have $(A \lor C^n): (B \lor C^n) \le (A:B) \lor C^{n-k}$, for all $n \ge k = k' + k''$.

Now, let $\partial_{\mathcal{C}}(\mathscr{L}) = \{A \in \mathscr{L}; A \geq C^n, \text{ for some } n\}$, so that $\partial_{\mathcal{C}}(\mathscr{L})$ is a sub-multiplicative lattice of \mathscr{L} . Let $\mathscr{J}(\mathscr{L})$ denote the greatest lower bound of the collection of maximal elements of \mathscr{L} .

THEOREM 2.4. Let C and C* be elements of Noether lattices \mathcal{L} and \mathcal{L}_* , respectively, and $\partial \varphi$ a morphism of $\partial_C(\mathcal{L})$ into $\partial_{C*}(\mathcal{L}_*)$ such that $\partial \varphi(C) = C_*$. If \mathcal{L}_* is C*-complete and C* $\leq \mathcal{J}(\mathcal{L}_*)$, then $\partial \varphi$ extends uniquely to a morphism φ of \mathcal{L} into \mathcal{L}_* . Furthermore:

- (i) φ preserves residuals if $\partial \varphi$ preserves residuals;
- (ii) φ is one-to-one if $\partial \varphi$ is one-to-one and $C \leq \mathscr{J}(\mathscr{L})$;
- (iii) If ∂φ maps ∂_c(L) onto ∂_{c*}(L*), L is C-complete, and either ∂φ is one-to-one or L/C is finite-dimensional, then φ maps L onto L*.

Proof. Set $\varphi(A) = \bigwedge_n \partial \varphi(A \lor C^n)$. Then

$$\partial \varphi(A \vee C^{n+1}) \vee C_*{}^n = \partial \varphi(A \vee C^{n+1}) \vee \partial \varphi(C^n) = \partial \varphi(A \vee C^n),$$

and so $\{\partial \varphi(A \lor C^n)\}$ is a completely regular C_* -sequence in \mathcal{L}_* . Since \mathcal{L}_* is C_* -complete, it follows that

$$\varphi(A) \lor C_{*}^{n} = \bigwedge_{i} \partial \varphi(A \lor C^{i}) \lor C_{*}^{n} = \partial \varphi(A \lor C^{n})$$

for all n. Then

$$\varphi(A) \lor \varphi(B) \lor C_*{}^n = \partial \varphi(A \lor C^n) \lor \partial \varphi(B \lor C^n) = \partial \varphi(A \lor B \lor C^n) = \varphi(A \lor B) \lor C_*{}^n,$$

for all *n*. Hence, by the intersection theorem and the relation $C_* \leq \mathcal{J}(\mathcal{L}_*)$, it follows that

$$\varphi(A) \lor \varphi(B) = \bigwedge_{n} (\varphi(A) \lor \varphi(B) \lor C_{*}^{n}) = \bigwedge_{n} (\varphi(A \lor B) \lor C_{*}^{n}) = \varphi(A \lor B).$$

Similarly,

$$(\varphi(A)\varphi(B)) \bigvee C_*{}^n = ((\varphi(A) \lor C_*{}^n)(\varphi(B) \lor C_*{}^n)) \lor C_*{}^n$$

= $(\partial\varphi(A \lor C^n)\partial\varphi(B \lor C^n)) \lor \partial\varphi(C^n) = \partial\varphi(((A \lor C^n)(B \lor C^n)) \lor C^n)$
= $\partial\varphi(AB \lor C^n) = \varphi(AB) \lor C_*{}^n,$

for all *n*, and thus $\varphi(A)\varphi(B) = \varphi(AB)$.

To see that φ preserves meets, we use Corollary 2.2 to choose k so that $(A \vee C^n) \wedge (B \vee C^n) \leq (A \wedge B) \vee C^{n-k}$, for all $n \geq k$. Then

 $\varphi(A) \land \varphi(B) \leq (\varphi(A) \lor C_{*}^{n}) \land (\varphi(B) \lor C_{*}^{n}) = \partial \varphi(A \lor C^{n}) \land \partial \varphi(B \lor C^{n}) \\ = \partial \varphi((A \lor C^{n}) \land (B \lor C^{n})) \leq \partial \varphi((A \land B) \lor C^{n-k}) = \varphi(A \land B) \lor C_{*}^{n-k}, \\ \text{for all } n \geq k. \text{ Thus } \varphi(A) \land \varphi(B) \leq \bigwedge_{n} (\varphi(A \land B) \lor C_{*}^{n-k}) = \varphi(A \land B). \\ \text{Since } \varphi \text{ is clearly isotone, it follows that } \varphi(A \land B) = \varphi(A) \land \varphi(B). \end{cases}$

