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Abstract
This paper studies the impact of technological progress on unemployment in a search-matching model
with heterogeneous multiworker firms. In the model, some firms continue to reap rewards from new
technologies over time and contribute to job creation, while other firms obsolesce and reduce their
employment. Thus, the model captures an endogenous change in the aggregate composition of firms (the
firm-composition effect). Considering this effect along with the two canonical effects—the capitalization
and creative-destruction effects—I examine the importance of each through a simulation. The results show
that the firm-composition effect explains almost all the variation in unemployment in the model, mainly
through shrinking the number of obsolescing firms relative to surviving firms and increasing the aggregate
technology adoption rate when technology progresses rapidly.
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1. Introduction
This paper takes as its point of departure two facts about the US economy, illustrated in
Fig. 1: labor productivity growth (henceforth “growth”) and unemployment are negatively cor-
related, and growth is positively associated with investment in information and communication
technology (ICT) at least until around 2000.1

Regarding these facts, two contrasting effects have been explored in the literature. First, rapid
technological progress increases the value of job creation for each employer and induces it to post
vacancies, leading to an increase in labor market tightness and a decrease in unemployment (the
capitalization effect). Second, it also accelerates obsolescence so that technologies, embodied in
jobs, become outdated and make less money, leading to a decrease in the survival duration of each
job and an increase in unemployment (the creative-destruction effect).

Previous simulations quantifying these effects show that the creative-destruction effect over-
powers the capitalization effect. Thus, the observed negative relationship between growth and
unemployment is difficult to explain, even qualitatively. This study addresses this puzzle by intro-
ducing heterogeneous multiworker firms into a Diamond-Mortensen-Pissarides (DMP) model
with embodied technology.2 Mymodel captures not only the capitalization effect and the creative-
destruction effect but also an endogenous change in the aggregate composition of firms, which
I call the firm-composition effect. Through the last channel, technology obsolescence might
increase long-run employment by improving the aggregate composition of surviving firms.

In the model, while differences in prior productivity among firms are assumed to follow a
continuous distribution based on Melitz (2003), each firm is broadly categorized into one of the
following three types: exiting firms, firms that survive and update their technologies, and firms
that survive but become technologically obsolete. Consequently, the firm-composition effect is
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Figure 1. Unemployment, growth, and ICT investment share.
Note: The graph depicts the unemployment rate, the growth rate of labor productivity (measured as gross value added [in
2010 prices] divided by employment), and the share of ICT investment in total investment. The trended evolution is overlaid.
The data sources and the trended data are the same as in Fig. 4.

evaluated based on variation in the average productivity of surviving firms by type and changes in
the ratio of the number of surviving firms by type.

I show that, across all simulations presented here, the firm-composition effect explains almost
all variation in unemployment in the model, with changes in the ratio of the number of sur-
viving firms by type being the dominant factor. For example, in a benchmark simulation,
the total impact of growth on unemployment is −0.259, meaning that a 1 percentage-point
increase in the growth rate decreases the unemployment rate by 0.259%. This total impact
includes all three effects, and it is decomposed so that −0.259= −0.008 (capitalization effect)+
0.051 (creative-destruction effect)− 0.302 (firm-composition effect).

The simulated sizes of the capitalization and creative-destruction effects are similar to those
found in the DMP model, as described in Appendix I. Consistent with the literature, the creative-
destruction effect is stronger than the capitalization effect. However, after accounting for the firm-
composition effect, the total impact of growth on unemployment is negative and compatible with
the data.

To evaluate the results quantitatively, I compare the data and model prediction regarding the
evolution of the unemployment rate. Themodel prediction is computed such that only the growth
rate varies, matching the empirical evolution of growth, while the other parameter values are fixed.
When the total impact of growth on unemployment is quantified with a simple regression coeffi-
cient for the data and model prediction, the results show that the model prediction accounts for
16%–36% of that implied by the data.3

I examine the interaction of technology and policy by asking how the total impact of growth
on unemployment and its decomposition into the three effects are affected when the following
parameter values change one by one: the flow unemployment value, worker bargaining power,
and the entry cost of each firm. The results show that an increase in any of these parameter
values monotonically increases the sizes of the total impact and all decomposed effects. Thus,
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some rigidities in the labor and product markets increase both the unemployment rate and the
magnitude of the total impact while roughly preserving the relative importance of the three
effects.

I also examine the interaction of the current results with finance. Drawing on Pissarides (2009)
and Petrosky-Nadeau and Wasmer (2013), I simply extend the model by introducing an exoge-
nous element in hiring cost such that the element is independent of congestion in the labormarket.
Similar to the business cycle context, the results show that the element magnifies the total impact
of growth on unemployment and all three decomposed effects. Intuitively, heterogeneous finan-
cial conditions across firms may further amplify the firm-composition effect when obsolescing
firms are financially weak and must further reduce their employment to weather episodes of
illiquidity.

This paper is complementary to studies that examine the impact of growth on unemployment
with a search-matching model. However, none of the seminal papers in this literature consider
multiworker firms. The DMP models are based on the concept of pair matching between an
employer and a worker, where each firm employs only one worker.4 In addition, I introduce firm
heterogeneity with respect to productivity.

A primary motivation of this paper stems from Pissarides and Vallanti (2007), which considers
a model in which the capitalization and creative-destruction effects are jointly incorporated and
identifies the puzzle that the latter effect is larger than the former effect. Miyamoto and Takahashi
(2011) and Michau (2013) address this puzzle by introducing on-the-job search. Specifically,
Miyamoto and Takahashi (2011) focus on the capitalization effect only and show that on-the-job
search strengthens its effect; Michau (2013) focuses on the creative-destruction effect only and
shows that on-the-job search attenuates its effect. I do not consider on-the-job search but attempt
to reconcile data and theory by considering changes in the aggregate composition of surviving
firms.

Mortensen and Pissarides (1998) clarify the mechanism connecting the capitalization and
creative-destruction effects by building a model in which each employer has the choice of whether
to update its own job-embodied technology. They show that their DMP model with embodied
technology reduces to a simple model with disembodied technology when technology updates
are implemented at no cost.5 Drawing on Mortensen and Pissarides (1998), this paper considers
embodied technology with updates to focus on both effects and their relative importance.

Hornstein et al. (2007) build a DMP model with embodied technology and examine the inter-
action of technology and policy. They suggest that their model can explain observed differences
between the USA and Europe. However, their results rely solely on the positive impact of growth
on unemployment, and they show that the size of the positive impact in Europe is larger than that
in the USA. This result itself is incompatible with the evolution of unemployment in each country.
This study examines this point and finds that their results are preserved but the total impact of the
three effects is compatible with the data.

This study is also closely related to the strand of the literature that extends a DMP model to
the product market (Blanchard and Giavazzi (2003), Ebell and Haefke (2009), Felbermayr and
Prat (2011)). In this context, Felbermayr and Prat (2011) develop a search-matching model that
incorporates multiworker firms and firm heterogeneity as in Melitz (2003). The model in this
paper encompasses their structure and extends it by introducing embodied technology. In other
words, I bridge the above strands of the literature.

This paper is organized as follows. Section 2 describes the model. Section 3 identifies the capi-
talization, creative-destruction, and firm-composition effects in the model. Section 4 shows the
simulation results. Section 4.3 summarizes the empirical results and compares them with the
model outcomes, and Section 4.4 examines the interaction of technology and policy. In Section
4.5, I discuss the interaction of the current results with finance. Section 5 concludes.
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2. The economy
2.1 Setup

In mymodel, a firm is born as long as its expected entry value exceeds its entry cost f̂e. Upon entry,
each firm incurs the entry cost as a sunk cost. It then realizes its productivity x, which is the source
of firm heterogeneity. x is drawn from the Pareto distribution F(x)≡ 1− xα

minx−α with support
x ∈ [xmin,∞).

Because it is not optimal for firms with very low x to remain in the market, each firm then
decides whether to exit. Next, each surviving firm chooses one of two firm types: updating firm or
obsolescing firm. The difference between the two lies in their production function and technology
cost.

The production function of an updating firm in period t is

a(t)xl, (1)

where l denotes labor input and a(t) represents the economy-wide technology in period t. In
contrast, the production function of an obsolescing firm is

a(τ )xl, (2)

where τ denotes the firm’s production start date after entry. Thus, the technology is fixed at the
level at date τ . Because a(t) grows at the exogenous rate of technological progress g, the gap
between a(t) and a(τ ) increases over time.

Each updating firm incurs the technology adoption cost Î (henceforth “adoption cost”) in every
period, while each obsolescing firm incurs it only upon entry. This study assumes that each firm
chooses its own firm type only once, on entry. This assumption is harmless when the adoption
cost normalized by the economy-wide technology level increases with the technology gap t − τ

and when the speed of an increase in it is more than the speed of a decrease in the value of each
obsolescing firm.6

I assume monopolistic competition in the product market. The revenue function at time t is
denoted by R(x, l, τ , t) for a firm with technology vintage τ , firm-specific productivity x, and labor
input l. The revenue function is as follows:7

R(x, l, τ , t)=
(
E(t)
n

) 1
σ

(a(τ )xl)
σ−1
σ (3)

E(t) denotes aggregate income at time t, n denotes the number of firms, and σ represents the
elasticity of substitution between two differentiated goods so that σ > 1. Following Felbermayr
and Prat (2011), the condition α/(σ − 1)> 1 is also assumed in this paper. This ensures that the
mean value of firm size for the updating firm type is bounded. The entire firm size density in
equilibrium is calculated in the appendix. For updating firms, I replace τ with t such that their
revenue is R(x, l, t, t).

