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THE SHAPIRO–LOPATINSKIJ CONDITION FOR
ELLIPTIC BOUNDARY VALUE PROBLEMS

KATSIARYNA KRUPCHYK and JUKKA TUOMELA

Abstract

Elliptic boundary value problems are well posed in suitable Sobolev
spaces, if the boundary conditions satisfy the Shapiro–Lopatinskij
condition. We propose here a criterion (which also covers over-
determined elliptic systems) for checking this condition. We present
a constructive method for computing the compatibility operator for
the given boundary value problem operator, which is also necessary
when checking the criterion. In the case of two independent variables
we give a formulation of the criterion for the Shapiro–Lopatinskij
condition which can be checked in a finite number of steps. Our
approach is based on formal theory of PDEs, and we use
constructive module theory and polynomial factorisation in our test.
Actual computations were carried out with computer algebra systems
Singular and MuPad.

1. Introduction

It is well known that elliptic boundary (value) problems are well posed only if the boundary
conditions are chosen appropriately. By well-posedness one usually means that the solution
exists and is unique in some space, and it depends continuously on data and parameters,
or more generally that the relevant operator is at least Fredholm (the kernel and cokernel
are finite-dimensional). The property which the boundary conditions should satisfy to have
a well-posed problem in some Sobolev spaces for a elliptic boundary value problem is
called the Shapiro–Lopatinskij condition. Of course, in many physical models the boundary
conditions are more or less clear, and if the model is at all reasonable one may expect these
‘natural’ boundary conditions to give a well-posed problem. However, in more complicated
models one may not have any natural boundary conditions, or it may not be clear which
boundary conditions are ‘best’ in a given situation.

In [17], Mohammadi and Tuomela proposed to use the involutive form of the PDE system
in numerical computations. The resulting systems are not standard ones, so the question
naturally arose as to how to check effectively whether given boundary conditions indeed
satisfy the Shapiro–Lopatinskij condition. The purpose of the present article is to give a
(partial) answer to that question.

Originally, the Shapiro–Lopatinskij condition was formulated for square elliptic systems
(that is, with as many algebraically independent equations as unknowns; see [16, 23]), but
subsequently the theory was generalised to square DN-elliptic systems (elliptic in the sense
of Douglis and Niremberg; see [2, 3, 4]) and overdetermined elliptic systems [8, 9]. Note
that there is no need to consider overdetermined DN-elliptic systems because we proved,
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The Shapiro–Lopatinskij condition

together with Seiler, in [15] that any DN-elliptic problem becomes elliptic when completed
to involutive form.

The plan of the paper is as follows. In Section 2 we review the necessary background,
mainly some constructive module theory and formal theory of PDEs, but we also recall some
facts about Sobolev spaces. In Section 3 we prove some results related to the notion of finite
type, and introduce DN-elliptic systems. Then in Section 4 we take up square DN-elliptic
systems and propose a criterion for checking the Shapiro–Lopatinskij condition. We also
give a constructive test for checking this condition in the case of two independent variables.
This restriction is due to the fact that in the two-variable case we can use factorisation of
polynomials in one variable in a way which seems to be impossible in the general case.
Note that, strictly speaking, we could have treated the general case directly, but because
square DN-elliptic systems are important in practice anyway, it is perhaps best to consider
them separately. Also, the results of this section are helpful in proving more general results
later. In Section 5 we introduce boundary value problem operators, and show how one
can constructively compute their compatibility operators. These constructions are based
on computing syzygies using Gröbner bases and suitable module orderings. In Section 6
we then give a new criterion for checking the Shapiro–Lopatinskij condition in the over-
determined case. We also propose a constructive test in the two-variable case. Finally, in
Section 7 we draw some conclusions and indicate some directions for future work.

In our examples we have used Singular [13] and MuPad [11]. In Appendix A we show
how to use these programs to perform the computations needed.

2. Preliminaries

2.1. Algebra

All the relevant material can be found, for example, in [12] and [10] (orderings and
commutative algebra) and [5] and [18] (field extensions).

2.1.1. Orderings
Let Nn

0 be the space of multi indices, that is, the set of all ordered n-tuples µ = (µ1, . . . , µn)

with µi ∈ N0. Let 1j be a multi index whose j th component is one and others are zero. The
length of a multi index is |µ| = µ1 + . . . + µn and the class of the multi-index µ, denoted
by cls µ, is �, if µ1 = . . . = µ�−1 = 0 and µ� �= 0.

A total ordering > on the set of monomials Monn = {ξµ | µ ∈ Nn
0} in n variables is

called a global monomial ordering if it satisfies the following conditions:

(1) ξα > ξβ implies that ξγ ξα > ξγ ξβ for all α, β, γ ∈ Nn
0, and

(2) ξα > 1 for all α �= 0.

In this paper we will consider only such orderings, and for simplicity we will drop the words
‘global monomial’ from now on. We will need the following orderings:

- lexicographic ordering (denoted by >lp): ξα >lp ξβ if and only if

∃ 1 � i � n : α1 = β1, . . . , αi−1 = βi−1, αi > βi;
- degree reverse lexicographic ordering (denoted by >dp): ξα >dp ξβ if and only if

|α| > |β| or
(|α| = |β| and ∃ 1 � i � n : αn = βn, . . . , αi+1 = βi+1, αi < βi

);
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- product ordering: let >1 be an ordering on Mon(ξ1, . . . , ξn) and >2 an ordering
on Mon(η1, . . . , ηl); then the product ordering > on Mon(ξ1, . . . , ξn, η1, . . . , ηl) is
defined as

ξαηβ > ξα′
ηβ ′ ⇐⇒ ξα >1 ξα′ (

or α = α′ and ηβ >2 ηβ ′)
.

2.1.2. Commutative algebra
Let A = K[ξ ] = K[ξ1, . . . , ξn] be a polynomial ring in n variables where K is some field
of characteristic zero. If I is an ideal of K[ξ ], then AI = K[ξ ]/I is the residue class ring.

The cartesian product Ak is an A–module of rank k. A module which is isomorphic to
some Ak is called free. A module M is finitely generated, if there are elements a1, . . . , aν ∈
M such that M = 〈a1, . . . , aν〉. Every submodule of Ak is finitely generated.

Let C be a m × m matrix whose elements belong to A. The adjoint of C, denoted by
adj(C) ∈ Am×m, is the matrix of cofactors of C; that is,

C adj(C) = Im det(C),

where Im is the unit matrix of size m × m.
Let us consider a homomorphism ϕ : Ak → Am and its image M0 = image(ϕ) =

〈b1, . . . , bk〉 ⊂ Am. If s ∈ Ak is such that

s1b
1 + . . . + skb

k = 0,

then s is called a syzygy of M0. All such s form the (first) syzygy module of M0, which is
denoted by M1. But now M1 is the image of some homomorphism ϕ1, and one can consider
its syzygies. Now Hilbert’s syzygy theorem [10, p. 45] asserts that every finitely generated
A-module has a free resolution, that is, an exact sequence of the form

0 −→ Akr −→ Akr−1 −→ · · · ϕ2−→ Ak1
ϕ1−→ Ak ϕ−→ Am −→ Am/M0 −→ 0. (2.1)

Recall that ‘exactness’ means that the image of any map in this sequence is equal to the
kernel of the subsequent map. The length of a free resolution is less than or equal to n,
where n is the number of variables in the polynomial ring A; that is, for our module M0 we
have r � n.

2.1.3. Module orderings
Let A = K[ξ ] as before, and let us denote by ei the canonical basis vectors of Ak . The
elements of the form ξµei can be ordered in two different ways. Here, < can be any
monomial ordering.

• TOP ordering:

ξαei <m ξβej if ξα < ξβ (or α = β and i > j).

• POT ordering:

ξαei <m ξβej if i > j (or i = j and ξα < ξβ).

Now let Â = K[ξ, η], and let M̂ be some submodule of Âk . We choose a TOP module
ordering in Âk and product ordering in Â with η variables bigger than ξ . We will need the
following fact [1, p. 156].

Lemma 2.1. If Ĝ is a Gröbner basis for M̂ , then Ĝ ∩ Ak is a Gröbner basis for M̂ ∩ Ak .
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Hence TOP orderings can be used to eliminate variables. On the other hand, POT order-
ings can be used to eliminate components. Let M be a submodule of Ak = Ai ⊕ Ak−i . We
choose a POT module ordering for Ak , and any monomial ordering in A. Then we have the
following lemma [12, p. 177].

Lemma 2.2. If G is a Gröbner basis for M , then G∩Ak−i is a Gröbner basis for M ∩Ak−i .

2.1.4. Field extensions
An extension of a field K is a field L which contains K as a subfield. The extension L is
called algebraic if every element of L is algebraic over K; that is, if every element of L is
a root of some non-zero polynomial with coefficients in K.

If α ∈ L \ K is algebraic over K, then there is a unique monic polynomial p of least
degree such that p(α) = 0. This p is called a minimal polynomial of α.

The field extension L is called finitely generated if there are elements α1, . . . , αn ∈ L\K

such that L = K(α1, . . . , αn). If a field extension L over K is generated by a single element
α, then α is called a primitive element.

The splitting field of a polynomial p ∈ K[x] is a field extension L of K over which
p factorizes into linear factors x − bi and such that the bi generate L over K. Hence the
splitting field is finitely generated and, moreover, we have the following primitive element
theorem [5].

Theorem 2.1. Let K be a field of characteristic 0. Then every finitely generated extension
of K has a primitive element. In particular, the splitting field of any polynomial p ∈ K[x]
has a primitive element.

2.2. Complex analysis

Let ζ1, . . . , ζν ∈ C be some points lying in the open upper half of the complex plane.
Let us define following polynomials:

p+ = (ζ − ζ1) . . . (ζ − ζν) =
ν∑

j=0

bj ζ
j ;

p+
l =

ν∑
j=l

bj ζ
j−l , l = 1, . . . , ν.

(2.2)

Lemma 2.3 (see [2]). Let γ+ be a simple closed curve oriented counterclockwise in the
upper half of the complex plane surrounding all the roots of the polynomial p+. Then

1

2πi

∮
γ+

ζ τp+
l (ζ )

p+(ζ )
dζ =

{
1, τ = l − 1,

0, τ �= l − 1,
τ = 0, . . . , ν − 1.