To see that φ preserves residuals if $\partial \varphi$ does, we use Corollary 2.3 to choose k so that $(A \vee C^n): (B \vee C^n) \leq (A:B) \vee C^{n-k}$, for all $n \geq k$. Then

$$\begin{aligned} (\varphi(A):\varphi(B)) &\leq (\varphi(A) \lor C_{*}^{n}):(\varphi(B) \lor C_{*}^{n}) = \partial\varphi(A \lor C^{n}):\partial\varphi(B \lor C^{n}) \\ &= \partial\varphi((A \lor C^{n}):(B \lor C^{n})) \leq \partial\varphi((A:B) \lor C^{n-k}) = \varphi(A:B) \lor C_{*}^{n-k}, \end{aligned}$$

for all $n \ge k$. Thus $\varphi(A):\varphi(B) \le \bigwedge_n (\varphi(A:B) \lor C_*^{n-k}) = \varphi(A:B)$. Also, since φ is isotone, we have $\varphi(A:B)\varphi(B) = \varphi((A:B)B) \le \varphi(A)$, so that $\varphi(A:B) \le \varphi(A):\varphi(B)$. Hence $\varphi(A:B) = \varphi(A):\varphi(B)$, if $\partial \varphi$ preserves residuals.

Assume now that $\partial \varphi$ is one-to-one and that $C \leq \mathscr{J}(\mathscr{L})$. Then $\varphi(A) = \varphi(B)$ implies $\partial \varphi(A \vee C^n) = \varphi(A) \vee C_*^n = \varphi(B) \vee C_*^n = \partial \varphi(B \vee C^n)$, for all *n*. Hence $A \vee C^n = B \vee C^n$, for all *n*, and therefore

$$A = \bigwedge_{n} (A \lor C^{n}) = \bigwedge_{n} (B \lor C^{n}) = B.$$

We now assume that \mathscr{L} is *C*-complete and that $\partial \varphi$ maps $\partial_{c}(\mathscr{L})$ onto $\partial_{c_{*}}(\mathscr{L}_{*})$. If $\partial \varphi$ is one-to-one and $D_{*} \in \mathscr{L}_{*}$, then for each *i* there is a unique $D_{i} \geq C^{i}$ such that $\partial \varphi(D_{i}) = D_{*} \vee C_{*}^{i}$. Further, since

$$\partial \varphi(D_{i+1} \vee C^i) = (D_* \vee C_*^{i+1}) \vee C_*^i = \partial \varphi(D_i),$$

we have that $\{D_i\}$ is a completely regular C-sequence in \mathcal{L} . If $D = \bigwedge_i D_i$, then $D \lor C^i = D_i$ for all *i*, and so

$$\varphi(D) \lor C_*{}^i = \varphi(D \lor C^i) = \varphi(D_i) = D_* \lor C_*{}^i,$$

for all *i*, and therefore $\varphi(D) = \bigwedge_i (\varphi(D) \vee C_*^i) = \bigwedge_i (D_* \vee C_*^i) = D_*$. On the other hand, if \mathscr{L}/C is finite-dimensional, then \mathscr{L}/C^i is finite-dimensional for all *i* [3]. In this case, if $D_* \in \mathscr{L}_*$ we choose $D_i' \geq C^i$ for each *i* such that $\varphi(D_i') = D_* \vee C_*^i$, but of course D_i' need not be uniquely determined. Set $\overline{D}_i = \bigwedge_{j \leq i} D_j'$. Then $\{\overline{D}_i\}$ is a decreasing sequence in \mathscr{L} such that

$$\varphi(\bar{D}_i) = \varphi\left(\bigwedge_{j \leq i} D_j'\right) = \bigwedge_{j \leq i} \varphi(D_j') = \bigwedge_{j \leq i} (D_* \vee C_*^{j}) = D_* \vee C_*^{i}.$$

Then by the descending chain condition in \mathscr{L}/C^i , it follows that $\{\bar{D}_i\}$ is a *C*-sequence. Set $D_i = \bigwedge_j (\bar{D}_j \vee C^i)$, and $D = \bigwedge_i D_i$. Then $\{D_i\}$ is a completely regular *C*-sequence with $\varphi(D_i) = D_* \vee C_*^i$, for all *i*. Therefore, $D_* \leq D_* \vee C_*^i = \varphi(D_i) \leq \varphi(D \vee C^i) = \varphi(D) \vee C_*^i$. Hence

$$D_* \leq \bigwedge_n (\varphi(D) \lor C_*^n) = \varphi(D) \leq \bigwedge_n \varphi(D_n) = \bigwedge_n (D_* \lor C^n) = D_*.$$

If \mathscr{L} is a semi-local Noether lattice, then $\mathscr{L}/\mathscr{J}(\mathscr{L})$ is finite-dimensional. Also, in this case, $\partial_{\mathscr{I}}(\mathscr{L}) = \partial(\mathscr{L})$. Hence we have the following result.