I assume workers are risk neutral, and their population is normalized to one. The workers are
either employed or unemployed. Each worker earns wage w(x, l, τ , t) when employed or receives
unemployment benefit b̂when unemployed. The inputs of the wage function—x, l, τ , and t—have
the same meaning as in the revenue function. Wages are determined by bargaining as specified
later.

The labor market is frictional. The matching function m(V , u) represents aggregate job cre-
ation in each period; it is a function of unemployment u and aggregate job vacancies V . In
line with Petrongolo and Pissarides (2001), there are constant returns to scale in this function,
which increases with each argument. Labor market tightness is defined as the ratio of vacan-
cies to unemployment, θ ≡V/u. The job-finding probability for each unemployed worker is the
ratio m(V , u)/u=m(θ , 1). Similarly, the job-filling probability for each vacancy is m(V , u)/V =
m(θ , 1)/θ .
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At the beginning of each period, the economy-wide technology progresses. Then, each firm
starts production and pays wages given its level of embodied technology. After production, separa-
tions occur such that an exogenous fraction of workers within each firm, λl, become unemployed
in the next period. At the end of each period, each firm is exogenously destroyed with probabil-
ity δ. Each unemployed worker applies for a vacancy and becomes employed in the next period
with the job-finding probability. Each employed worker loses their job with separation proba-
bility s= δ + λ − δλ in the next period. The separation probability is based on a combination of
firm-specific and job-specific exogenous shocks.

Time is discrete, and the common discount rate of agents (workers and firms) is r. The value
functions are as follows (where the superscripts o and u distinguish the firm types):

Jo(x, l, τ , t)=max

⎡
⎣max

v

⎡
⎣R(x, l, τ , t)−w(x, l, τ , t)l− ĉv

+ 1−δ
1+r J

o(x, l′, τ , t + 1)

⎤
⎦ , 0

⎤
⎦ , (4)

Ju(x, l, t)=max
v

⎡
⎣R(x, l, t, t)−w(x, l, t, t)l− ĉv

−Î + 1−δ
1+r J

u(x, l′, t + 1)

⎤
⎦ , (5)

Wo(x, l, τ , t)=max
[
w(x, l, τ , t)+ 1

1+ r
[
(1− s)Wo(x, l′, τ , t + 1)+ sU(t + 1)

]
,U(t)

]
, (6)

Wu(x, l, t)=w(x, l, t, t)+ 1
1+ r

[
(1− s)Wu(x, l′, t + 1)+ sU(t + 1)

]
, and (7)

U(t)= b̂+ 1
1+ r

[
m(θ , 1)W̃(t + 1)+ (1−m(θ , 1))U(t + 1)

]
. (8)

Equation (4) describes the value of an obsolescing firm at time t with productivity x, employment
l, and technology vintage τ . The firmmaximizes its value by choosing the number of vacancies v to
post. The flow profit is the revenue minus wage payments minus the total vacancy cost. ĉ denotes
the cost of posting one vacancy. The employment of any firm evolves as l′ = (1− λ)l+ vm(θ , 1)/θ .

Equation (5) describes the value of an updating firm. I drop technology vintage from the value
function because the firm uses up-to-date technology by definition. However, I introduce adop-
tion cost. The functional form of wages is the same across firm types because the presence of the
adoption cost is independent of the marginal job surplus.

Equation (6) describes the value of an employed worker in an obsolescing firm, and equation
(7) describes that of an employed worker in an updating firm. Equation (8) describes the value
of an unemployed worker. W̃(t + 1) denotes the expected value of being employed in the next
period. In Section 2.2, I confirm that W̃(t + 1) can be treated independently of specific factors
in each firm. Thus, the specific form of W̃(t + 1) is redundant and omitted here. For a simple
expression with integration, see Felbermayr and Prat (2011).

This study focuses on a balanced-growth equilibrium and assumes that some exogenous
variables grow at rate g to render a nontrivial environment. The list of such exogenous vari-
ables and assumptions is f̂e = a(t)fe, Î = a(t)I, b̂= a(t)b, and ĉ= a(t)c. In addition, I assume
(1− δ)(1+ g)/(1+ r)< 1 to ensure that the values of firms normalized by the economy-wide
technology—Jo(x, l, τ , t)/a(t) and Ju(x, l, t)/a(t)—are bounded. I call (1− δ)(1+ g)/(1+ r) the
net discount factor because it emerges in those normalized values.8 The net discount factor is
assumed to be positive.
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2.2 Wage bargaining
Following Stole and Zwiebel (1996) and Smith (1999), each wage is determined by surplus shar-
ing between a firm and a worker in the firm. Workers have no agreements among themselves or
interactions in the bargaining, and each worker is treated as a marginal worker. Specifically, for
an updating firm and its worker, the worker obtains the exogenous fraction β of the marginal
job surplus ∂Ju(x, l, t)/∂ l+Wu(x, l, t)−U(t), while the firm takes the remaining fraction 1− β

of the surplus. This surplus-sharing rule is the same for an obsolescing firm and its worker. The
associated expressions for the two firm types are as follows:

β

[
∂Jo(x, l, τ , t)

∂ l
+Wo(x, l, τ , t)−U(t)

]
=Wo(x, l, τ , t)−U(t) (9)

β

[
∂Ju(x, l, t)

∂ l
+Wu(x, l, t)−U(t)

]
=Wu(x, l, t)−U(t) (10)

By using these conditions, I can characterize wages in Proposition 1.

Proposition 1. The wage function takes the following form:9

w(x, l, τ , t)= β(σ − 1)
σ − β

R(x, l, τ , t)
l

+ (1− β)a(t)ω(θ) (11)

Here, ω(θ) denotes the worker’s reservation wage b+ βcθ/[(1− β)(1− δ)].

When σ = ∞, the wage function becomes a standard form so that revenue per worker is
weighted by the worker’s bargaining power β , and the reservation wage (the outside option value)
is weighted by 1− β .

Importantly, the recruitment cost per worker, equal to the vacancy cost a(t)c divided by
the job-filling probability m(θ , 1)/θ , is the same for all firms. Thus, the first-order conditions
for the two firm types follow such that a(t)cθ/m(θ , 1)= [(1− δ)/(1+ r)]∂Jo(x, l′, τ , t + 1)/∂ l=
[(1− δ)/(1+ r)]∂Ju(x, l′, t + 1)/∂ l. Along with this, by using the surplus sharing conditions (9)
and (10), the value of any employed worker in the next period, Wo(x, l, τ , t + 1), Wu(x, l, t + 1),
or W̃(t + 1), can be treated independently of firm-specific factors.

2.3 Optimal revenue and labor demand
Along with the wage function (11), the maximization problems for vacancies, from equations (4)
and (5), are solved as follows.

Proposition 2. Let a(t)R(x, t − τ ) be the optimal revenue and l(x, t − τ ) be the optimal labor
demand in a firm with productivity x and technology gap t − τ . Then, the following is true:

R(x, t − τ )= E(t)/a(t)
n

[
σ − 1
σ − β

1
κ(θ)

]σ−1
xσ−1

(
1

1+ g

)(σ−1)(t−τ )
(12)

l(x, t − τ )= E(t)/a(t)
n

[
σ − 1
σ − β

1
κ(θ)

]σ

xσ−1
(

1
1+ g

)(σ−1)(t−τ )
(13)

Here, κ(θ) is defined as the employment cost such that

κ(θ)≡ ω(θ)+ cθ
(1− β)m(θ , 1)

[
1+ r

(1− δ)(1+ g)
− 1+ λ

]
. (14)

Three remarks are in order. First, the optimal revenue is denoted by a(t)R(x, t − τ ); thus,
R(x, t − τ ) is the measure normalized by a(t). This notation is for convenience when considering
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the subsequent balanced-growth equilibrium. In addition, normalized aggregate income E(t)/a(t)
is constant in the steady state.10

Second, both R(x, t − τ ) and l(x, t − τ ) increase with [E(t)/a(t)]/n and decrease with θ . The
demand shifter coefficient for each firm is [E(t)/a(t)]/n. κ(θ) increases with θ because the job-
filling probabilitym(θ , 1)/θ decreases with θ and the reservation wage increases with it. The (flow)
employment cost κ(θ) is defined as the sum of the reservation wage and the recruitment cost,
which is adjusted to be consistent with its flow value.

Third, regarding firm-specific factors, both R(x, t − τ ) and l(x, t − τ ) increase with productiv-
ity x and decrease with technology gap t − τ . For each updating firm, the solutions (12) and (13)
become R(x, 0) and l(x, 0) by incorporating τ = t; the technology gap term vanishes.

In deriving this proposition, the Euler equation for employment is obtained such that

R(x, t − τ )
l(x, t − τ )

= σ − β

σ − 1
κ(θ). (15)

This implies that revenue per worker in any firm equals the same aggregate value κ(θ) mul-
tiplied by the markup [σ − β]/[σ − 1]. As a result, all wages reduce to the same value; let
w≡w(x, l, τ , t)/a(t) be the common normalized wage.11

The Euler equation (15) holds not only for each updating firm but for each obsolescing firm.
The endogenous shutdown period of each obsolescing firm leads to ∞ because each obsolescing
firm can reduce its employment and maintain its revenue per worker. In contrast, DMP models
do not separate the concepts of firm entry and job creation, and revenue (or output) per worker
exogenously declines over time with technology obsolescence.