Let M+ be the space of functions u : R → Cm which tend to zero as xn → +∞ and let
v be a vector whose elements are in C[ζ ]. Then we set

ωl(xn) = 1

2πi

∮
γ+

v(ζ )p+
l (ζ )eiζxn

p+(ζ )
dζ, l = 1, . . . , ν.

The following lemma is similar to some results in [14]. However, since we could not find
the precise result that we needed, we give the proof below.
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Lemma 2.4. Let us suppose that v is not zero modulo p+. Then ωl ∈ M+, l = 1, . . . , ν,

are linearly independent.

Proof. First note that ωl ∈ M+, since �(iζ ) < 0. Let us now consider a linear combination

c1ω
1 + . . . + cνω

ν = 0. (2.3)

Since v is not divisible by p+, we have

v = qp+ + v , v =
ν−1∑
τ=0

vτ ζ τ , v �= 0,

where q, v and vτ are some vectors. Let τ0, 0 � τ0 < ν, be such that

vτ0 �= 0, vτ = 0 for all 0 � τ < τ0. (2.4)

So we get

ωl(xn) =
ν−1∑
τ=0

vτ 1

2πi

∮
γ+

ζ τp+
l (ζ )eiζxn

p+(ζ )
dζ, l = 1, . . . , ν.

Lemma 2.3 implies that

dkωl

dxk
n

(0) =
{

ik vl−k−1, l > k,

0, l � k.
(2.5)

Differentiating expression (2.3) ν − τ0 − 1 times, substituting xn = 0 and using (2.5), we
get

ν∑
l=ν−τ0

clv
l−ν+τ0 = 0.

Applying (2.4), we obtain cν = 0. Now differentiating expression (2.3) ν − τ0 − 2 times,
substituting xn = 0 and using (2.5) and the fact that cν = 0, we get

ν−1∑
l=ν−τ0−1

clv
l−ν+τ0+1 = 0.

But now (2.4) implies that cν−1 = 0. Continuing in this way, we get cτ = 0 for τ0 < τ � ν.
So (2.3) now has the following form:

c1ω
1 + . . . + cτ0ω

τ0 = 0. (2.6)

Now Lemma 2.3 also implies that∫ +∞

xn

. . .

∫ +∞

xn︸ ︷︷ ︸
k

ωl(xn)dxn|xn=0 =
{

i−k vl+k−1, l � ν − k,

0, l > ν − k.
(2.7)

Integrating (2.6) once, substituting xn = 0 and using (2.7), we get
τ0∑

l=1

clv
l = 0.

Hence, cτ0 = 0. Continuing in this way we finally get ci = 0 for 1 � i � τ0.
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2.3. Geometry

Here we simply give the basic definitions, and refer to [21] and [19] for more details.
All maps and manifolds will be assumed smooth — that is, infinitely differentiable.

Let π : E →  be a bundle where E is called the total space,  the base space and π

the projection. For each p ∈ , the set Ep = π−1(p) is called the fiber over p. All fibers
are diffeomorphic to each other. A vector bundle is a bundle whose fibers are vector spaces.
From now on we will assume that all bundles are vector bundles. For example, we will need
the following vector bundles: the tangent bundle T , the cotangent bundle T ∗, and the
bundle of symmetric q-forms Sq(T ∗).

Given two bundles π0 : E0 → 0 and π1 : E1 → 1, the map � : E0 → E1 is a
bundle map or morphism if there is a map ϕ such that the map E0|x → E1|ϕ(x) is linear,
and the following diagram commutes. (Strictly speaking, the pair (�, ϕ) is the bundle map.
However, ϕ is uniquely determined by � (if it exists).)

E0
� ��

π0

��

E1

π1

��
0

ϕ �� 1

In many cases of interest we have 0 = 1 and ϕ = id.
Let πq : Jq(E) →  be the bundle of q-jets of π : E → . If the coordinates of the

base space are denoted by (x1, . . . , xn) and the coordinates of the fiber by (y1, . . . , ym),
then the coordinates of Jq(E) (called jet coordinates) are denoted by

(x1, . . . , xn, y
1, . . . , ym, . . . , y�

µ, . . .)

where |µ| � q. Then, denoting by nq the number of distinct multi indices of length |µ| = q,
the dimension of Jq(E) is n + mdq , where

dq = 1 + n1 + . . . + nq =
(

n + q

q

)
and nq =

(
n + q − 1

q

)
.

Let us also introduce the standard projections

π
q+r
q : Jq+r (E) −→ Jq(E)

and define the embedding εq by requiring that the following complex be exact:

0 �� Sq(T ∗) ⊗ E
εq �� Jq(E)

π
q
q−1 �� Jq−1(E) �� 0 .

Recall that a complex C is a sequence of bundles Ei and bundle maps �i such that

C : 0 �� E0
�0 �� E1

�1 �� E2
�2 �� . . .

and �i+1�i = 0. A complex is exact, if im(�i) = ker(�i+1) for all i.
Finally, a section of the bundle π : E →  is a map f :  → E such that π ◦ f = id.

If f is a section of E , then its qth prolongation, a section of Jq(E), is denoted by jqf .
The vector space of smooth sections of E is denoted by C∞(E), and the Sobolev spaces of
sections of E by Hα(E). However, it is essential to consider also the case where different
components of the sections are in different Sobolev spaces. Hence we consider α as a vector:

y ∈ Hα(E) ⇐⇒ yi ∈ Hαi
(E i ),
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where we have the direct sum decomposition E = ⊕
i E i . The corresponding norms are

then defined by

‖y‖α =
∑

i

‖yi‖αi
.

If we do not want to specify the space of sections, or if this choice is irrelevant, we will use
the notation S(E).

2.4. PDE

All the relevant materials can be found in [9], [19] and [25].

Definition 2.1. A (partial) differential system (or equation) of order q on E is a subbundle
Rq of Jq(E). Solutions of Rq are its (local) sections.

In the present article we will consider only linear problems, so Rq will be a vector
bundle.

Above, we defined what the differential equations are, but we have not yet introduced
any equations. To this end, let us introduce two (vector) bundles E0 and E1, and consider
the following bundle map

A : Jq(E0) −→ E1.

Note that A is a map between finite-dimensional spaces. Then we can define a linear qth-
order differential operator by the formula A = Ajq :

A : S(E0) −→ S(E1). (2.8)

Now, using A, one can represent a differential equation as a zero set of a bundle map:

Rq = ker(A) : A(x, y, . . .) = 0. (2.9)

Definition 2.2. The differential operator j rA : S(E0) → S(Jr(E1)) is the rth prolongation
of A. The associated morphism is denoted by Ar .

Then we can define the prolongations of Rq by

Rq+r = ker(Ar ).

Also, we define

R(s)
q+r = π

q+r+s
q+r

(
Rq+r+s

)
.

Note that R(s)
q+r ⊂ Rq+r , but in general these sets are not equal.

Definition 2.3. A differential operator A is called sufficiently regular if R(s)
q+r is a vector

bundle for all r � 0 and s � 0.

If  ⊂ Rn and the operator A has constant coefficients, then A is sufficiently regular.

Definition 2.4. A differential operator A (of order q) is formally integrable if A is suffi-
ciently regular and R(1)

q+r = Rq+r for all r � 0.

The formal integrability of an operator A of order q means that for any r � 1, all the
differential consequences of order q + r of the relations Ay = 0 may be obtained by way
of differentiations of order no more than r , and the application of linear algebra.
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Now it is well known that some properties of PDEs depend only on the highest-order
derivative terms in the system. The information of this highest-order part is coded in the
symbol of the system. In fact, there are two different kinds of symbols which are of interest
here: the geometric symbol and the principal symbol.

Definition 2.5. Let us consider a sufficiently regular differential equation Rq ⊂ Jq(E)

given by Rq = ker(A).

• The (geometric) symbol Mq of Rq is a subbundle of Sq(T ∗) which is defined by
the commutative and exact diagram (2.10).

• The principal symbol A of operator (2.8) is a map as follows:

A = A εq : Sq(T ∗) ⊗ E0 → E1.

0

��

0

��
0 �� Mq ��

��

Rq

��

π
q
q−1 �� Jq−1(E0)

0 �� Sq(T ∗) ⊗ E0

A
��

εq �� Jq(E0)

A
��

π
q
q−1 �� Jq−1(E0) �� 0

E1 E1

(2.10)

One can find more information about symbols in [19], [22] and [24].
We will now describe the symbol in a given coordinate system. Consider a linear qth-

order PDE given by

Rq : Ay =
∑

|µ|�q

aµ(x)∂µy = f, (2.11)

where x ∈  ⊂ Rn,  is open, aµ(x) ∈ Rk×m and µ ∈ Nn
0. We will always suppose that

k � m. Now let Mq be the following matrix:

Mq = (
aµ1 , aµ2 , . . . , aµnq

)
,

where µ1 > µ2 > . . . > µnq and |µi | = q. In this way the (geometric) symbol Mq is
defined by the kernel of Mq and we may also call the matrix Mq the symbol of Rq . However,
one usually considers A in a different way. Fixing some one form ξ we get a bundle map
A(ξ) : E0 → E1, which in coordinates is given by

A(x, ξ) =
∑

|µ|=q

aµ(x)ξµ.

Remark 2.1. We can interprete ξ in four different ways:

(1) as a one form, that is, a section of T ∗;

(2) as the value of this one form at a given point p: ξ ∈ T ∗
p ;

(3) as a vector in Rn, that is, a coordinate representation of (2); and finally

(4) as indeterminates in some polynomial ring.

We think that the intended interpretation will be clear from the context.
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In terms of matrices, the connection between the two symbols is given by the formula

A = Mq(�q ⊗ I ), (2.12)

where �q = (ξµ1
, ξµ2

, . . . , ξµnq
). Hence, algebraically, we consider A as a module MA

generated by its rows; we may write this as MA ⊂ Am. All computations with the principal
symbol are based on this interpretation.

Anyway, it turns out that the symbol contains information which helps us to recognize if
the given system is formally integrable. The relevant property is called the involutivity of the
symbol. However, the actual definition of involutivity is rather complicated, and because
we will not need it explicitly we just refer to [24], [19], [22] and [8] for the actual definition.

The next result shows why the involutivity of the symbol is important.

Theorem 2.2. Let us suppose that the symbol Mq is involutive, and that Rq is sufficiently
regular. If no new integrability conditions are obtained by differentiating the system Rq

once, then it is formally integrable.