COROLLARY 2.5. Let \mathcal{L} be a semi-local Noether lattice and \mathcal{L}_* an arbitrary Noether lattice. Let $\partial \varphi$ be a morphism of $\partial \mathcal{L}$ into \mathcal{L}_* with $\partial \varphi(\mathcal{J}(\mathcal{L})) = C_* \leq \mathcal{J}(\mathcal{L}_*)$. If \mathcal{L}_* is C_* -complete, then $\partial \varphi$ extends to a morphism φ of \mathcal{L} into \mathcal{L}_* . Further, φ maps \mathcal{L} onto \mathcal{L}_* if $\partial \varphi$ maps $\partial \mathcal{L}$ onto $\partial \mathcal{L}_*$ and \mathcal{L} is \mathcal{J} -complete. And φ is one-to-one if $\partial \varphi$ is one-to-one.

Proof. If $\partial \varphi(\mathscr{J}(\mathscr{L})) = C_*$, then $A \ge \mathscr{J}^n$ implies $\partial \varphi(A) \ge \partial \varphi(\mathscr{J}^n) = (\partial \varphi(\mathscr{J}))^n = C_*^n$, and thus $\partial \varphi$ is a morphism of $\partial_{\mathscr{J}}\mathscr{L}$ into $\partial_{C_*}(\mathscr{L})$ with $\partial \varphi(\mathscr{J}) = C_*$.

Hence, a semi-local Noether lattice \mathcal{L} which is $\mathcal{J}(\mathcal{L})$ -complete is determined by $\partial \mathcal{L}$. It will be shown later that a semi-local Noether lattice \mathcal{L} is embedable in a semi-local Noether lattice \mathcal{L}^* which is $\mathcal{J}(\mathcal{L}^*)$ -complete and has the property that $\partial \mathcal{L} \cong \partial \mathcal{L}^*$. In fact, if \mathcal{L} is the lattice of ideals of a Noetherian ring R, then \mathcal{L}^* is the lattice of ideals of the completion R^* of Rin the Jacobson radical topology. For the present, however, we are interested in the structure of semi-local Noether lattices \mathcal{L} which are $\mathcal{J}(\mathcal{L})$ -complete.

LEMMA 2.6. Let \mathscr{L} be a semi-local Noether lattice which is $\mathscr{J}(\mathscr{L})$ -complete, and let P be a maximal prime of \mathscr{L} . Then \mathscr{L} is P-complete.

Proof. Let $\{A_i\}$ be a completely regular *P*-sequence in \mathscr{L} . Then $\{A_i\}$ is decreasing, and so by the descending chain condition in $\mathscr{L}/\mathscr{J}(\mathscr{L})^n$, $\{A_i\}$ is a $\mathscr{J}(\mathscr{L})$ -sequence. For each *i*, set $B_i = \bigwedge_j (A_j \lor \mathscr{J}(\mathscr{L})^i)$. Then $A_j \leq B_i \leq A_j \lor \mathscr{J}(\mathscr{L})^i \leq A_i$, for large *j*, and thus $\bigwedge_i B_i = \bigwedge_i A_i$. Since \mathscr{L} is $\mathscr{J}(\mathscr{L})$ -complete, the result follows.

COROLLARY 2.7. Let \mathscr{L} be a semi-local Noether lattice which is $\mathscr{J}(\mathscr{L})$ complete. If P is any maximal prime of \mathscr{L} , then $\mathscr{L}_{P} = \mathscr{L}_{\{P\}}$ is P-complete.

Proof. Let $\{A_i\}$ be any completely regular *P*-sequence in \mathscr{L}_P . Then $\{A_i\}$ is a completely regular *P*-sequence in \mathscr{L} , and so for each $n, A_n = (\bigwedge_i A_i) \vee P^n$. Hence $A_n = (A_n)_P = ((\bigwedge_i A_i) \vee P^n)_P = (\bigwedge_i A_i) \vee^P P^n$. It follows that \mathscr{L}_P is *P*-complete.

THEOREM 2.8. Let \mathcal{L} be a semi-local Noether lattice which is $\mathcal{J}(\mathcal{L})$ -complete. Let P_1, \ldots, P_k be the maximal primes of \mathcal{L} . Then \mathcal{L} is the direct sum of the local Noether lattices $\mathcal{L}_i = \mathcal{L}_{P_i}$.