As growth-related variables, I define the net discount factor G1 and the downsizing operator
G2 as follows:12

G1 ≡ (1− δ)(1+ g)
1+ r

and (16)

G2 ≡ l(x, t + 1− τ )
l(x, t − τ )

=
(

1
1+ g

)σ−1
(17)

2.4 Technology choice and free entry
There are two expressions for the entry value of each firm: Ju(x, 0, t) and Jo(x, 0, t, t)− a(t)I. The
former is the value of an updating firm with l= 0; in other words, it is the value when a new
entrant chooses to be an updating firm. The latter is the value when a new entrant chooses to be
an obsolescing firm. a(t)I is subtracted because the initial adoption cost is required for any firm
type and, as in equation (4), Jo(x, 0, t, t) does not include it. In addition, initial adopted technology
is up-to-date—that is, τ = t. The following proposition describes the entry value by firm type.

Proposition 3. Let Jue (x, t)≡ Ju(x, 0, t) be the entry value for an updating firm and Joe (x, t)≡
Jo(x, 0, t, t)− a(t)I be the entry value for an obsolescing firm. Then, these values are obtained as
follows:

Jue (x, t)= a(t)
[

G1
1−G1

[
1− β

σ − β
R(x, 0)− I

]
− I

]
and (18)

Joe (x, t)= a(t)
[

G1
1−G1G2

1− β

σ − β
R(x, 0)− I

]
(19)
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Figure 2. Entry value by firm type.

Fig. 2 depicts the two possible entry values, (18) and (19), in the same graph. The vertical axis
is the entry value normalized by a(t), and the horizontal axis is R(x, 0). Because R(x, 0) monoton-
ically increases with x, this graph reflects the relationship between the normalized entry value and
firm-specific productivity.

In brief, a firm with high (low) x optimally chooses the updating (obsolescing) firm type
because the slope of Jue (x, t)/a(t) is higher than that of Joe (x, t)/a(t) and the height of Jue (x, t)/a(t)
is lower than that of Joe (x, t)/a(t) at R(x, 0)= 0.

Specifically, there are two productivity cutoffs, x0 and x1, that satisfy

Joe (x0, t)= 0 and (20)

Joe (x1, t)= Jue (x1, t), (21)

where I term x0 the exit cutoff and x1 the technology cutoff. In steady state, a firm with x strictly
higher than x1 is an updating firm; a firmwith x such that x0 ≤ x≤ x1 holds is an obsolescing firm;
and a firm with x strictly lower than x0 exits the market.

These cutoffs are simply characterized by combining the free entry condition as follows:

a(t)fe =
∫ ∞

xmin

max
[
Jue (x, t), J

o
e (x, t), 0

]
dF(x) (22)

Here, the right-hand side is the expected entry profit before paying the entry cost a(t)fe and
realizing x. For convenience, the cutoff ratio is defined as follows:

φ ≡ x0
x1

(23)

φα equals the ratio of the number of updating firms to that of surviving firms, denoted as
[1− F(x1)]/[1− F(x0)], which is referred to as the adoption rate for technology in this economy.
The proposition below uncovers x0 and φ (and x1 following equation [23]).

Proposition 4. From equations (12) and (18)–(23), I derive the following equations:

φσ−1 = 1−G2 and (24)

fe =
(
xmin
x0

)α
σ − 1

α − σ + 1
I
[

G1
1−G1

φα + 1
]

(25)

These equations solve φ and x0.
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Two remarks are in order. First, the job-cut rate in each obsolescing firm, 1−G2, positively
affects the adoption rate φα . Because an increase in the growth rate g accelerates technology obso-
lescence and increases 1−G2, it also increases φα . So even if rapid growth harms some firms, it
improves the composition of surviving firms in the aggregate.

Second, the right-hand side of equation (25) depends on the growth-related term [G1/[1−
G1]]φα . This implies that the entry decision of each potential entrant is dominantly associated
with the chance of being an updating firm.13 An increase in g improves the success rate among
surviving firms and profitability upon success, thereby promoting firm entry and increasing the
exit cutoff.

Notably, a decrease in the entry cost does not affect the adoption rate. It promotes firm entry
and increases the exit cutoff but also increases the technology cutoff so that the cutoff ratio is
unchanged. As demonstrated later, updating firms has a substantial effect on job creation. Thus,
the effectiveness of horizontal product market deregulation may be limited.

2.5 Closing the model
To close the model, I first specify the aggregate resource constraint. It is the equality between
aggregate income and the total revenue of surviving firms. Because there are two firm types, the
aggregate resource constraint takes the following somewhat complicated form:

E(t)= n
(
1− φα

) ∫ x1

x0

∞∑
t−τ=0

a(t)R(x, t − τ )
(1− δ)t−τ δdF(x)
F(x1)− F(x0)

(26)

+ nφα

∫ ∞

x1
a(t)R(x, 0)

dF(x)
1− F(x1)

Here, the first (second) term on the right-hand side is the sum of revenues of obsolescing
(updating) firms. The number of obsolescing firms is n (1− φα), and that of updating firms
is nφα .

To be consistent with Melitz (2003) and Felbermayr and Prat (2011), this paper defines the
average of surviving firms with respect to x, denoted by x̃, so that the relationship below holds:

E(t)
n

= a(t)R(x̃, 0) (27)

Because E(t)/n is the average revenue of surviving firms, the above equation states that the average
productivity x̃ is defined such that the revenue of a firmwith x= x̃ and t − τ = 0 equals the average
revenue. Specifically, average productivity is given as

x̃≡
[
(1− φα)

δ

1−G2(1− δ)

∫ x1

x0
xσ−1 dF(x)

F(x1)− F(x0)
+ φα

∫ ∞

x1
xσ−1 dF(x)

1− F(x1)

] 1
σ−1

, (28)

where this expression accounts for the two firm types. The term δ/[1−G2(1− δ)]=
δ
∑∞

t−τ=0 G
t−τ
2 (1− δ)t−τ < 1 corresponds to the weighted downsizing operator for new and old

obsolescing firms. If there is no obsolescence, G2 = 1 and δ/[1−G2(1− δ)]= 1.14
Importantly, from equations (12), (15), and (27), it is clear that average productivity equals

revenue per worker.15 In other words, the Euler equation (29) for employment pins down the
relationship between labor market tightness and average productivity:

σ − β

σ − 1
κ(θ)= x̃ (29)

This equation implies that when there are more-productive firms, more vacancies are posted.
Thus, an increase in x̃ increases θ . The unique existence of θ requires x̃[(σ − 1)/(σ − β)]− b> 0.
Because productivity cutoffs and x̃ are solved in advance, equation (29) solves θ .
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For a given θ , unemployment u is immediately solved by the equality condition between job
creation and destruction:

um(θ , 1)= (1− u)s⇔ u= s
m(θ , 1)+ s

(30)

Thus, an increase in θ increasesm(θ , 1) and decreases u.
Finally, the number of surviving firms n is solved by the equality condition of aggregate labor

demand and the number of employed workers:

Lu + Lo = 1− u (31)

Here, Lu denotes the total labor demand of updating firms and Lo denotes that of obsolescing
firms. The total labor demand by firm type is given as

Lu = nφα

∫ ∞

x1
l(x, 0)

dF(x)
1− F(x1)

and (32)

Lo = n
(
1− φα

) ∫ x1

x0

∞∑
t−τ=0

l(x, t − τ )
(1− δ)t−τ δdF(x)
F(x1)− F(x0)

. (33)

In summary, the equilibrium is defined as follows.

Definition 5. A balanced-growth equilibrium is defined as a list of unemployment u, number of sur-
viving firms n, labor market tightness θ , exit cutoff x0, adoption rate φα , aggregate income E(t)/a(t),
values {Jo(x, l, τ , t)/a(t), Ju(x, l, t)/a(t), Wo(x, l, τ , t)/a(t), Wu(x, l, t)/a(t), and U(t)/a(t)}, revenue
R(x, t − τ ), labor demand l(x, t − τ ), and wage w, where the following is true:

• Jo(x, l, τ , t), Ju(x, l, t), Wo(x, l, τ , t), Wu(x, l, t), and U(t) satisfy the Bellman equations (4)–
(8) and the bargaining equations (9) and (10)

• Vacancy posting is optimal such that R(x, t − τ ) and l(x, t − τ ) satisfy equations (12) and
(13)

• Firm-type choice is optimal such that x0 and φα satisfy equations (20) and (21)
• There is free entry such that equation (22) holds
• The aggregate resource constraint is given as equation (26)
• u and n are obtained to satisfy equations (30) and (31)

3. The impact of growth on unemployment
How does unemployment u change when the growth rate g increases? There are three channels at
work.

First, there is an increase in the net discount factor in the Euler equation (29) for employment
when x̃ is fixed—the capitalization effect. This effect reflects rapid improvement in productivity
and an increase in the job creation value of each firm. Because the effect increases labor market
tightness θ , unemployment decreases. Specifically, from equation (29), the capitalization effect is
computed as follows:
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dθ
dg

=
[
dω(θ)
dθ

+ c
1− β

d[θ/m(θ , 1)]
dθ

(
G−1
1 − 1+ λ

)]−1
(34)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− cθ
(1− β)m(θ , 1)

dG−1
1

dg︸ ︷︷ ︸
(+)

Capitalization Effect

+ σ − 1
σ − β

dx̃
dg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Because dω(θ)/dθ and d[θ/m(θ , 1)]/dθ are positive, the second row determines the sign of
dθ/dg. With the help of equation (30), we obtain du/dg.