Now we say that the system Rq is involutive if it is formally integrable and the symbol
Mq is involutive.

The above discussion suggests the following algorithm to compute the involutive form
of a given system.

1. The system is prolonged until its symbol becomes involutive.

2. The system is prolonged and projected once, to check whether there are integrability
conditions.

3. If there are no new equations in the previous step, the system is now involutive.
Otherwise go back to step 1 with the system obtained in step 2.

This is often called the Cartan–Kuranishi completion algorithm. One can show that un-
der appropriate hypotheses the above algorithm terminates; in other words, the following
theorem holds.

Theorem 2.3. For a given sufficiently regular system Rq , there are numbers r and s such

that R(s)
q+r is involutive.

In practice, to complete a system to the involutive form we have used the DETools
package [6] in MuPAD [11] (see also Appendix A.6 for appropriate MuPad commands).

2.5. Functional analysis

We have now defined differential equations and operators, but have not yet discussed any
boundary conditions. To consider boundary value problems we introduce bundles Ei → 

where  is now a manifold with boundary; we denote the boundary by �. Further, let
Gi → � be some bundles on the boundary. The bundle Ei |� → � is the restriction of
Ei →  to the boundary. If f is a section of Ei → , then γf is the corresponding section
of Ei |� → �; γ is called the trace map.

Definition 2.6. An operator of the form

� : S(E0) × S(G0) −→ S(E1) × S(G1), �(y, z) = (�11y, γ�21y + �22z), (2.13)

where�ij are differential operators, is called a differential boundary operator (DB-operator).
If G0 = 0, we will write

�(y) = (Ay, By). (2.14)

In this case � is called a boundary value problem operator (BV-operator).
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Remark 2.2. Strictly speaking, we should write γB instead of B. However, this is the
standard way of writing the BV-operator.

In terms of Sobolev spaces the most general DB–operator can be written as follows:

� : Hα(E0) × Hβ(G0) −→ Hδ(E1) × Hη(G1), (2.15)

where α, β, δ and η are some appropriately chosen vectors.

3. Ellipticity of the symbol

Let us consider the system (2.11). In the geometric definition of differential equations it
is natural to assume that for each x ∈  ∪ � ⊂ Rn the elements of the matrices aµ(x) are
real. However, to formulate our problem algebraically we need to assume that the elements
of aµ are in some field. Since our computations are local in nature it is best to think that
we fix some x and then choose some convenient field. Obviously, this field should be the
same for all x. Now for the purposes of symbolic computations we cannot take the field of
real numbers; instead, we will work with the field K, which is of characteristic zero and a
subfield of real numbers. So from now on we suppose that aµ ∈ Kk×m and k � m.

Note that although the field K will be the same for all x, various objects that we will define,
such as the characteristic polynomial, will depend a priori on x. However, for simplicity of
notation this dependence on x will be suppressed.

Let A1, . . . , Ar be all m×m submatrices of A, and let us denote the corresponding minors
by pi = det(Ai ) ∈ K[ξ ]. Further, let us define the (Fitting) ideal generated by these minors:

IA = 〈p1, . . . , pr 〉.
The complex projective variety VCP(IA) is called the characteristic variety of the operator
A.

Definition 3.1. The differential operator A is called elliptic in , if A is injective for all
real ξ �= 0 and for all x ∈ .

Geometrically, this condition means that the real projective variety VRP(IA) = ∅.

Definition 3.2. The characteristic polynomial pA of an elliptic operator A is the greatest
common divisor of its minors:

pA = gcd(p1, . . . , pr). (3.1)

The greatest common divisor can be computed using Gröbner bases [1, p. 71]. It is
immediate that IA ⊂ 〈pA〉, and it is also easy to see that the following lemma holds.

Lemma 3.1. If n > 1, then the characteristic polynomial does not change when the symbol
is prolonged.

Proof. If A is the symbol, then �r ⊗A is the r-times prolonged symbol. From this the claim
follows.

It is well known that IA depends only on the module generated by the rows of A. The
same property holds also for the characteristic polynomial.

Theorem 3.1. The characteristic polynomial pA depends only on the module generated by
the rows of A.
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Proof. Let us denote the rows of A by ai , and let M = 〈a1, . . . , ak〉 be the module generated
by these rows. Let c ∈ M , and let Ac be A with the added row c. Obviously, pAc divides pA.
We will show that pA also divides pAc .

Let us denote the minors of Ac by qi , if they are also minors of A, and by q̃i otherwise. We
need to show that pA divides all q̃i . Now c = ∑k

i=1 pia
i , where pi are some polynomials.

Without loss of generality we can write any q̃i as

q̃i = det

( k∑
j=1

pja
j , c1, . . . , cm−1

)
,

where the ci are some rows of A. But then

q̃i =
k∑

j=1

pj det
(
aj , c1, . . . , cm−1) =

k∑
j=1

pjqj .

Hence pA = pAc .
Now suppose that we have another basis of the module: M = 〈b1, . . . , bs〉, and let us

denote the corresponding matrix by B. But all the bi can be represented as bi = ∑k
j=1 pij a

j .
By the previous argument, adding such sums to the matrix does not change the characteristic
polynomial. But then, interchanging the roles of A and B, we see that pA = pB.

3.1. Finite type

Definition 3.3. The symbol Mq is of finite type if Mq+r = 0 for some r .

Recall that if Mq is involutive and of finite type, then Mq = 0. We have the following
characterisation.

Theorem 3.2. The symbol is of finite type if and only if rad(IA) = 〈ξ1, . . . , ξn〉.
Geometrically, the condition rad(IA) = 〈ξ1, . . . , ξn〉 means that the characteristic variety

is empty (as a projective variety).

Proof of Theorem 3.2. First suppose that rad(IA) �= 〈ξ1, . . . , ξn〉. Hence there are ξ �= 0
and v �= 0 such that A(ξ)v = 0. But then by formula (2.12), Mq(�q ⊗ v) = 0. But then
evidently Mq+r (�

q+r ⊗ v) = 0 for all r , so Mq is not of finite type.
Then suppose that rad(IA) = 〈ξ1, . . . , ξn〉. Let us denote by ei the canonical basis

vectors of Am, and by MA ⊂ Am the module generated by the rows of A. Now, operating
with adjoints of submatrices of A, it is seen that piej ∈ MA for all i and j . This implies that
if f ∈ IA, then f ej ∈ MA for all j . Hence by hypothesis there is s such that ξ

q+s
i ej ∈ MA

for all i and j . But then there must be some r such that ξ
µ
i ej ∈ MA for all |µ| = q + r

and all j . Hence the symbol Mq+r has a representation such that the symbol matrix Mq+r

contains an identity matrix with nq+rm columns. Hence ker(Mq+r ) = 0.

Corollary 3.1. If n > 1 and Mq is of finite type, then pA = 1.

Proof. Since IA ⊂ 〈pA〉, we have VCP(〈pA〉) ⊂ VCP(IA). But if pA �= 1, then VCP(〈pA〉)
is not empty.

In general, the converse of the above result is not true. For example if p1 = ξ2
1 + ξ2

2 + ξ2
3

and p2 = 2ξ2
1 + ξ2

2 + ξ2
3 , then

gcd(p1, p2) = 1 but rad(〈p1, p2〉) = 〈ξ1, ξ
2
2 + ξ2

3 〉.
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However, we have the following partial converse.

Lemma 3.2. In the two-dimensional case, pA = 1 implies that Mq is of finite type.

Proof. Let fi(ξ1) = pi(ξ1, 1) and gi(ξ2) = pi(1, ξ2). Now if pA = 1 we have also

gcd(f1, . . . , fr ) = 1 and gcd(g1, . . . , gr ) = 1.

But this implies that there are polynomials ai ∈ K[ξ1] and bi ∈ K[ξ2] such that

r∑
i=1

aifi = 1 and
r∑

i=1

bigi = 1.

Homogenizing these equations shows that there are numbers si such that ξ
si
i ∈ IA. Hence

rad(IA) = 〈ξ1, ξ2〉.
One may interpret the above results geometrically as follows. In a typical situation, our

problem is given in some domain  ⊂ Rn, and the boundary � is an (n − 1) dimensional
submanifold of the closure of . Hence the codimension of � is one. Now the fact that
pA = 1 implies that one cannot impose any conditions in a set S ⊂  ∪ � of codimension
one. However, it may be possible to give some conditions, if codim(S) > 1. But if n = 2
and codim(S) > 1, then dim(S) = 0; that is, the system is of finite type. On the other hand,
if n > 2, then the ‘intermediate’ situations codim(S) > 1 and dim(S) > 0 can really occur.
In [4] and [20] one can find some results for these kinds of problems.

3.2. Weights

To generalise the notion of ellipticity, Douglis and Nirenberg [7] introduced the concept
of weights of the system. In [15] it is shown that any system that is elliptic with respect
to the generalised definition becomes elliptic when completed to the involutive form. So
the apparent generality of ellipticity is just the result of restricting our attention to square
systems. Hence this concept is interesting only in the square case, so when discussing DN-
elliptic systems (elliptic in the sense of Douglis–Nirenberg) we will always suppose that
k = m.

The weights are two sets of integers: we denote by sl the weights for the equations,
1 � l � m, and by tj the weights for the unknowns, 1 � j � m. They must be chosen such
that

sl + tj � qlj ,

where qlj is the maximal order of a derivative of the j th unknown function in the lth
equation and if sl + tj < 0 then there are no derivatives of the j th unknown function in the
lth equation of the system.

Definition 3.4. The weighted (principal) symbol of the differential operator A is

(Aw)l,j =
∑

|µ|=sl+tj

(aµ(x))l,j ξ
µ.

The operator A is DN -elliptic if Aw is injective for all real ξ �= 0 and for all x ∈ . (Note
that in all cases we mean the submatrix of A, except for the notation Aw, which we use for
the weighted principal symbol.)
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In particular, ordinary ellipticity is a special case of DN-ellipticity with weights

s1 = . . . = sm = 0 and t1 = . . . = tm = q.

Note that without loss of generality one may suppose, if convenient, that s1 � s2 � . . . �
sm = 0 and t1 � t2 � . . . � tm � 1. It is not difficult to see that DN-ellipticity is not
invariant with respect to changing the dependent variables.

The following is a natural analog of Definition 3.2.