Proof. Let A be any element of $\partial \mathscr{L}$. Then A has a decomposition $A = Q_1 \wedge \ldots \wedge Q_k$ where, for each *i*, either Q_i is P_i -primary or $Q_i = I$. Since each of the primes of A is maximal, it follows that the decomposition is unique and that $A = Q_1 \wedge \ldots \wedge Q_k = Q_1 \ldots Q_k$. Consequently, the map $(Q_1, \ldots, Q_k) \rightarrow Q_1 \wedge \ldots \wedge Q_k$ of $\partial \mathscr{L}_1 \oplus \ldots \oplus \partial \mathscr{L}_k$ to $\partial \mathscr{L}$ is a multiplicative lattice isomorphism.

The maximal primes of $\mathscr{L}^* = \mathscr{L}_1 \oplus \ldots \oplus \mathscr{L}_k$ are the elements $(I, \ldots, P_i, \ldots, I)$, thus $\partial \mathscr{L}^* = \partial \mathscr{L}_1 \oplus \ldots \oplus \partial \mathscr{L}_k$ and $\partial \mathscr{L}^* \cong \partial \mathscr{L}$. Also, each component \mathscr{L}_i of \mathscr{L}^* is P_i -complete (Lemma 2.7), and hence \mathscr{L}^* is \mathscr{J} -complete. It follows (Corollary 2.5) that $\mathscr{L} \cong \mathscr{L}^* = \mathscr{L}_1 \oplus \ldots \oplus \mathscr{L}_k$.

THEOREM 2.9. Let \mathscr{L} be a semi-local Noether lattice. Then \mathscr{L} is a sublattice of a Noether lattice \mathscr{L}_* which is semi-local and $\mathscr{J}(\mathscr{L}_*)$ -complete, and has the property that $\partial \mathscr{L} \cong \partial \mathscr{L}_*$.

Proof. Let P_1, \ldots, P_k be the maximal elements of \mathscr{L} , and set $\mathscr{L}_i = \mathscr{L}_{P_i}$, $i = 1, \ldots, k$. In [4] it was shown that any local Noether lattice (\mathscr{L}_i, P_i) can be embedded in a local Noether lattice (\mathscr{L}_i^*, P_i^*) which is P_i^* -complete in such a way that $\partial \mathscr{L}_i \cong \partial \mathscr{L}_i^*$. We use that result and set

$$\mathscr{L}_{*} = \mathscr{L}_{1}^{*} \oplus \ldots \oplus \mathscr{L}_{k}^{*}$$

It follows that \mathcal{L}_* is $\mathscr{J}(\mathcal{L}_*)$ -complete. Also, since

$$\partial \mathscr{L} \cong \partial \mathscr{L}_{P_1} \oplus \ldots \oplus \partial \mathscr{L}_{P_k} \cong \partial \mathscr{L}_1^* \oplus \ldots \oplus \partial \mathscr{L}_k^*,$$

it follows from Corollary 2.5 that \mathcal{L} is embedded in \mathcal{L}_* in the desired way.

THEOREM 2.10. Let $(\mathcal{L}, P_1, \ldots, P_k)$ and $(\mathcal{L}^*, P_1^*, \ldots, P_k^*, \ldots, P_n^*)$ be semi-local Noether lattices. Assume that, for each $i = 1, \ldots, k$ there is a morphism φ_i of \mathcal{L}_{P_i} into $\mathcal{L}^*_{P_i^*}$. If \mathcal{L}^* is $\mathcal{J}(\mathcal{L}^*)$ -complete, then there is a morphism φ of \mathcal{L} into \mathcal{L}^* . Further, φ is one-to-one if each φ_i is one-to-one.

Proof. In this case, there is a natural morphism $\partial \varphi$ of

$$\partial \mathscr{L} = \partial \mathscr{L}_{P_1} \oplus \ldots \oplus \partial \mathscr{L}_{P_k}$$

into $\partial \mathscr{L}^* = \partial \mathscr{L}^*_{P_1^*} \oplus \ldots \oplus \partial \mathscr{L}^*_{P_k^*} \oplus \ldots \oplus \partial \mathscr{L}^*_{P_n^*}$ defined by

$$\partial \varphi(A_1,\ldots,A_k) = (\varphi_i(A_i),\ldots,\varphi_k(A_k),I,I,\ldots,I).$$

The result follows from Corollary 2.5.

References

- K. P. Bogart, Structure theorems for regular local Noether lattices, Michigan Math. J. 15 (1968), 167-176.
- 2. R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498.
- E. W. Johnson, A-transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc. 137 (1969), 125-140.
- E. W. Johnson and J. A. Johnson, M-primary elements of a local Noether lattice, Can. J. Math. 22 (1970), 327-331.
- O. Zariski and P. Samuel, Commutative algebra, Vol. II, The University Series in Higher Mathematics (Van Nostrand, Princeton, N.J.-Toronto-London-New York, 1960).

University of Iowa, Iowa City, Iowa; University of Houston, Houston, Texas; University of Iowa, Iowa City, Iowa