Second, there is a decrease in the weighted downsizing operator δ/[1−G2(1− δ)] in the defini-
tion of x̃ (equation [28])—the current-form creative-destruction effect. In this economy featuring
multiworker firms, the structure of the creative-destruction effect is different from that in DMP
models.16,17 Intuitively, a decrease in the downsizing operator G2 (equivalently, an increase in
the job-cut rate 1−G2) in each obsolescing firm increases unemployment. No other channel is
associated with obsolescence and related job cuts when aggregate firm composition (represented
by the two productivity cutoffs) is fixed.

A change in aggregate firm composition is the third effect—the firm-composition effect. This
effect can be described by changes in the average productivity of updating firms x̃u, that of obso-
lescing firms x̃o, and the adoption rate φα , where the average productivity by firm type is set such
that x̃u ≡ [

∫ ∞
x1 xσ−1dF(x)/[1− F(x1)]]1/(σ−1) and x̃o ≡ [

∫ x1
x0 xσ−1dF(x)/[F(x1)− F(x0)]]1/(σ−1).

In particular, the content of dx̃/dg in equation (34) is given as follows:

dx̃
dg

σ − 1
x̃2−σ

= (1− φα)(x̃o)σ−1 d
dg

[
δ

1−G2(1− δ)

]
︸ ︷︷ ︸

(−)
Current−Form Creative−Destruction Effect

(35)

+ φα d (x̃u)σ−1

dg

+ (1− φα)
δ

1−G2(1− δ)
d (x̃o)σ−1

dg

+
[
(x̃u)σ−1 − δ

1−G2(1− δ)
(x̃o)σ−1

]
dφα

dg︸ ︷︷ ︸
(+)

Here, the first row computes the creative-destruction effect and the remaining rows jointly
compute the firm-composition effect. The fourth row in equation (35) is unambiguously positive
when g > 0 because dφα/dg > 0 and x̃u > x̃o hold. As demonstrated in the next section, the term
in the fourth row is dominant in reducing unemployment.

The total impact of growth on unemployment is ambiguous given the three competing
channels.
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4. Simulation
In this section, I quantify the impact of growth on unemployment, du/dg, and the importance of
each channel. Then, I compare du/dg in the model with the data. In addition, I show the extent to
which my model’s results improve on those of a standard DMP model.

4.1 Benchmark calibration
The model is calibrated to the US economy. The period is annual. The matching function is
specified such thatm(V , u)=m0uηV1−η. The parameter values are set as follows.

The discount rate r and the base growth rate g are 0.04 and 0.02, respectively. In line with
Elsby et al. (2013), the monthly job-separation probability s/12 is 0.036. The firm-destruction
probability δ is 0.092, computed as the mean value over the 1978–2014 period using data from
Business Dynamics Statistics. The data are available since 1978. The end year is set to be consistent
with the period that is adopted in the subsequent simulation.

The elasticity of matching function η is 0.5, based on Petrongolo and Pissarides (2001).
Following Felbermayr and Prat (2011), the bargaining power of each worker β is 0.5 so that β = η

holds. As mentioned in Felbermayr and Prat (2011), when allowing multiworker firms, the Hosios
condition β = η is not sufficient to ensure an efficient allocation. In the social planner’s problem
here, the derivatives of total revenue to u and θ are not simple. In contrast, in the DMP setting,
the typical total revenue is exogenous output per worker multiplied by 1− u (thus, its deriva-
tive with respect to u is simply output per worker multiplied by −1). Because of the absence of
well-established estimates, I set the bargaining power β = η as a standard choice. Additionally,
an independent change in β generates a monotonic effect on du/dg; the question of whether the
value of β is near its optimal value seems uninteresting.

According to Ebell and Haefke (2009), the entry cost in the USA in 1997 equaled 0.6 months of
per capita income, and the entry cost in 1978 amounted to 5.2 months of per capita income. I sim-
ply use the mean value of these estimates such that fe = [(0.6+ 5.2)/2]× 1/12= 0.24, although
the main results are robust to this decision. I show the sensitivity of the three effects later. I use
the value of per capita income equal to one, based on the normalization x̃= 1, which is mentioned
later. Although the average productivity x̃ and per capita income E(t)/a(t) are not the same, these
values are numerically very similar so that x̃= 1 (normalization) and E(t)/a(t)= 0.9401 (solution)
hold.

The remaining parameter values cannot be set directly. Thus, these values are obtained such
that important targeted moments in the model equal those in the data.18

The scale of matching function m0, the flow value of unemployment b, and the vacancy cost
c are 7.99, 0.27, and 0.54, respectively. These values are obtained to replicate the data moments:
labor market tightness equals 0.72, from Pissarides (2009); the monthly job-finding probability
equals 0.565, from Elsby et al. (2013); the replacement rate (the ratio of the unemployment flow
value to the wage b/w) equals 0.37, from the OECD Statistics database.19

The elasticity of substitution between two differentiated goods σ is 2.56 such that the markup
equals 1.32, from Christopoulou and Vermeulen (2012).20 The shape of the productivity distri-
bution α is 1.66 such that the size distribution of firms is approximately Zipf and its tail index
α/(σ − 1) equals 1.06, from Axtell (2001) and Luttmer (2007).

The minimum level of firm-specific productivity xmin is 0.008 such that the average productiv-
ity x̃ equals 1 as a normalization. The adoption cost I is 1.83 such that the average firm size equals
19.51 as the mean value over the 1978–2014 period, from Business Dynamics Statistics.

The parameter values are summarized in Table 1. Under these parameter values, the equilib-
rium solution is u= 0.0599, n= 0.0482, w= 0.7289, E(t)/a(t)= 0.9401, x0 = 0.1638, and x1 =
1.5296. Of course, θ = 0.72 and x̃= 1 hold because these are the targeted moment and the
normalization.
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Table 1. Parameter values

Parameter Description Value

r Discount rate 0.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

g Growth rate 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

s/12 Job-separation probability 0.036
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

δ Firm-destruction probability 0.092
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

η Matching-function elasticity 0.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

β Worker bargaining power 0.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

fe Entry cost 0.24

m0 Matching-function scale 7.99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

b Flow unemployment value 0.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

c Vacancy cost 0.54
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

σ Elasticity of substitution 2.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

α Productivity distribution shape 1.66
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

xmin Minimum productivity 0.008
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

I Adoption cost 1.83

Figure 3. The impact of growth on unemployment.
Note: The total impact of growth on unemployment is decomposed into three effects so that CAP, CRE, and COMP repre-
sent the capitalization effect, the creative-destruction effect, and the firm-composition effect, respectively. The dotted line
corresponds to the total impact of the three effects.

4.2 Results
Fig. 3 graphically shows the total impact of growth on unemployment du/dg (as the dotted line)
and its decomposition into the three effects. When the growth rate increases, the capitaliza-
tion effect (labeled “CAP”) slightly reduces unemployment, while the creative-destruction effect
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Table 2. Decomposition and calibration sensitivity

Description Benchmark b/w= 0.71 Markup= 1.6

du/dg −0.2586 −0.5412 −0.2548
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CAP −0.0078 −0.0078 −0.0078
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRE + 0.0508 + 0.1082 + 0.0739
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP −0.3016 −0.6413 −0.3207
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP1 + 0.9855 + 2.103 + 1.9608
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP2 + 0.0074 + 0.0158 + 0.0477
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP3 −1.2916 −2.7386 −2.3181
Note: The total impact of growth on unemployment du/dg is decomposed into three
effects: CAP, CRE, and COMP. COMP is further decomposed into COMP1, COMP2, and
COMP3, which are associated with the second to fourth rows in equation (35), respec-
tively. In addition to Benchmark (the result under the benchmark calibration), I check
alternative calibration cases such that the value of the targeted moment is b/w= 0.71 or
Markup= 1.6, and the entry cost fe is given as 0.6/12 or 5.2/12. Each case for fe is omitted
because its result is identical to the Benchmark column.

(labeled “CRE”) increases it. Consistent with the literature, the latter effect is stronger than the
former effect.

However, these canonical effects are small relative to the firm-composition effect (labeled
“COMP”). Rapid technology obsolescence is not always undesirable because it not only increases
the job-cut rate in each obsolescing firm but reduces the number of such firms and induces firms
to choose the updating firm type. As a result, the composition of surviving firms and the associated
worker reallocation improve in the aggregate.21

Table 2 numerically shows the total impact du/dg and its decomposition. The column
“Benchmark” reports the result under the benchmark calibration.22 COMP is approximately 40
times larger than CAP. The size of CAP is similar to that obtained in standard DMP models
(under fully disembodied technology) because equation (34) is essentially unchanged across mod-
els when dx̃/dg = 0. In Appendix I, I describe the simple DMP model with the capitalization and
creative-destruction effects and simulate du/dg.

In addition, in Table 2, COMP is further decomposed into COMP1, COMP2, and COMP3.
While the second to fourth rows in equation (35) jointly compute COMP, COMP1 is computed
by taking into account only the second row in equation (35); it reflects a change in the average
productivity of updating firms. COMP1 is positive because some less productive firms become
updating firms and the average productivity of the updating firm type decreases. This reduces
labor market tightness and increases unemployment. Similarly, COMP2 is computed by using
only the third row in equation (35); it reflects a change in the average productivity of obsolesc-
ing firms. COMP2 is relatively insignificant because this channel involves competing effects: a
decrease in the technology cutoff x1 and an increase in the exit cutoff x0. Finally, COMP3 is com-
puted by activating only the fourth row in equation (35), and it reflects an increase in the adoption
rate. The results imply that COMP3 is the dominant source of COMP.