Definition 3.5. The characteristic polynomial of a DN-elliptic operator A is

pA = det(Aw).

This is a homogeneous polynomial in K[ξ ] of degree
∑m

l=1(sl + tl).
Now, whether the characteristic polynomial is defined by Definition 3.2 or by Definition

3.5, we will need the following property. Let us set ξ = (ξ ′, ζ ), so when we fix some ξ ′ we
may view pA as a polynomial of a single variable ζ . Since ξ ′ ∈ Rn−1, we have pA ∈ R[ζ ] in
this interpretation, and pA will be different for each different ξ ′. However, we will still use
the symbol pA; we hope that the intended meaning will be clear from the context. A similar
convention will be used later on with other objects.

Definition 3.6. The operator A is properly elliptic if it is elliptic and at all boundary points
and for all ξ ′ �= 0 its characteristic polynomial pA ∈ R[ζ ] has equally many roots in the
upper and lower half of the complex plane. Likewise, the operator A is properly DN-elliptic
if it is DN-elliptic and at all boundary points and for all ξ ′ �= 0 its characteristic polynomial
pA ∈ R[ζ ] has equally many roots in the upper and lower half of the complex plane.

Hence, for a properly (DN-)elliptic operator A, the degree of the characteristic poly-
nomial pA must be even. From now on we will always suppose that pA �= 1, and we denote
the degree of the characteristic polynomial by 2ν > 0.

Note that for n > 2, proper (DN-)ellipticity follows from (DN-)ellipticity. If the coeffi-
cients of the characteristic polynomial are real functions, then proper ellipticity also follows
from ellipticity in the case n = 2. In this paper we will only consider systems with real
coefficients, so for our purposes ellipticity and proper ellipticity are equivalent. Hence we
will drop the word ‘proper’ from now on.

Consider now a boundary operator

By = g, x ∈ �, (3.2)

where B is of size ν̃ × m. For the purposes of this paper we may suppose that � is smooth.
To define the weighted principal symbol of the boundary operator, we introduce a third set
of integers r1, . . . , rν such that

rl + tj � qb
lj ,

where qb
lj is the maximal order of a derivative of the j th unknown function in the lth

boundary condition, and if rl + tj < 0 then there are no derivatives of the j th unknown
function in the lth boundary condition.

Then the weighted (principal) symbol of the boundary operator B is

(Bw)l,j =
∑

|µ|=rl+tj

(bµ(x))l,j ξ
µ.
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We will suppose that for any fixed x the elements of bµ are in the same field K as the
elements of aµ. Note that when we pass to the involutive form we do not need any weights
for the operator itself. However, we still need weights for the boundary operator.

Remark 3.1. Usually, in the definition of (weighted) symbols one replaces the derivative
∂µ in the original operator by i|µ|ξµ. However, for simplicity of notation we delete the
imaginary factor because it turns out that

(i) it is not needed in the definition of ellipticity because the characteristic polynomial
is homogeneous;

(ii) it is not necessary in the criteria for the Shapiro–Lopatinskij condition either. We will
explain this in an appropriate place.

4. Square DN-elliptic boundary problems

In this section we will treat the square DN-elliptic case, and will consider the over-
determined case later. We will assume that the boundary operator has ν rows, where 2ν

is the degree of the characteristic polynomial. The reason for choosing ν conditions is
that if there were fewer boundary conditions the problem would be underdetermined, and
if there were more conditions the boundary conditions should satisfy some compatibility
conditions. The latter case is a special case of the more general case considered in Section 6.

The relevant condition which guarantees the well-posedness of the boundary problem is
called the Shapiro–Lopatinskij condition or the complementing condition; from now on we
will abbreviate this as the SL-condition.

Let  be a smooth manifold with boundary, and let � be its boundary. Let us fix some
p ∈ �. Then there are some neighborhood U of p and local coordinates on U such that
U ∩ is given in these coordinates by the half space xn � 0, and U ∩� is given by xn = 0.
From now on we will always work with these local coordinates, and will write x = (x′, xn)

where x′ = (x1, . . . , xn−1).
Now, fixing some boundary point (x′, 0) ∈ � and some ξ ′ �= 0, we consider the following

ordinary differential operators with constant coefficients:{
Aw(x′, 0, ξ ′, Dn)u(xn) = 0, xn > 0,

Bw(x′, 0, ξ ′, Dn)u(xn)|xn=0 = d,
(4.1)

where d ∈ Cν , Dn = ∂1n/i and i is the imaginary unit. Hence A and B are some linear
operators, and after fixing some x′ and ξ ′ we may interpret them as

Aw : C∞(R × Cm) −→ C∞(R × Cm);
Bw : C∞(R × Cm) −→ Cν .

Lemma 4.1 (see [3]). Suppose that A is DN-elliptic. Then

dim
(

ker(Aw(ξ ′, Dn)) ∩ M+
) = ν.

Definition 4.1. The boundary operator (3.2) satisfies the SL-condition if the initial value
problem (4.1) has a unique solution in M+ for all d and for all ξ ′ �= 0.

Consider a boundary problem{
Ay = f, x ∈ ,

By = g, x ∈ �.
(4.2)
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Definition 4.2. The square boundary problem (4.2) is DN-elliptic, if

(i) the operator A is DN-elliptic;

(ii) the operator B satisfies the SL-condition.

Now it turns out that these conditions guarantee that the boundary problem is well posed
in the following sense. Let us consider a BV-problem � = (A, B) with weight vectors s, t

and r . Let us also choose some a such that

a � − min tj , a � max si, a > max ri + 1/2. (4.3)

Then one can show that � is a bounded operator if we choose the following Sobolev
spaces [4]:

� = (A, B) : Ha+t (E0) −→ Ha−s(E1) × Ha−r−1/2(G1). (4.4)

Moreover, one has the following result.

Theorem 4.1 (see [4]). Let conditions (4.3) be satisfied. The following statements are
equivalent.

(i) The boundary problem (4.2) is DN-elliptic.

(ii) The operator � in (4.4) is Fredholm and the following a priori estimate holds:

‖y‖a+t � C
(‖f ‖a−s + ‖g‖a−r−1/2 + ‖y‖0

)
.

If the solution is unique, the last term on the right can be omitted.

Recall that an operator is Fredholm if it has a finite-dimensional kernel and cokernel,
and its image is closed.

4.1. Algebraic formulation of the Shapiro–Lopatinskij condition

It is evident that in general it is very hard to check the SL-condition using the defini-
tion directly. Agmon, Douglis and Nirenberg [2, 3] proposed a criterion to simplify the
verification of the SL-condition; see also [4] for a discussion.

Consider a DN-elliptic square operator A. At the fixed boundary point (x′, 0) ∈ � we
write for simplicity Aw and Bw instead of Aw(x′, 0, ξ ′, ζ ) and Bw(x′, 0, ξ ′, ζ ) when the
meaning is clear from the context.

Let us fix some ξ ′ �= 0 and let ζ1, . . . , ζν be all the roots of the characteristic polynomial
pA ∈ R[ζ ] lying in the upper half of the complex plane. We set

p+
A = (ζ − ζ1) . . . (ζ − ζν) =

ν∑
j=0

bj ζ
j ,

and we introduce the polynomials p+
l , l = 1, . . . , ν, as in (2.2).

The traditional formulation of a criterion which implies the SL-condition is as follows.

Theorem 4.2 (see [3, 4]). The SL-condition is satisfied at a fixed boundary point if and
only if for all ξ ′ �= 0 the rows of the matrix

Bw adj(Aw)

are linearly independent modulo the polynomial p+
A .
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Remark 4.1. This criterion was originally formulated using symbol matrices with imag-
inary units, but that formulation is equivalent to our formulation. To see this, let us first
note that the polynomial p+

A does not depend on this choice. Then, dividing all elements of
Bw adj(Aw) by p+

A , it is seen that the rank of the matrix of remainders does not depend on
this choice either.

Now we would like to improve this criterion. To this end, we need to formulate some
preliminary results.

Lemma 4.2. There is an element (adj(Aw))i,j of adj(Aw) which is not divisible by the
polynomial p+

A .

Proof. Suppose that adj(Aw) = p+
A C. On the other hand, by the property of adjoint matrix

we get det(adj(Aw)) = pm−1
A . Thus, (p+

A )m det(C) = pm−1
A . But this contradicts the

definition of p+
A .

Let us denote by v some column of the matrix adj(Aw) which is nonzero modulo p+
A .

We set

ωl(xn) = 1

2πi

∮
γ+

v(ζ )p+
l (ζ )eiζxn

p+
A (ζ )

dζ, l = 1, . . . , ν,

where γ+ is a simple closed curve oriented counterclockwise in the upper half of the
complex plane surrounding all the roots of the polynomial p+

A , and we let ω be a matrix
with columns ωl .

Lemma 4.3. The columns of ω are a basis of the space ker(Aw(Dn)) ∩ M+.

Proof. First note that by the property of adjoint matrix, all elements of the vector Awv

are divisible by the polynomial p+
A . Thus by the Cauchy integral theorem we get

Aw(Dn)w
l(xn) = 0. Since �(iζ ) < 0, we see that the columns of w belong to

ker(Aw(Dn)) ∩ M+. Lemma 2.4 implies that the vectors ωl(xn), l = 1, . . . , ν, are
linearly independent. From Lemma 4.1 we find that dim(ker(Aw(Dn)) ∩ M+) = ν. As
we have ν linearly independent vectors, they are the basis of ker(Aw(Dn)) ∩ M+.

Let us now consider the vector h = Bwv. Dividing each element of h by the polynomial
p+

A , we get

h = q p+
A + h where h =

ν−1∑
τ=0

hτ ζ τ . (4.5)

Let us introduce the matrix H :

H = (h0, . . . , hν−1). (4.6)

Lemma 4.4. The following equality holds:

Bw(Dn)ω(xn)|xn=0 = H .
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Proof. Using Lemma 2.3 we have

Bw(Dn)ω
l(xn)|xn=0 = 1

2πi

∮
γ+

Bw(ζ )v(ζ )p+
l (ζ )

p+
A (ζ )

dζ

=
ν−1∑
τ=0

hτ 1

2πi

∮
γ+

ζ τp+
l (ζ )

p+
A (ζ )

dζ

= hl−1, l = 1, . . . , ν.

Finally, we get the following improvement of the algebraic criterion for checking the
SL-condition.

Theorem 4.3. The following statements are equivalent.