In Table 2, the results of alternative calibration cases are also shown. First, the targeted data
moment for b/w is changed to 0.71, as suggested by Hall and Milgrom (2008). As discussed in the
literature, the opportunity cost of employment may be too low, when it does not include the value
of leisure or home production.23 In this alternative case, the sizes of CRE and COMP increase
while CAP remains unchanged. In total, the size of du/dg increases.

In the second case, the targeted markup is changed to 1.6. De Loecker et al. (2020) document
the evolution of market power in the USA, where the average markup steadily increased from 1.2
in 1980 to 1.6 in 2016.24 Although the size of du/dg slightly decreases, the result is still robust.

In the third case, fe is changed in the calibration process. Modifying it does not change the
benchmark result, which is reported in Table 2. This is because such a change in fe is fully absorbed
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in xmin, while the other parameter values are unaltered; as in equation (25), fe itself does not matter
as long as fe/[xα

min] is constant.

4.3 Data versus model
Fig. 4 demonstrates the evolution of the unemployment rate from the data and model predictions.
The model predictions are computed such that only the growth rate varies as in its empirical
evolution (see the bottom graph), while the other parameter values are fixed.

To directly observe model performance, Table 3 shows the regression estimates for which each
evolution in Fig. 4 is used. Each regression coefficient in Table 3 corresponds to the estimated
value of du/dg. Regarding its value, the results imply that the model accounts for 16%–36% of the
variation in the data.

Additionally, in this exercise, the relative importance of the three effects for du/dg holds sim-
ilarly to that in Table 2 (for each case in each column, respectively) because these effects are
computed in an almost linear manner across different growth rates as visualized in Fig. 3. Thus,
this model explains an important new part of the data in contrast to standard DMPmodels, which
explain at most the size of CAP.

Regarding the empirical literature, the implied du/dg is−0.47 in Blanchard andWolfers (2000,
Table 4), −1.49 in Pissarides and Vallanti (2007), and −1.15 in Miyamoto and Takahashi (2011).
The first paper’s estimate is for 20 OECD countries, while the other estimates are for the USA.

Regarding the standard DMP model in Appendix I, the implied du/dg is −0.0072 when the
ratio of disembodied technology equals 0.99 as the exogenous adoption rate φα = 0.99 (equiva-
lently when the remaining ratio 0.01 is embodied technology). The sign reversal of du/dg occurs
between φα = 0.9 and φα = 0.8. When φα = 0.1, the implied du/dg is+ 0.0388. For low φα , the
standard DMP model fails to explain the data even qualitatively.

The size of the implied du/dg from the data increases over time. In Table 4, the regression
results by period are reported; the total period 1970–2014 is truncated at the peak and trough of
the growth rate in Fig. 4. Because the regression coefficients for the model, reported in Table 3, are
almost unchanged regarding period separation, model performance deteriorates as time passes. If
this tendency is true, the value of investigating the sources of du/dg increases.

4.4 Interaction with policy
Table 5 shows how the decomposition of du/dg is modified when the following policy-related
parameter values are changed independently: the flow unemployment value b, worker bargaining
power β , or the entry cost fe. When b= 0.27, β = 0.5, and fe = 0.24, the decomposition result is
the same as in the second column (labeled “Benchmark”) in Table 2.

Two remarks are in order. First, an increase in each parameter value monotonically increases
the sizes of du/dg and all decomposed outcomes. This is common to the three parameters. In other
words, some rigidities in the labor and product markets increase both the unemployment rate and
the magnitude of du/dg. This result helps us understand the observed differences between the
USA and Europe as suggested in Hornstein et al. (2007).25

Second, a change in b appears to generate a stronger effect than the other parameters. In Table 5,
the range of β is not narrow and that of fe is associated with the US entry costs between 1978 and
1997 as suggested in Ebell and Haefke (2009). In addition, b= 0.5 is near the value when the
targeted data moment of b/w in the calibration equals 0.71 (although this alternative calibration
case also changes the value of c). A change in b from 0.27 (as the benchmark value) to 0.5 increases
the size of du/dg by 0.41. As found in Aguiar and Hurst (2008) and Aguiar et al. (2021), leisure
time and contents change over time; b does not reflect mere unemployment insurance and seems
an important factor in the evolution of du/dg.
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Figure 4. Unemployment evolution, data versus model.
Note: The evolution of the unemployment rate is depicted for data and model predictions (which correspond to the calibra-
tion setups labeled “Benchmark” and “b/w= 0.71” in Table 2) as a response to the empirical variation of the growth rate. The
annual data are constructed from the 2017 release of the EUKLEMS database and the OECD Statistics database. The growth
rate is calculated as gross value added (in 2010 prices) divided by employment. The data are trended through Hodrick and
Prescott filtering with the smoothing parameter value 100.

4.5 Interaction with finance
Empirically, the labor market appears to have a strong link with the stock market.26
Complementary to this view, financial imperfections may amplify the impact of growth on unem-
ployment in the current simulation. Petrosky-Nadeau and Wasmer (2013) consider a two-stage
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Table 3. Regression results: data versus model

Description Data Model Model, b/w= 0.71

Intercept 0.0798 0.0646 0.0706
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.0030) (0.0001) (0.0000)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coefficient −1.4654 −0.2274 −0.5308
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.3073) (0.0059) (0.0039)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adjusted R2 0.694 0.995 0.999

Note: The independent variable is the growth rate g, and the dependent variable is
the unemployment rate u, using the evolution in Fig. 4. Newey-West HAC standard
errors are shown in parentheses.

Table 4. Regression results by period

Description Data, Period1 Data, Period2 Data, Period3

1970–1978 1979–1997 1998–2014

Intercept 0.0717 0.0869 0.0853
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.0011) (0.0000) (0.0011)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coefficient −0.8058 −1.8280 −2.3215
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.0679) (0.0042) (0.1163)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adjusted R2 0.948 0.839 0.968

Note: The regression result for the data in Table 3 is further examined. Specifically, I separate the total
period 1970–2014 into three periods and get the regression results for each period.

Table 5. Decomposition and policy

Description b= 0.1 b= 0.5 β = 0.2 β = 0.8 fe = 0.6/12 fe = 5.2/12

du/dg −0.1663 −0.6658 −0.1746 −0.3957 −0.1034 −0.4626


CAP −0.0058 −0.0144 −0.0065 −0.0141 −0.0023 −0.0142


CRE + 0.0325 + 0.1321 + 0.0341 + 0.0773 + 0.0205 + 0.0909


COMP −0.1929 −0.7832 −0.2021 −0.4588 −0.1215 −0.5390


COMP1 + 0.6299 + 2.5664 + 0.6607 + 1.4986 + 0.3968 + 1.7631


COMP2 + 0.0047 + 0.0193 + 0.0050 + 0.0113 + 0.003 + 0.0133


COMP3 −0.8268 −3.3468 −0.8654 −1.9653 −0.5208 −2.3068


u|g=0.02 0.0516 0.0824 0.0352 0.1024 0.0323 0.0819

Note: The decomposition results are shown under different parameter values for the flow unemployment value b, worker bargaining power
β, and the entry cost fe . The remaining parameter values, which are not specified in the first row, equal those of the benchmark calibration.
Thus, the current exercise does not examine alternative calibration cases but looks for a change in each parameter value one by one. The first
column is the same as in Table 2 except for the additional information u|g=0.02, which reports the unemployment rate at g= 0.02.

matching environment initially through the credit market and then through the labor market.
Their model implies that the financial sector introduces a new element to hiring costs such that
element is independent of congestion in the labor market. As a result, their model shows that
the elasticity of labor market tightness to productivity shocks is amplified in the business cycle
context.27

A simple extension regarding this point is examined here. Specifically, I replace the hiring cost c
by the modified hiring cost c+ [m(θ , 1)/θ]H. All setups except for this are unchanged.H denotes
the new exogenous element in hiring costs. In other words, the total cost of employing one worker
is cθ/m(θ , 1)+H.28 Thus, H is a fixed and independent term.
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Table 6. Decomposition and additional exogenous term H in hiring costs

Description H= 0.01 H= 0.02 H= 0.01, b/w= 0.71 H= 0.02, b/w= 0.71

du/dg −0.2849 −0.3170 −0.6731 −0.8900
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CAP −0.0086 −0.0095 −0.0097 −0.0128
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRE + 0.0560 + 0.0623 + 0.1346 + 0.1780
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP −0.3322 −0.3697 −0.7974 −1.0544
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP1 + 1.0857 + 1.2085 + 2.6180 + 3.4656
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP2 + 0.0082 + 0.0091 + 0.0196 −0.0260
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMP3 −1.4224 −1.5827 −3.4029 −4.4950
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c+ m(θ ,1)
θ

H|g=0.02 0.5429 0.5429 0.2551 0.2551
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c 0.4488 0.3546 0.161 0.0668
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m(θ ,1)

θ
H|g=0.02 0.0942 0.1883 0.0942 0.1883

Note: Alternative calibrations and their decomposition results are shown, where the value of the additional exogenous term H
is initially given and then I implement the same procedure as in the benchmark calibration except that the total hiring cost is
modified to c+m(θ , 1)H/θ . In addition to the benchmark calibration (with the targeted datamoment b/w= 0.37), the case for the
targeted data moment b/w= 0.71 is also shown for different values of H.

Table 6 shows the results under different H. The last two rows in Table 6 report the implied
size of each element in hiring costs. Checking these relative sizes, I select H = 0.01 and 0.02 to
demonstrate the outcomes. Similar to the business cycle context, at least, the presence of the fixed
term H magnifies the current results.

In addition, heterogeneous financial conditions across firms may further amplify the results.
Eckstein et al. (2019) use firm-level data and document that lower credit ratings are associated
with more volatile employment and higher interest rate volatility. They show that in the 2008
financial crisis, firms with lower credit ratings experienced greater declines in employment.29 In
my model, a change in the adoption rate is positively linked to the job-cut rate, as suggested in
Proposition 4. Thus, if obsolescing (less productive) firms are financially weak and must further
increase the job-cut rate to weather episodes of illiquidity in times of rapid technological progress,
the adoption rate increases so that the firm-composition effect strengthens.

The relationship between a technology choice and creditor protection may also be important
when incorporating financial imperfections into the analysis. Benmelech and Bergman (2011)
use a panel of aircraft-level data around the world and find that airlines enjoying the benefits of
higher creditor protection operate aircraft of a newer technology and younger vintage. They argue
that improved investor protection and its associated reduction in financial frictions affect firms’
tendency to invest in newer technologies as a key driver of productivity growth. This view seems
to be helpful for uncovering a valuation in unemployment through a change in the adoption rate.

5. Conclusions
This study considered heterogeneous multiworker firms and examined the impact of techno-
logical progress on unemployment. Incorporating firm heterogeneity into the model uncovered
endogenous variations in the exit cutoff and the technology cutoff with respect to firm-specific
productivity. In other words, the surviving firms are divided into two broad types of technology
choices: updating and obsolescing firms. Thus, the model incorporates the channel of a change
in the aggregate composition of firms, referred to as the firm-composition effect, in addition to
the canonical channels, the creative-destruction effect and the capitalization effect. The simula-
tion results implied that the firm-composition effect is substantial and helps fill the gap between
theory and data.
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Notes
1 In the Appendix, I review previous studies on the relationship between ICT and productivity growth.
2 Aghion and Howitt (1994) and Mortensen and Pissarides (1998) are foundational works in the literature.
3 This percent range is from using different targeted data moments in calibrating the model, with respect to the ratio of the
unemployment flow value to the wage, based on Shimer (2005) or Hall and Milgrom (2008).
4 For example, see Elsby and Michaels (2013) and Acemoglu and Hawkins (2014) for the setting of multiworker firms.
5 Roughly speaking, the impact of growth on unemployment in a DMP model with disembodied technology is referred
to as the capitalization effect, and that in a DMP model with embodied technology without updates is referred to as the
creative-destruction effect.
6 This study avoids considering multiple update frequencies as in Mortensen and Pissarides (1998) because an aggregate
adoption extent becomes intractable in that case. In other words, this study considers two broad types of consecutive-updating
firms (updating firms) versus non-updating firms (obsolescing firms).
7 Specifically, the revenue function is derived under the following setup. Each consumer maximizes the utility function over
the consumption of differentiated variety of goods:

max
qi,j

[
n− 1

σ

∫
q

σ−1
σ

i,j di
] σ

σ−1

Here, qi,j denotes the consumption of good i by consumer j. Following the literature, one firm produces one differentiated

good. The price index is defined as P ≡
[
(1/n)

∫
p1−σ
i di

]1/(1−σ )
, where pi denotes the price of good i. Without loss of gener-

ality, the price index is normalized to one. See Blanchard and Giavazzi (2003), Ebell and Haefke (2009), and Felbermayr and
Prat (2011).
8 For example, when both sides of (5) are divided by a(t), I show that Ju(x, l, t)/a(t)= . . . + [(1− δ)/(1+ r)]
[a(t + 1)/a(t)]Ju(x, l′, t + 1)/a(t + 1)⇔ Ju(x, l, t)/a(t)= . . . + [(1− δ)(1+ g)/(1+ r)]Ju(x, l′, t + 1)/a(t + 1).
9 All proposition proofs are shown in the appendix.
10 I explicitly present the expression of E(t) in Section 2.5.
11 This is a basic feature of models with multiworker firms. I avoid further discussion regarding this issue.
12 Technically, any downsizing through gradual obsolescence is described as a decrease in new vacancies for replenishing
vacant jobs that occur with an exogenous separation shock.
13 Equation (25) exactly traces (22). See the appendix for a detailed derivation.
14 In essence, the definition of x̃ is unnecessary, but it is convenient to regard its term as a chunk.
15 Recall that revenue per worker in any firm equals the same value through vacancy optimization.
16 Because I define x̃ so that the average revenue equals the revenue evaluated with x= x̃ and t − τ = 0, the weighted
downsizing operator is conveniently arranged in its x̃.
17 For the canonical form of this effect, evaluate the model in Appendix I with φα set to 0.
18 Precisely speaking, there is one productivity normalization for xmin.
19 Following the method in Nickell et al. (2003), I calculate the replacement rate under a 12-month unemployment duration
averaged over family types in 2001, including social assistance benefits and housing benefits. Because there is no drastic
change over time, I use the value as of 2001. It is similar to that used in Shimer (2005).
20 This empirical study considers not only the manufacturing and construction sectors but also the market services sector.
The last sector tends to generate a higher markup relative to the first two.
21 Simulated changes in key endogenous variables are summarized in Appendix H.
22 Technically, I first compute the two steady-state outcomes under g = 0.02 and 0.0201. Then, by using these results, each
value in Table 2 is calculated. For example, du/dg is obtained as [u|g=0.0201 − u|g=0.02]/[0.0201− 0.02].
23 In fact, Miyamoto and Takahashi (2011) use this alternative data moment in their calibration. The reason for using
b/w= 0.37 in this paper is that it is conservative.
24 I thank an anonymous referee for the information.
25 Because Hornstein et al. (2007) focus on the creative-destruction effect, their results are not directly comparable to the
current results. However, the essence seems similar.
26 For example, see Hall (2017).
27 This is consistent with Pissarides (2009), who shows that such an independent element (regardless of its sources) magnifies
business cycle fluctuations.
28 θ/m(θ , 1) vacancies are posted on average to employ one worker.
29 Lower credit ratings are associated with higher interest rates (as a well-known fact) and lower average firm size (from their
summary statistics).
30 Associated with this early productivity paradox, Robert Solow (1987) remarks that “You can see the computer age every-
where but in the productivity statistics.” In addition, Greenwood and Yorukoglu (1997, Figure 2) show a productivity
slowdown before 1990 and a simultaneous increase in information technology investment. One reason for the paradox is
that ICT capital accumulation is fairly small relative to the total capital in the early period.
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31 In addition, the authors compare their results with those reported in the other seminal studies (Jorgenson and Stiroh
(2000), and Whelan(2000)) and suggest that, as a robust result, computer hardware makes a substantially larger contribution
to output growth during the second half of the 1990s than during the first half.
32 See also Brynjolfsson and Hitt (2000) for a summary of microlevel studies, Gordon and Sayed (2020) for longer period
analyses, and Timmer and van Ark (2005) and Ark et al. (2008) for the productivity growth difference between the USA and
Europe.
33 The computation method for the values in Table 7 is the same as in the body text so that du/dg is evaluated near the
point g = 0.02. However, a previous draft computes du/dg as [u|g=0.03 − u|g=0.02]/[0.03− 0.02] by computing the steady-
state unemployment rates at g = 0.02 and g = 0.03. In this case, the positive magnitudes of du/dg for low φα become much
larger.
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A. Empirical Implications for the Relationship between ICT and Productivity
In this section, I review some results to see that ICT has contributed to labor productivity growth
in the USA, at least until approximately 2000.

Oliner and Sichel (2000) consider the three periods, 1974–1990, 1991–1995, and 1996–1999,
and find that the contribution of ICT capital deepening (as an increase in the total amount of hard-
ware, software, and communication equipment per hour worked) to labor productivity growth is
modest from the first to the second period and is strong from the second to the third period.
The former result is consistent with studies conducted before the early 1990s failing to confirm
the relationship between ICT and aggregate productivity growth.30 The latter result is specified
so that 68% of the increase in labor productivity growth from the second to the third period
occurs via the sum of both ICT capital deepening, 43%, and computer and computer-related semi-
conductor productions, 25%.31 Interestingly, by investigating the residual productivity in their
growth accounting, the authors show that approximately half of the residual productivity growth
is achieved via the computer and semiconductor sectors in all three periods.

Greenwood et al. (1997) build amodel in which neutral technological progress and investment-
specific technological progress are considered separately. The former technological progress is
measured as the growth rate of the total factor productivity directly incorporated into the pro-
duction function. The latter technological progress is measured as the growth rate of the extent
of how efficiently the amount of equipment investment is converted into its capital accumulation.
The authors use equipment price data for a measure of investment-specific technological progress,
and neutral technological progress is measured as the remaining component of labor productiv-
ity growth. The authors show that 58% of labor productivity growth is via investment-specific
technological progress between 1954 and 1990.