(SL) The SL-condition is satisfied at a fixed boundary point.

(SL1) For any ξ ′ �= 0, there is a column v of adj(Aw) that is nonzero modulo the
polynomial p+

A such that the elements of the vector h = Bwv are linearly independent
modulo p+

A .

(SL2) For any ξ ′ �= 0, there is a column v of adj(Aw) that is nonzero modulo the
polynomial p+

A such that the following condition is fulfilled: there are no numbers ci with
at least one of them nonzero such that

c1h1 + . . . + cνhν = 0,

where hi , i = 1, . . . , ν, are the elements of h defined in (4.5).

(SL3) For any ξ ′ �= 0, there is a column v of adj(Aw) that is nonzero modulo the
polynomial p+

A such that rank(H) = ν where H is defined by (4.6).

Proof. The conditions (SL1), (SL2) and (SL3) are easily seen to be equivalent.

(SL3) =⇒ (SL): Let us suppose that the condition (SL3) is fulfilled, and fix some
ξ ′ �= 0. Let v be a nonzero modulo p+

A column of adj(Aw) such that rank(H) = ν. Since
we have ν boundary conditions, we get rank(H) = rank(H , d) = ν for any d. Thus, the
system Hc = d has a solution. Using this vector c we construct the following function
u(xn) = ω(xn)c. Lemma 4.3 implies that u ∈ ker(Aw(Dn)) ∩ M+. By Lemma 4.4 we get

Bw(Dn)u(xn)|xn=0 = Hc = d.

So the solution to problem (4.1) exists.
Let us now prove the uniqueness of the solution of (4.1). Suppose that there is a nonzero

solution u ∈ ker(Aw(Dn))∩M+ which satisfies Bw(Dn)u(xn)|xn=0 = 0. Since the columns
of ω are the basis of ker(Aw(Dn)) ∩ M+, there is a c �= 0 such that u(xn) = ω(xn)c. Then
Bw(Dn)u(xn)|xn=0 = Hc = 0. But this contradicts (SL3).

(SL) =⇒ (SL3): Suppose now that the SL-condition is fulfilled. The SL-condition is
equivalent to the following condition: for all ξ ′ �= 0,

ker(Bw) = {0}, im(Bw) = Cν,

where Bw : ker(Aw(Dn)) ∩ M+ → Cν is a linear operator. Fix some ξ ′ �= 0 and let v be
a nonzero modulo p+

A column of adj(Aw). Then according to Lemma 4.3 the columns of
ω(xn) are a basis of space ker(Aw(Dn))∩M+. Since Bw is a linear operator, ker(Bw) = {0}
and dim(im(Bw)) = ν, we find that the columns of Bw(Dn)ω(xn)|xn=0 = H are a basis of
the space im(Bw). Hence rank(H) = ν.
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Remark 4.2. Note that if there is one column v of adj(Aw) that is nonzero modulo the
polynomial p+

A such that rank(H) = ν, then this property is true for any column of adj(Aw)

that is nonzero modulo p+
A .

Remark 4.3. The difference between our formulation and the result of Agmon, Douglis
and Nirenberg [3] is that they considered the whole adjoint in the criterion, while it is only
necessary to take one column which is nonzero modulo p+

A .

4.2. Computational test for checking the SL-condition in the two-variable case

The idea of the formulations of the criterion for the SL-condition is to consider ξ ′ as
a ‘parameter’ (to fix it), and not as a ‘variable’. Hence in principle we should use the test
for each ξ ′ separately. However, we would like to have a test which is valid for all ξ ′.
Unfortunately, we have found such a test only in the case of two independent variables.
Note that this case is already very important in PDE theory.

The main difficulty is to compute p+
A . In the two-variable case we can use the fact that

pA is homogeneous to factor it, but this idea does not work in the case of more variables.
For example if pA = ξ2

1 + ζ 2, then we can easily factor this using the factors of ζ 2 + 1,
so the problem reduces to the factorisation of the polynomial of one variable. However, if
pA = ξ2

1 + ξ2
2 + ζ 2, then we cannot proceed in the same way, even though formally we can

factor this as

pA =
(
ζ − i

√
ξ2

1 + ξ2
2

)(
ζ + i

√
ξ2

1 + ξ2
2

)
.

Consider the system (2.11) in two variables. Then the characteristic polynomial pA is
a homogeneous polynomial in two variables ξ = (ξ1, ζ ) of degree 2ν. Dehomogenising
pA (that is, setting ξ1 = 1), we get a polynomial p̂A. In the same way we denote
the dehomogenised symbol matrices of Aw and Bw by Âw and B̂w. It is easy to see that
det(Âw) = p̂A.

Let K(a) be a splitting field for p̂A with minimal polynomial pmin of degree �. Hence
K(a) is a K-vector space of dimension � with basis {1, a, a2, . . . , a�−1}. Let â ∈ C be a
root of the polynomial pmin. It is easily seen that the map

ι : K(a) −→ C, ι

( �−1∑
i=0

cia
i

)
=

�−1∑
i=0

ci â
i , (4.7)

is an injective homomorphism and it induces the ring homomorphism

ι̃ : K(a)[ζ ] −→ C[ζ ], ι̃

( τ−1∑
i=0

biζ
i

)
=

τ−1∑
i=0

ι(bi)ζ
i . (4.8)

Also, ι̃ is injective and it preserves the degree of a polynomial. The notation ι(C) where C

is a matrix means that we apply the map ι to each element of C. Likewise, ι̃(C) where C is
a matrix means that we apply the map ι̃ to each element of C.

Let ρ1, . . . , ρν ∈ K(a) be the roots of p̂A such that ι(ρ1), . . . , ι(ρν) are in the upper half
of the complex plane, and let

p̂+
A = (ζ − ρ1) . . . (ζ − ρν) ∈ K(a)[ζ ]. (4.9)

Further, let

p̃+
A = (ζ − ι(ρ1)ξ1) . . . (ζ − ι(ρν)ξ1), p̃−

A = (ζ − ι(ρ1)ξ1) . . . (ζ − ι(ρν)ξ1). (4.10)
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Then evidently pA = p̃+
A p̃−

A and for a fixed ξ ′ �= 0,

p+
A =

{
p̃+

A , if ξ1 > 0,

p̃−
A , if ξ1 < 0.

We will show that it is in fact sufficient to work with p̂+
A . To this end we will need the

following fact. For divisions in C[ξ1, ζ ] we use lexicographic ordering with ζ > ξ1.

Lemma 4.5. There is an element d̂ of adj(Âw) such that

(i) d̂ is not divisible by p̂+
A ;

(ii) d̂ is not divisible by ι̃(p̂+
A );

(iii) the corresponding element d of adj(Aw) is not divisible by p̃+
A ;

(iv) for any fixed ξ1 �= 0 the corresponding element d of adj(Aw) is not divisible by p+
A .

Proof. Lemma 4.2 immediately implies the first statement. Hence there are polynomials
q, r ∈ K(a)[ζ ] such that d̂ = qp̂+

A + r , r �= 0 and deg r < ν, and consequently d̂ = ι̃(d̂) =
ι̃(q)ι̃(p̂+

A ) + ι̃(r). Since ι̃ is injective and it preserves the degree of a polynomial, ι̃(r) is
a nonzero remainder, which proves the second statement.

Then let us divide d by p̃+
A , which yields d = qp̃+

A +r . But this is simply a homogenised
version of d̂ = ι̃(q)ι̃(p̂+

A )+ ι̃(r). Hence r cannot be zero, which proves the third statement.
Since d is not divisible by p̃+

A , there are polynomials q, r ∈ C[ξ1, ζ ] such that d =
qp̃+

A + r where r �= 0 and none of the monomials of r is divisible by ζ ν . Since r is
homogeneous, it will remain nonzero if we substitute some nonzero real number for ξ1.
Hence the fourth statement is valid for ξ1 > 0 because in that case p+

A = p̃+
A . Then if

ξ1 < 0, it is easy to see that d = q̄p+
A + r̄ . Hence in this case also, the remainder r̄ is

nonzero.

Suppose that d̂ is in the j th column of adj(Aw). We denote by v̂ the j th column of
adj(Âw), and by v the j th column of adj(Aw).

Then dividing all elements of ĥ = B̂wv̂ by p̂+
A gives ĥ = q̂p̂+

A + ĥ, where deg ĥi < ν.
Setting

ĥ =
ν−1∑
τ=0

ĥτ ζ τ , (4.11)

we introduce the matrix

Ĥ = (
ĥ0, . . . , ĥν−1), (4.12)

whose elements are in K(a). In the same way we can divide ĥ by ι̃(p̂+
A ) and construct the

analog of the matrix Ĥ . It is clear that the result will be ι(Ĥ).
Set h̃ = Bwv. The ith component of h̃ is a homogeneous polynomial in ξ = (ξ ′, ζ ) of

degree ri + 2ν − sj (v is the j th column of adj(Aw)). Using the division algorithm, we get
h̃ = q̃p̃+

A + h̃. Since the components of q̃ and h̃ are homogeneous polynomials, the ith
component of h̃ is also a homogeneous polynomial of the degree ri + 2ν − sj . Setting now

h̃ =
ν−1∑
τ=0

h̃τ ζ τ and H̃ = (
h̃0, . . . , h̃ν−1),
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we readily see that h̃τ
i = ι(ĥτ

i )ξ
ri+2ν−sj −τ

1 , and that

det(H̃) = ξ
ν(2ν−sj −(ν−1)/2)+r1+...+rν
1 det

(
ι(Ĥ)

)
. (4.13)

Finally, we compute h = Bwv with some fixed ξ1 �= 0. Dividing h by p+
A and constructing

the corresponding matrix H as above, we obtain for any fixed ξ1 �= 0,

H =
{

H̃ , if ξ1 > 0,

H̃ , if ξ1 < 0.
(4.14)

Now we can formulate a computational test for checking the SL-condition.

Theorem 4.4. An operator (A, B) satisfies the SL-condition if and only if det(Ĥ) �= 0
where Ĥ is a matrix as defined in (4.12).

Proof. The condition (SL3) of Theorem 4.3 is equivalent to det(H) �= 0 for all ξ1 �= 0.
By (4.14) this is equivalent to det(H̃) �= 0 for all ξ1 �= 0. Using (4.13) we obtain the
condition det(ι(Ĥ)) �= 0. But since ι is an injective homomorphism, this is equivalent to
det(Ĥ) �= 0.