Similarly, Cummins and Violante (2002) use a model consistent with Greenwood et al. (1997)
but additionally consider a change in the labor quality associated with rising educational attain-
ment over time. They show that 60% of labor productivity growth is via investment-specific
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technological progress between 1948 and 1999. Moreover, from their estimates by asset, the
information processing equipment and software category, including computers and peripheral
equipment, is the driving force. Implied productivity improvements in computers and peripheral
equipment increase at an annual average of 23.5% between 1948 and 2000.32

B. Proof of Proposition 1 (Wage)
First, I obtain the first-order and envelope conditions based on (4) and (5) as follows:

−a(t)c+ m(θ , 1)
θ

1− δ

1+ r
∂Jo(x, l′, τ , t + 1)

∂ l
= 0, (B1)

−a(t)c+ m(θ , 1)
θ

1− δ

1+ r
∂Ju(x, l′, t + 1)

∂ l
= 0, (B2)

∂Jo(x, l, τ , t)
∂ l

= ∂R(x, l, τ , t)
∂ l

− ∂w(x, l, τ , t)
∂ l

l−w(x, l, τ , t) (B3)

+(1− λ)
1− δ

1+ r
∂Jo(x, l′, τ , t + 1)

∂ l
, and (B4)

∂Ju(x, l, t)
∂ l

= ∂R(x, l, t, t)
∂ l

− ∂w(x, l, t, t)
∂ l

l−w(x, l, t, t) (B5)

+ (1− λ)
1− δ

1+ r
∂Jo(x, l′, t + 1)

∂ l
.

These equations are very similar between firm types. Using (6), (8), (B1), and (B3), equation (9) is
written as follows:

β

⎡
⎣ ∂R(x,l,τ ,t)

∂ l − ∂w(x,l,τ ,t)
∂ l l−w(x, l, τ , t)

+ 1−s
1+r

∂Jo(x,l′,τ ,t+1)
∂ l

⎤
⎦ (B6)

= (1− β)

⎡
⎣w(x, l, τ , t)− a(t)b− m(θ ,1)

1+r
[
W̃(t + 1)−U(t + 1)

]
+ 1−s

1+r
[
Wo(x, l′, τ , t + 1)−U(t + 1)

]
⎤
⎦ .

In addition, equation (B6) takes the following form when using the equality m(θ , 1)
[W̃(t + 1)−U(t + 1)]/(1+ r)= a(t)βcθ/[(1− β)(1− δ)], which follows from the first-order
conditions and (9).

∂w(x, l, τ , t)
∂ l

+ w(x, l, τ , t)
βl

− 1
l

[
∂R(x, l, τ , t)

∂ l
+ 1− β

β
a(t)ω(θ)

]
= 0, (B7)

where ω(θ)≡ b+ βcθ/[(1− β)(1− δ)] is defined as the reservation wage. It increases with θ .
Finally, by using a general solution shown by Bertola and Garibaldi (2001, p. 343), the ordinary

differential equation (B7) is solved as follows:

w(x, l, τ , t)= l−
1
β

∫ l

0
k

1
β
−1 ∂R(x, k, τ , t)

∂ l
dk+ (1− β)a(t)ω(θ) (B8)

= β(σ − 1)
σ − β

R(x, l, τ , t)
l

+ (1− β)a(t)ω(θ),
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where ∂R(x, l, τ , t)/∂ l= [(σ − 1)/σ ] (E(t)/n)
1
σ (a(τ )x)

σ−1
σ l− 1

σ .

C. Proof of Proposition 2 (Optimal Labor Demand and Revenue)
I have the following Euler equation for employment by using (B1) and (B3):

1+ r
1− δ

a(t − 1)cθ
m(θ , 1)

= ∂R(x, l, τ , t)
∂ l

− ∂[w(x, l, τ , t)l]
∂ l

+ (1− λ)
a(t)cθ
m(θ , 1)

. (C1)

Because ∂[w(x, l, τ , t)l]/∂ l= β[(σ − 1)/(σ − β)]∂R(x, l, τ , t)/∂ l+ (1− β)a(t)ω(θ) holds, the
above equation leads to the following:

R(x, l, τ , t)/a(t)
l

= σ − β

σ − 1
κ(θ), (C2)

κ(θ) is defined as the employment cost, namely,

κ(θ)= ω(θ)+ cθ
(1− β)m(θ , 1)

[
1+ r

(1− δ)(1+ g)
− 1+ λ

]
. (C3)

Finally, the optimal labor demand and revenue are solved by using revenue’s definition
R(x, l, τ , t)= (E(t)/n)

1
σ (a(τ )xl)

σ−1
σ and (C2).

D. Proof of Proposition 3 (Entry Values)
First, I transform the wage function as follows:

w(x, l, τ , t)= β(σ − 1)
σ − β

a(t)R(x, t − τ )
l(x, t − τ )

+ (1− β)a(t)ω(θ)

= β(σ − 1)
σ − β

a(t)R(x, t − τ )
l(x, t − τ )

+ (1− β)a(t)
[

σ − 1
σ − β

R(x, t − τ )
l(x, t − τ )

− cθ
(1− β)m(θ , 1)

(
G−1
1 − 1+ λ

)]

= a(t)
[

σ − 1
σ − β

R(x, t − τ )
l(x, t − τ )

− cθ
m(θ , 1)

(
G−1
1 − 1+ λ

)]
, (D1)

where the second equality follows from (C2) and (C3). By using (D1), the operational value of an
obsolescing firm is obtained as follows:

Jo(x, l(x, t − τ ), τ , t)=max
T

T+τ∑
i=t

(
1− δ

1+ r

)i−t
⎡
⎣a(i)R(x, i− τ )−w(x, l(x, i− τ ), τ , i)l(x, i− τ )

−a(i)cvo(x, i− τ )

⎤
⎦

=max
T

a(t)
T+τ∑
i=t

Gi−t
1 Gi−τ

2

[
R(x, 0)

1− β

σ − β
+ l(x, 0)

cθ
m(θ , 1)

(
G−1
1 −G2

)]

= a(t)Gt−τ
2

[
1

1−G1G2
R(x, 0)

1− β

σ − β
+ 1

G1
l(x, 0)

cθ
m(θ , 1)

]
, (D2)

where vo(x, t − τ )≡ [
l(x, t + 1− τ )− (1− λ)l(x, t − τ )

]
θ/m(θ , 1). The optimal firm-shutdown

period T becomes ∞ because G−1
1 −G2 =G−1

1 − 1+ 1−G2 > 0. Similarly, the operational value
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of an updating firm is as follows:

Ju(x, l(x, 0), t)= a(t)R(x, 0)−w(x, l(x, 0), t, t)l(x, 0)

− a(t)cvu(x)− a(t)I + 1− δ

1+ r
Ju(x, l(x, 0), t + 1)

= a(t)
[

1
1−G1

[
R(x, 0)

1− β

σ − β
− I

]
+ 1

G1
l(x, 0)

cθ
m(θ , 1)

]
, (D3)

where vu(x)≡ [
l(x, 0)− (1− λ)l(x, 0)

]
θ/m(θ , 1).

Finally, the entry values are given as follows:

Ju(x, 0, t)= a(t)
[−cv0(x)− I +G1Ju(x, l(x, 0), t)

]
and (D4)

Jo(x, 0, t, t)− a(t)I = a(t)
[−cv0(x)− I +G1Jo(x, l(x, 0), t, t)

]
, (D5)

where the initial number of vacancies corresponds to v0(x)≡ l(x, 0)θ/m(θ , 1). From (D2)-(D5),
the entry values are calculated as in the proposition.

E. Proof of Proposition 4 (Technology Adoption Rate and Exit Cutoff)
The reservation rules (20) and (21) characterize the revenue cutoffs R(x0, 0) and R(x1, 0) as
follows:

1− β

σ − β
R(x0, 0)= 1−G1G2

G1
I and (E1)

1− β

σ − β
R(x1, 0)= 1−G1G2

G1(1−G2)
I. (E2)

Moreover, the following relationship can be obtained by calculating the ratio of the revenue
cutoffs as follows:

φσ−1 = R(x0, 0)
R(x1, 0)

= 1−G2. (E3)

On the other hand, the free entry condition (22) is calculated as follows:

fe =
∫ x1

x0

[
G1

1−G1G2

1− β

σ − β
R(x0, 0)

R(x, 0)
R(x0, 0)

− I
]
dF(x)

+
∫ ∞

x1

[
G1

1−G1

1− β

σ − β
R(x0, 0)

R(x, 0)
R(x0, 0)

− I
1−G1

]
dF(x)

= I

⎡
⎣

αxα
min

α−σ+1
(
x−α
0 − x−α

1 φ1−σ
) − [F(x1)− F(x0)]

+ 1−G1G2
1−G1

αxα
min

α−σ+1x
−α
1 φ1−σ − 1−F(x1)

1−G1

⎤
⎦ , (E4)
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where the second equality uses (E1). After dividing both sides by I[1− F(x0)]= I (xmin/x0)α ,
expression (E4) is further transformed as follows:

fe
I

(
xmin
x0

)−α

= α

α − σ + 1
φαφ1−σ (1−G2)G1

1−G1

+ α

α − σ + 1
− 1− G1

1−G1
φα

=
(

α

α − σ + 1
− 1

) (
G1

1−G1
φα + 1

)
, (E5)

where the second equality uses the relationship φ1−σ (1−G2)= 1 from (E3). Equation (E5) is
equivalent to (25).