Note that this formulation of the SL-condition can effectively be tested using Gröb-
ner basis techniques, for example with the program Singular [13]. (See Appendix A.1,
Appendix A.2 and Appendix A.3 for the appropriate commands in Singular).

Example 4.1. Let us consider the following system:

Ay =




y1
20 + y1

02 + y3
20 = 0,

2y1
10 + y2

01 = 0,

y2
10 + y3

01 = 0,

in R2+ = {x ∈ R2 : x2 > 0}. (4.15)

Taking weights t1 = t2 = t3 = 2 and s1 = 0, s2 = s3 = −1, we get the weighted principal
symbol of (4.15):

Aw =

ζ 2 + ξ2

1 0 ξ2
1

2ξ1 ζ 0
0 ξ1 ζ


 .

Since pA = det(Aw) = ζ 4 + ζ 2ξ2
1 + 2ξ4

1 , the system (4.15) is DN -elliptic. We set p̂A =
ζ 4 + ζ 2 + 2.

Computing with Singular as discussed above, we get the following statements:

• the splitting field of p̂A is Q(α) with a minimal polynomial

pmin = α8 + 10α6 + 5α4 − 100α2 + 2116;
• the roots of the polynomial p̂A are

ρ1 = −ρ2 = − 7
105432α7 − 265

52716α5 − 3485
105432α3 − 6883

17572α;
ρ3 = −ρ4 = 7

52716α7 + 265
26358α5 + 3485

52716α3 − 1903
8786α.

Now we find numerically, using Singular, the roots of the polynomial pmin in C:

α1 = −α2 = −α3 = α4 ≈ −0.676 + i 2.935;
α5 = −α6 = α7 = −α8 ≈ −2.028 + i 0.978.
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Substituting α1 in the roots of polynomial p̂A we obtain

ρ1(α1) = −ρ2(α1) = −ρ3(α1) = ρ4(α1) ≈ 0.676 − i 0.978.

So for the primitive element α1, the roots ρ2 and ρ4 are in the upper half of the complex
plane. Hence we get

p̂+
A = (ζ − ρ2)(ζ − ρ4) ∈ Q(α)[ζ ].

Let us compute the adjoint matrix of Âw. We get

adj(Âw) =

 ζ 2 1 −ζ

−2ζ ζ 3 + ζ 2
2 −ζ 2 − 1 ζ 3 + ζ


 .

Let v̂ be the first column of adj(Âw); it is nonzero modulo p̂+
A . We will carry out the SL-test

symbolically in the polynomial ring Q(α)[ζ ]. Since deg p̂A = 4, we need to impose two
boundary conditions on the system (4.15). First consider the following boundary conditions:

B1y =
{

y1 + y3 = 0,

y2 = 0,
on ∂R2+.

So the principal symbol of B1 is

B1 =
(

1 0 1
0 1 0

)
and hence B̂1v̂ =

(
ζ 2 + 2
−2ζ

)
.

Reducing this vector with respect to p̂+
A , we get

ĥ =
(

β1ζ + β0
−2ζ

)
, Ĥ =

(
β0 β1
0 −2

)
,

where

β1 = − 7
105432α7 − 265

52716α5 − 3485
105432α3 + 10689

17572α;
β0 = 1

382α6 + 15
764α4 − 123

764α2 + 579
382 .

Since det(Ĥ) = −2β0 �= 0, we see that B1 satisfies the SL-condition.
Let us now impose the following boundary conditions on the system (4.15):

B2y =
{

y1 = 0,

y2
01 = 0.

Computing (B̂2)wv̂ and reducing with respect to p̂+
A , we have

ĥ =
(

β1ζ + b0
−2β1ζ − 2b0

)
, Ĥ =

(
b0 β1

−2b0 −2β1

)
,

where

b0 = 1
382α6 + 15

764α4 − 123
764α2 − 185

382 .

Now det(Ĥ) = 0, and hence B2 does not satisfy the SL-condition.
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5. Overdetermined elliptic boundary problems (general theory)

5.1. Differential boundary operators

Suppose that the system (2.11) is overdetermined (k � m). Since any linear over-
determined DN-elliptic system becomes elliptic during its completion to involutive form
[15], we can assume without loss of generality that the system (2.11) is elliptic with the
principal symbol A. Hence we consider now a boundary problem{

Ay = f, x ∈ ,

By = g, x ∈ �,
(5.1)

where A is a qth-order elliptic differential operator and B is of size ν̃ × m; we write this
as B = (B1, . . . , Bν̃), and we denote the order of the operator Bi by ri . We will always
suppose that ν̃ � ν because otherwise the problem would not be Fredholm: the kernel of
the BV-operator �0 = (A, B) would be infinite-dimensional.

Note that now we still need a nontrivial weight vector for B, but for s and t we can take
tj = 0 and si = q. Consequently, it is natural to consider �0 as operating in the following
Sobolev spaces:

�0 = (A, B) : Ha(E0) −→ Ha−q(E1) × Ha−r−1/2(G1), (5.2)

where a is some appropriately chosen number and r = (r1, . . . , rν̃ ). To study the well-
posedness of this boundary problem we need to construct a compatibility operator for �0.
It turns out that this can be done by using a certain equivalent first-order system.

Definition 5.1. A differential operator A : S(E0) → S(E1) is called normalised if

(i) A is a first-order operator;

(ii) A is involutive;

(iii) the principal symbol A : T ∗ ⊗ E0 → E1 is surjective.

Condition (iii) means that there are no (explicit or implicit) algebraic (that is, non-
differential) relations between dependent variables in the system. If such relations exist,
then we may use them to reduce the number of dependent variables. Note also that condition
(iii) is equivalent to the surjectivity of the symbol matrix M1. This follows from formula
(2.12) and diagram (2.10).

Definition 5.2. A DB-operator � is normalised if �11 is normalised and γ�21 contains
only differentiation in directions tangent to the boundary. Likewise, a BV-operator (A, B))
is normalised if A is normalised and B contains only differentiation in directions tangent
to the boundary.

So the idea is to replace the original BV-operator by an equivalent normalised operator,
compute its compatibility operator, and then use this to construct the compatibility operator
for the original operator. To this end, we must recall some facts about compatibility operators
and make more precise what is meant by ‘equivalence’. Now, intuitively one thinks that
equivalent systems should have the same solution spaces. However, this would be rather
difficult to define precisely in a useful way. Instead, the concept of equivalence is defined
with help of certain maps between bundles. We will next describe how this is done.
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5.2. Compatibility

Of course, we are mostly interested in differential operators, but the notion of a compat-
ibility operator can be defined for any bundle map.

Definition 5.3. Let �0 : F0 → F1 be a bundle map. The bundle map �1 : F1 → F2 is a
compatibility map for �0 if:

(i) �1�0 = 0;

(ii) for any bundle map �̃1 : F1 → F̃2 such that �̃1�0 = 0, there is a bundle map
T : F2 → F̃2 such that �̃1 = T �1.

This idea leads naturally to the next definition.

Definition 5.4. A complex

C : 0 �� F0
�0 �� F1

�1 �� F2
�2 �� . . .

is called a compatibility complex for �0 if every map �i for i � 1 is a compatibility map
for �i−1.

It is rather straightforward to show that a compatibility operator exists for operators with
constant coefficients. Let  ⊂ Rn be open, and let A0 : S(E0) → S(E1) be a differential
operator with constant coefficients where E0 =  × Rk0 and E1 =  × Rk1 .

Let us consider the matrix Ã0, the full symbol of A0:

Ã0 =
∑

|µ|�q

aµξµ.

Note that for our purposes we do not need to add the factor i|µ|. Denoting by a1, . . . , ak1 the
rows of Ã0, we may construct a free resolution of the module M0 = 〈a1, . . . , ak1〉 as in (2.1)
as follows:

0 �� Akr

ÃT
r �� Akr−1 �� . . .

. . .
ÃT

2 �� Ak2
ÃT

1 �� Ak1
ÃT

0 �� Ak0 �� Ak0/M0
�� 0.

Let us denote by Ai the differential operator corresponding to the syzygy matrix Ãi . Now
we say that a complex C consisting of trivial bundles Ei =  × Rki and operators Ai is
a Hilbert complex, if the operators Ai are associated to the syzygy matrices of the free
resolution of A-module M0.

Theorem 5.1 (see [25, p. 31]). Let C be a complex of differential operators with constant
coefficients. Then C is a compatibility complex for A0 if and only if C is a Hilbert complex
associated with the A-module M0.

Note that the compatibility complex which exists by the above theorem can be construc-
tively computed using Gröbner basis techniques; see Appendix A.4. In the general case, we
have the following statement.

Theorem 5.2. Every sufficiently regular differential operator has a compatibility operator.

309https://doi.org/10.1112/S1461157000001285 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001285


The Shapiro–Lopatinskij condition

See [8], [19] and [25] for more details. Note that in the above theorems there is no need
to pass to the normalised operator. However, in case of BV-operators the construction of
the compatibility operator is more involved. Here we suppose at the outset that the operator
is normalised, and then we discuss later how this leads to the compatibility operator in the
general case.

So let us consider a normalised BV-operator � = (A, B) : S(E0) → S(E1) × S(G1).
We will suppose that A is sufficiently regular, and will denote the compatibility operator
of A by A1. Then we will need to define the tangent part of A, denoted by Aτ ; see [8].
The embedding of the boundary � in  induces in the sections of the jet bundles a map
e0 : J 1(E0)|� → J 1(E0|�) such that

e0((j
1y)|x) = j1(γy)(x), x ∈ �, y ∈ S(E0).

We define the bundle E τ
1 → � by

E τ
1 = E1|�/(A ker(e0)).

Let prτ : E1 → E τ
1 be the projection. So we may uniquely define a map Aτ by requiring

that the following diagram commutes.

J 1(E0)
A ��

e0γ

��

E1

prτ

��
J 1(E0|�)

Aτ
�� E τ

1

Definition 5.5. The differential operator Aτ : S(E0|�) → S(E τ
1 ) defined by Aτ =

Aτ j1|� is called the tangent part of A.