F. Demand Shifter and Average Productivity
Equation (26) can be arranged as follows:

E(t)/a(t)
n

=
∫ x1

x0

∞∑
t−τ=0

R(x′, 0)R(x, t − τ )
R(x′, 0)

(
1− φα

)
(1− δ)t−τ δdF(x)

F(x1)− F(x0)

+
∫ ∞

x1
R(x′, 0) R(x, 0)

R(x′, 0)
φα dF(x)

1− F(x1)

= R(x′, 0)
(
1
x′

)σ−1
⎡
⎣ (1− φα) δ

1−G2(1−δ)
∫ x1
x0 xσ−1 dF(x)

F(x1)−F(x0)

+φα
∫ ∞
x1 xσ−1 dF(x)

1−F(x1)

⎤
⎦ , (F1)

where I use R(x, t − τ )/R(x′, 0)= (
x/x′)σ−1 Gt−τ

2 from (12). Notably, this expression holds for
any x′.

The terms in brackets in (F1) are associated with the average firm-specific productivity x̃, which
is defined as follows:

x̃σ−1 ≡ (1− φα)
δ

1−G2(1− δ)

∫ x1

x0
xσ−1 dF(x)

F(x1)− F(x0)
+ φα

∫ ∞

x1
xσ−1 dF(x)

1− F(x1)
.

This definition is equivalent to the following relationship:

E(t)/a(t)
n

= R(x′, 0)
(
x̃
x′

)σ−1

= R(x̃, 0).

G. Firm Size Density
Let S(l) be the firm size density, L be the random variable of l, and X be the random variable of x.
Let ob be an obsolescence count, which equals t − τ , and Ob be the random variable of ob.

First, consider a range of l more than l(x1, 0). In this range, there is no effect of obsolescence,
and the following equality holds:

P(l≤ L≤ l+ dl)= P(x(l)≤ X ≤ x(l+ dl)), (G1)
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where x(l)≡ (
l(1, 0)−1l

)1/(σ−1) from (13). Equation (G1) is equivalent to the following:

S(l)dl= f (x(l))
1− F(x0)

[x(l+ dl)− x(l)].

Thus, I obtain the following:

S(l)|l>l(x1,0) =
f (x(l))

1− F(x0)
∂x(l)
∂ l

(G2)

∝ l−
α

σ−1−1.

Second, focus on a range of l less than l(x0, 0). For this range, any level of l less than l(x0, 0)
stems from obsolescence. Thus, the following equality holds in this range:

P(l≤ L≤ l+ dl)=
∫ x1

x0
P(ob(l+ dl, x)≤Ob ≤ ob(l, x))

dF(x)
1− F(x0)

, (G3)

where ob(l, x)≡ ln [l(1, 0)−1x1−σ l]/ lnG2 from (13). Based on (G3), I obtain the following:

S(l)|l<l(x0,0) =
∫ x1

x0
δ(1− δ)ob(l,x)

∣∣∣∣∂ob(l, x)∂ l

∣∣∣∣ dF(x)
1− F(x0)

(G4)

∝ l
δ

(σ−1)g −1,

where the approximation values 1− δ ≈ exp (− δ) and lnG2 ≈ (1− σ )g are used.
Finally, consider the range l(x0, 0)≤ l≤ l(x1, 0). In this range, the following equality holds:

P(L≤ l)= P(L≤ l(x1, 0))− P(l≤ L≤ l(x1, 0)),

where

P(L≤ l(x1, 0))= 1− φα

and

P(l≤ L≤ l(x1, 0))=
∫ x1

x(l)
P(0≤Ob ≤ ob(l, x))

dF(x)
1− F(x0)

.

I obtain

S(l)|l(x0,0)≤l≤l(x1,0) =
∂P(L≤ l)

∂ l
(G5)

= − ∂

∂ l

[∫ x1

x(l)
P(0≤Ob ≤ ob(l, x))

dF(x)
1− F(x0)

]

= − ∂

∂ l

⎡
⎣∫ x1

x(l)

ob(l,x)∑
ob=0

δ(1− δ)ob
dF(x)

1− F(x0)

⎤
⎦

∝ l−
α

σ−1−1 − l
δ

(σ−1)g −1l(1, 0)−
α

σ−1− δ
(σ−1)g x

− δ
g −α

1 ,

where the discrete time interval is assumed to be infinitesimal to obtain the fourth line from the
third equality.
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The firm size density in the current economy is, therefore, summarized as in (G2), (G4), and
(G5) for each range. Notably, the growth rate g does not affect the density within the sufficiently
large firm size range.

H. Simulated Impacts of Growth on Key Variables
Figure H1 demonstrates how the growth rate g affects key variables, while using the benchmark
parameter values in table 1.

The total impact of growth on unemployment is monotonically negative. Along with the dis-
cussion in the body text, the creative-destruction effect, associated with an increase in the job-cut
rate, is overwhelmed by the firm-composition effect, mainly through an increase in the adoption
rate.

Figure H1. Demonstrates how the growth rate g affects key variables, while using the benchmark parameter values in
Table 1.
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Behind these results, the demand shifter increases as being almost monotonic. In addition,
Fig. H1 also depicts R(1, 0), as the common revenue component for each firm, which positively
depends on the demand shifter and negatively depends on the employment cost κ(θ). Because
an increase in the growth rate decreases R(1, 0), the employment cost increases dominantly in
comparison to the increase in the demand shifter.

I. DMP Model with the Creative-Destruction Effect and Capitalization Effect
In this section, I describe a simple DMP model with both canonical effects. The notation here
is the same as in the body text, but the adoption rate φα is set to be exogenous as the ratio of
disembodied technology.

Following Pissarides and Vallanti (2007) and Hornstein et al. (2007), the output per worker in
a job is defined as a(t)φαa(τ )1−φα , where t is the current period and τ is the initial production
date of the job (as a measure of the job’s vintage). There are two components for this expres-
sion. The first component a(t)φα , associated with disembodied technology, grows at rate gφα

because a(t + 1)φα
/a(t)φα = (1+ g)φα ≈ exp (gφα). The second component a(τ )1−φα , associated

with embodied technology, is constant within the job. However, the economy-wide output per
worker grows at rate g because the second component is not fixed in the total economy.

The value functions are specified as follows:

V(t)= −a(t)c+ 1
1+ r

[
m(θ , 1)

θ
J(t + 1, t + 1)+

(
1− m(θ , 1)

θ

)
V(t + 1)

]
, (I1)

J(τ , t)=max
[
a(t)φ

α

a(τ )1−φα −w(τ , t)+ 1− s
1+ r

J(τ , t + 1), 0
]
, (I2)

W(τ , t)=max
[
w(τ , t)+ 1

1+ r
[(1− s)W(τ , t + 1)+ sU(t + 1)] ,U(t)

]
, and (I3)

U(t)= a(t)b+ 1
1+ r

[m(θ , 1)W(t + 1, t + 1)+ (1−m(θ , 1))U(t + 1)] , (I4)

whereV(t) denotes the value of a vacancy at time t. Themodel assumes the free entry of vacancies,
that is, V(t)= 0. The wage function is obtained under the following surplus-sharing rule:

βJ(τ , t)= (1− β)[W(τ , t)−U(t)]. (I5)
The equality condition between job creation and destruction for pinning down equilibrium
unemployment is:

JC ≡m(θ , 1)u= (1− u)s+ JC(1− s)o
∗
b+1 ≡ JD, (I6)

where JC equals the number of aggregate jobs created in each period and JD equals that of jobs
destroyed. o∗

b denotes the maximum distance between t and τ such that each employer–employee
match dissolves when ob = t − τ exceeds o∗

b . The first term of JD represents the exogenous sep-
arations that occur with probability s. The second term of JD expresses separations via complete
obsolescence with which a job surplus becomes smaller than the outside option value of each
worker.

Under the setup of the model environment above, the key endogenous variables, each wage
w(τ , t), maximum obsolescence in each job o∗

b , labor market tightness θ , and unemployment u,
are solved by the following equations:

w(τ , t)
a(t)

= β(1+ g)−(t−τ )(1−φα) + (1− β)
[
b+ βcθ

1− β

]
, (I7)
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Table 7. du/dg in the DMP
model

Exogenous φα du/dg

0.99 −0.0072
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.9 −0.0018
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.8 + 0.0041
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5 + 0.0210
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.1 + 0.0388

(1+ g)−o∗
b(1−φα) = b+ βcθ

1− β
, (I8)

1+ r
1+ g

c
m(θ , 1)/θ

=
o∗
b∑

ob=0

[
(1+ g)(1− s)

1+ r

]ob
(1− β)

[
(1+ g)−ob(1−φα) − b− βcθ

1− β

]
, and (I9)

u= s

m(θ , 1)
[
1− (1− s)o

∗
b
]
+ s

. (I10)

The first equation is derived from the surplus-sharing rule. For convenience, I define the
normalized value J(t − τ ) so that J(t − τ )≡ J(τ , t)/a(t). The second equation follows from
J(o∗

b)= 0. The third equation equalizes the cost and benefit of each new job, through the free
entry of vacancies; the right-hand side in the third equation equals J(0). The fourth equation
holds from the equality between job creation and destruction. The average wage is given as
[
∑o∗

b
ob=0 w(ob)(1− s)ob]/[

∑o∗
b
ob=0 (1− s)ob], where w(t − τ )≡w(τ , t)/a(t).

The model calibration method is the same as in the body text. Because the DMP model has
the nine exogenous parameters, β , g, b, c, r, s, m0, η, and φα , the targeted data moments are
reduced to the three: job-finding probability, labor market tightness, and the replacement rate for
determining b, c, and m0. The parameter values except for b, c, m0, and φα are the same as those
in Table 1.

Table 7 shows the impact of growth on unemployment du/dg. The first column is the set of
different exogenous adoption rates φα , and the second column reports the implied du/dg.33
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