It can be shown that if A is normalised, then so is Aτ ; see [8]. Let us denote the compat-
ibility operator of Aτ by Aτ

1. Then we define a differential operator

�τ : Sτ (E0|�) −→ Sτ (E τ
1 ) × S(G1), �τ (y) = (Aτ y, By). (5.3)

Let �τ
1 be a compatibility operator for �τ . Note that �τ

1 exists, by Theorem 5.2, if �τ is
sufficiently regular. If this is the case, we say that the BV-operator � is regular.

Note that in general�τ
1 may always be written in the form�τ

1(f ′, g) = (Aτ
1f ′,ϒτ (f ′, g)),

where ϒτ does not contain relations only between the components of f ′. Let us then finally
define

�1 : S(E1) × S(G1) −→ S(E2) × S(G2), �1(f, g) = (A1f, ϒτ (prτ f, g)). (5.4)

We will need the following important result [8, p. 40].

Theorem 5.3. If � = (A, B) is a regular elliptic normalised BV-operator, then the DB-
operator �1 defined by (5.4) is a compatibility operator for �.

This gives a construction of the compatibility operator for the normalised BV-operator.
Next we will indicate how this can be used to construct the compatibility operator in the
general case.

5.3. Equivalence of operators

We start by giving rigorous definitions of what is meant by the ‘equivalence’of operators
and complexes [25].
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Definition 5.6. Two complexes C and C ′ are equivalent if the following conditions are
satisfied.

(i) There are maps Mi and Ni such that the following diagram commutes for all i.

Fi
�i ��

Mi

��

Fi+1

Mi+1

��
F ′

i

�′
i ��

Ni

��

F ′
i+1

Ni+1

��

(ii) There are maps �i and � ′
i such that for all i,

�i�i + �i−1�i−1 = id − NiMi;
� ′

i�
′
i + �′

i−1�
′
i−1 = id − MiNi.

The equivalence defined above is sometimes called homotopical or cochain equivalence.

Definition 5.7. Bundle maps � : F0 → F1 and �′ : F ′
0 → F ′

1 are equivalent if the
complexes

0 �� F0
� �� F1

and

0 �� F ′
0

�′
�� F ′

1

are equivalent.

The concept of equivalence is important for our purposes because of the following
theorems.

Theorem 5.4. Every sufficiently regular operator A may be transformed in a finite number
of steps into an equivalent normalised operator. Every DB-operator � whose component
�11 is sufficiently regular is equivalent to a normalised DB-operator, and every BV-operator
(A, B) whose component A is sufficiently regular is equivalent to a normalised BV-operator.

Then if we know a compatibility operator for some operator, we can construct a com-
patibility operator for an equivalent operator as follows.

Theorem 5.5. Let �0 and �′
0 be equivalent bundle maps. If there is a compatibility complex

for �′
0, then there is also a compatibility complex for �0. Moreover, their compatibility

complexes are equivalent.

Proof. Here we just give the formula for constructing the first compatibility map, since we
will need it below. For the details of the proof we refer to [25]. We fix some maps Mi , Ni

(i = 0, 1), �0 and � ′
0 as in Definition 5.6. We set F2 = F ′

2 ⊕ F1. Then if we know the
compatibility map �′

1, the compatibility map �1 is given by the formula

�1 = (�′
1M1) ⊕ (id − N1M1 − �0�0). (5.5)

Hence to construct a compatibility operator for the BV-operator � = (A, B) we have to
perform the following steps.
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(1) Construct the involutive form of A.

(2) Prolong the system (if necessary) until the order of the system is higher than the the
order of normal derivatives in the boundary operator.

(3) Construct an equivalent first-order system.

(4) Eliminate (if necessary) the extra variables using the algebraic relations in the system.

(5) Construct the compatibility operator for the normalised system with the formula (5.4).

(6) Construct the compatibility operator for the BV-operator using (5.5).

Next we will discuss how to implement these steps in practice.

5.4. Constructions

The first step is the Cartan–Kuranishi algorithm, and the second step is merely a
simple differentiation. Since these steps are extensively discussed elsewhere, for example
in [22], we will simply observe that they can be effectively performed, for example, with
the DETools package in MuPAD.

Step (3): Equivalent first-order operator. This construction can be found in [19]. Let A0
be a differential operator of order q such that the first two steps of the above construction
have already been performed, and let A′

0 be an equivalent first-order operator. We want to
write A0 as A0 = Ā jq−1 where Ā is a first-order operator. We introduce new dependent
variables for all derivatives of order less than or equal to q − 1, and we denote them by
zj,µ, with |µ| � q − 1. The operator Ā is obtained from A by performing the following
substitutions. (Obviously, there are many ways to perform such a substitution, as there are
many ways to split the multi index µ into two parts. However, for our purposes any choice
is fine.)

yj
µ �−→

{
zj,µ, if |µ| � q − 1 ,

∂µ2zj,µ1 , if |µ| = q where |µ1| = q − 1 and µ1 + µ2 = µ .
(5.6)

The desired first-order operator is A′
0z = (Āz, Dq−1z), where Dq−1 is the compatibility

operator for jq−1. In coordinates it can be written as Dq−1 = D
q−1
1 ⊗ Im, where D

q−1
1 is

given by

∂iz
j,µ =

{
zj,µ+1i , 0 � |µ| < q − 1, 1 � i � n ,

∂kz
j,µ−1k+1i , |µ| = q − 1, i > cls µ, k = cls µ.

(5.7)

It is straightforward to verify that A0 and A′
0 are indeed equivalent, by considering the

following diagram.

0 �� E0
A0 ��

jq−1

��

E1

ι1

��
0 �� E ′

0

A′
0 ��

pr0

��

E ′
1

pr1

��

Since E ′
0 is essentially Jq−1(E0), pr0 is simply the canonical projection, ι1 is the obvious

injection and pr1 is the obvious projection.
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Step (4): Normalization. We have now constructed A′
0, which is a first-order operator,

equivalent to A0. Also, the corresponding B ′
0 contains differentiations only in the directions

tangent to the boundary. Now, algebraic relations in A′
0 can be eliminated simply by per-

forming Gaussian elimination followed by appropriate back-substitutions. We denote by
A′′

0 the resulting operator. Then we have the following diagram.

0 �� E0
A0 ��

jq−1

��

E1
A1 ��

ι1

��

E2 � E ′′
2 ⊕ E1

0 �� E ′
0

A′
0 ��

pr′0
��

pr0

��

E ′
1

A′
1 ��

α

��

pr1

��

E ′
2

0 �� E ′′
0

A′′
0 ��

ι′0

��

E ′′
1

A′′
1 ��

ι′1

��

E ′′
2

(5.8)

Here, the definitions of pr′0, ι′0 and ι′1 are obvious, but α, which describes the result of a
Gaussian elimination, does not have any easy explicit expression.

However, we are really interested in BV-operators. This leads to the next diagram.

0 �� E0
(A,B) ��

jq−1

��

E1 × G1
�1 ��

ι̃1
��

E2 × G2

0 �� E ′
0

(A′,B ′) ��

pr′0
��

pr0

��

E ′
1 × G′

1

�′
1 ��

β

��

p̃r1

��

E ′
2 × G′

2

0 �� E ′′
0

(A′′,B ′′) ��

ι′0

��

E ′′
1 × G′′

1

�′′
1 ��

ι̃′1

��

E ′′
2 × G′′

2

(5.9)

Let us briefly describe the various maps involved.

• The maps in the first column are the same as in the diagram (5.8).

• ι̃1 = (ι1, id) where ι1 is as in (5.8). In particular, G1 = G′
1.

• p̃r1 = (pr1, id) where pr1 is as in (5.8).

• ι̃′1 = (ι′1, ι̂1) where ι′1 is as in (5.8) and ι̂1 is induced by ι′0.

• The map β is a DB operator, induced by the Gaussian elimination. We will write it as

β(f ′, g′) = (
α(f ′), γβ21(f ′) + β22(g′)

)
,

where α is as in (5.8).

Step (5): Compatibility operator for the normalised BV-operator. Let �′′
0 = (A′′

0, B
′′
0 ) be

a normalised BV-operator. We need to perform the following tasks.

5(a) Compute the tangent part of A′′
0.

Let M be the module generated by the rows of A′′
0. We choose a monomial product

ordering such that ξn is bigger than all other ξi . Then we define a TOP module ordering
using this monomial ordering, and compute the Gröbner basis of M . Now by Lemma
2.1 A′′τ

0 is defined by the elements of the Gröbner basis that do not contain ξn. See
Appendix A.5 for the appropriate computations with Singular.

313https://doi.org/10.1112/S1461157000001285 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001285


The Shapiro–Lopatinskij condition

5(b) Set �′′τ
0 = (A′′τ

0 , B ′′
0 ).

5(c) Compute �′′τ
1 , the compatibility operator of �′′τ

0 .
We choose a POT module ordering, and compute �′′τ

1 . Then Lemma 2.2 implies that
we can now extract ϒ ′′τ by simple inspection.

5(d) The compatibility operator �′′
1 can now defined by the formula

�′′
1(f

′′, g′′) = (
A′′

1f
′′, γ�21′′

1 f ′′ + �22′′
1 g′′) = (

A′′
1f

′′, ϒ ′′τ (prτ f ′′, g′′)
)
.

Step (6): Compatibility operator for the original involutive BV-operator. Using diagram
(5.9), we may rewrite the formula (5.5) for the compatibility operator �1 of the operator
�0 = (A, B) as

�1 = (
�′′

1 β ι̃1
) ⊕ (

id − p̃r1 ι̃′1 β ι̃1 − (A, B)�0
)
, (5.10)

where �0 is determined by the equation

�0(A, B) = id −pr0ι
′
0pr′0jq−1.

If the system Ay = 0 does not contain algebraic relations between the dependent vari-
ables, then we may choose �0 = 0. If this is not the case, then we could as well apply
Gaussian elimination to the original system and remove algebraic dependencies. Hence
without loss of generality and for simplicity of notation we suppose in the sequel that
�0 = 0. In this case we have

�11
1 = A1 = (

A′′
1αι1

) ⊕ (
id − pr1ι

′
1αι1

)
,

where A1 is the compatibility operator of A. The other parts of the compatibility operator
are given by:

�21
1 f +�22

1 g = (
�′′21

1 αι1(f )+�′′22
1 (γβ21ι1(f )+β22(g))

)⊕(
g−ι̂1(γβ21ι1(f )+β22(g))

)
.

We will see below that for the purposes of this paper we are particularly interested in �22
1 .

This is given by

�22
1 = (

�′′22
1 β22) ⊕ (

id − ι̂1β
22). (5.11)

Let us now consider an example of computation of the compatibility operator A1 of the
operator A0 using the compatibility operator A′′

1 of the equivalent normalised operator A′′
0

and construction (5.5).

Example 5.1. Consider the following familiar stationary Stokes problem in two dimen-
sions:

A :
{

−�u + ∇p = 0,

∇ · u = 0,
in R2+ = {x ∈ R2 : x2 > 0}, (5.12)

where u = (u1, u2) is the velocity field and p is the pressure.
Completing it to the involutive form, we get the following overdetermined system:

A0 :




−�u + ∇p = 0,

−�p = 0,

∇ · u = 0,

u1
20 + u2

11 = 0,

u1
11 + u2

02 = 0,

in R2+. (5.13)
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Let us go over to an equivalent normalised boundary value operator. Introducing nine new
variables,

z1,00 = u1, z2,00 = u2, z3,00 = p,

z1,10 = u1
10, z2,10 = u2

10, z3,10 = p10,

z1,01 = u1
01, z2,01 = u2

01, z3,01 = p01,

as in (5.6) and substituting them in (5.13), and also adding the compatibility equations (5.7),
we get the first-order operator denoted by A′

0. The corresponding system is not normalised
since there is an algebraic relation z1,10 + z2,01 = 0 between the dependent variables.
Now, using this relation, we can exclude the variable z2,01 from the system and obtain the
normalised operator A′′

0.

A′
0 :




−z
1,10
10 − z

1,01
01 + z3,10 = 0,

−z
2,10
10 − z

2,01
01 + z3,01 = 0,

−z
3,10
10 − z

3,01
01 = 0,

z1,10 + z2,01 = 0,

z
1,10
10 + z

2,01
10 = 0,

z
1,10
01 + z

2,01
01 = 0,

z
1,00
10 − z1,10 = 0,

z
1,00
01 − z1,01 = 0,

z
2,00
10 − z2,10 = 0,

z
2,00
01 − z2,01 = 0,

z
3,00
10 − z3,10 = 0,

z
3,00
01 − z3,01 = 0,

z
1,10
01 − z

1,01
10 = 0,

z
2,10
01 − z

2,01
10 = 0,

z
3,10
01 − z

3,01
10 = 0;

A′′
0 :




−z
1,10
10 + z3,10 − z

1,01
01 = 0,

z
1,10
01 − z

2,10
10 + z3,01 = 0,

−z
3,10
10 − z

3,01
01 = 0,

z
1,00
10 − z1,10 = 0,

z
1,00
01 − z1,01 = 0,

z
2,00
10 − z2,10 = 0,

z
2,00
01 + z1,10 = 0,

z
3,00
10 − z3,10 = 0,

z
3,00
01 − z3,01 = 0,

z
1,10
01 − z

1,01
10 = 0,

z
1,10
10 + z

2,10
01 = 0,

z
3,10
01 − z

3,01
10 = 0.

In this example we have the following fiber dimension of the bundles:

dim(E1) = 6, dim(E ′
1) = 15, dim(E ′′

1 ) = 12.

To construct the compatibility operator A′′
1 for the normalised operator A′′

0 we compute
with Singular the syzygy module generated by the rows of the full symbol matrix of the
operator A′′

0, and get

A′′
1(f

′′) = ( − f ′′4
01 + f ′′5

10 − f ′′10, f ′′6
01 + f ′′7

10 − f ′′11,

− f ′′8
01 + f ′′9

10 − f ′′12, f ′′1
10 + f ′′2

01 + f ′′3 − f ′′10
01 + f ′′11

10

)
.

To construct the compatibility operator A1 for the operator A0, let us construct maps from
the diagram (5.8). The map α : E ′

1 → E ′′
1 is given by

α(f ′) = (f ′1, f ′2 + f ′6, f ′3, f ′7, f ′8, f ′9, f ′10 + f ′4, f ′11, f ′12, f ′13, f ′14 + f ′5, f ′15).

Combining this with the inclusion map ι1(f ) = (f, 0) gives

αι1(f ) = (
f 1, f 2 + f 6, f 3, 0, 0, 0, f 4, 0, 0, 0, f 5, 0

);
A′′

1αι1(f ) = (
0, f 4

10 − f 5, 0, f 1
10 + f 2

01 + f 6
01 + f 3 + f 5

10

)
.
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The inclusion map ι′1 : E ′′
1 → E ′

1 is given by

ι′1(f ′′) = (
f ′′1, f ′′2, f ′′3, 0, 0, 0, f ′′4, . . . , f ′′12).

So we have

ι′1αι1(f ) = (
f 1, f 2 + f 6, f 3, 0, 0, 0, 0, 0, 0, f 4, 0, 0, 0, f 5, 0

)
.

The map pr1 : E ′
1 → E1 is defined by

pr1(f
′) = (

f ′1 − f ′7
10 − f ′8

01 + f ′11, f ′2 − f ′9
10 − f ′10

01 + f ′12,

f ′3 − f ′11
10 − f ′12

01 , f ′4 + f ′7 + f ′10, f ′5 + f ′7
10 + f ′10

10 , f ′6 + f ′7
01 + f ′10

01

)
.

Hence we get

(id − pr1ι
′
1αι1)(f ) = (

0, f 4
01 − f 6, 0, 0, f 5 − f 4

10, f
6 − f 4

01

)
.

Thus, (5.5) gives the following compatibility operator A1 of A0:

A1(f ) = (f 4
01 − f 6, f 4

10 − f 5, f 1
10 + f 2

01 + f 3 + f 5
10 + f 6

01).

Note that we can also compute the compatibility operator A1 of the operator A0 by
computing with Singular the syzygy module of the module generated by the rows of the
full symbol matrix of A0. However, the above computations are needed when we consider
the Stokes problem with boundary conditions in the next example. In particular, we show
how to compute the part �22

1 of the compatibility operator �1 for �0 = (A, B), since that
is necessary for checking the SL-condition for overdetermined boundary problems.

Example 5.2. Let us consider the operator A0 given by (5.13). Then the tangent part of the
equivalent normalised operator operator A′′

0 is

A′′τ
0 z = (

z
2,10
10 − z

1,01
10 − z3,01, −z3,10 + z

3,00
10 , −z2,10 + z

2,00
10 , −z1,10 + z

1,00
10

)
.

Let us define the following boundary operator

B :




u1 + u2
01 − p10 = 0,

−p − 2u2
10 + p10 = 0,

u1
10 − u2

10 = 0,

−u2
10 + p10 = 0,

∇ · u = 0,

on � = ∂R2+, (5.14)

for the operator A0. Then we get

B ′ :




z1,00 + z2,01 − z3,10 = 0,

−z3,00 − 2z2,10 + z3,10 = 0,

z1,10 − z2,10 = 0,

−z2,10 + z3,10 = 0,

z1,10 + z2,01 = 0;

B ′′ :




z1,00 − z1,10 − z3,10 = 0,

−z3,00 − 2z2,10 + z3,10 = 0,

z1,10 − z2,10 = 0,

−z2,10 + z3,10 = 0.

In this example we have the following fiber dimension of the bundles:

dim(G1) = 5, dim(G′
1) = 5, dim(G′′

1) = 4, dim(E ′′τ
1 ) = 4.

Let us compute the compatibility operator �′′τ
1 for the operator �′′τ z = (A′′τ

0 z, B ′′z) defined
on �. Computing with Singular the syzygy module for the module generated by the rows
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of the full symbol matrix of the operator �′′τ , we have

(0, −2ξ1 + 1, 0, −ξ1 − 1, ξ2
1 + ξ1, −2ξ2

1 + ξ1, ξ
2
1 − 1, 3ξ2

1 − 2ξ1 + 1).

In this example we find that the compatibility operator �′′τ
1 is in fact ϒτ , and we have

�′′τ
1 (f τ , g′′) = − 2f

2,τ
10 + f 2,τ − f

4,τ
10 − f 4,τ

+ g′′1
20 + g′′1

10 − 2g′′2
20 + g′′2

10 + g′′3
20 − g′′3 + 3g′′4

20 − 2g′′4
10 + g′′4.

The projection prτ : E ′′
1 → E ′′τ

1 is given by

prτ (f ′′) = (f ′′10|� − f ′′2|�, f ′′8|�, f ′′6|�, f ′′4|�).

Thus the compatibility operator �′′
1 for the normalised operator (A′′

0, B
′′) is

�′′
1(f

′′, g′′) = (
A′′

1f
′′, −2f ′′8

10 |� + f ′′8|� − f ′′4
10 |� − f ′′4|�+

g′′1
20 + g′′1

10 − 2g′′2
20 + g′′2

10 + g′′3
20 − g′′3 + 3g′′4

20 − 2g′′4
10 + g′′4),

which implies that

�′′22
1 (g′′) = g′′1

20 + g′′1
10 − 2g′′2

20 + g′′2
10 + g′′3

20 − g′′3 + 3g′′4
20 − 2g′′4

10 + g′′4.
The map β : E ′

1 × G1 → E ′′
1 × G′′

1 is defined by

β(f ′, g′) = (
α(f ′), g′1 − f ′4|�, g′2, g′3, g′4).

Hence we obtain

β22(g′) = (
g′1, g′2, g′3, g′4).

So the formula (5.11) yields

�22
1 g = (g1

20 + g1
10 − 2g2

20 + g2
10 + g3

20 − g3 + 3g4
20 − 2g4

10 + g4, 0, 0, 0, 0, g5). (5.15)

6. Overdetermined elliptic boundary problems (the SL-condition)

6.1. Well-posed problems for overdermined elliptic PDEs

From now on, let Bw be the weighted principal symbol of B = (B1, . . . , Bν̃) with
weights tj = 0 for the dependent variables and ri for the equations, where ri is the order of
the operator Bi , i = 1, . . . , ν̃. Let �1 be a compatibility operator for (A, B). We denote by
(�22

1 )w the weighted principal symbol of �22
1 with the weights −rj for dependent variables

and the weights δi for equations. We denote by τ the number of rows of �22
1 .

Set r = (r1, . . . , rν̃ ) and δ = (δ1, . . . , δτ ), and let

G1 =
ν̃⊕

�=1

G�
1 and G2 =

τ⊕
�=1

G�
2

be the direct sum decompositions of the bundles G1 and G2.

Definition 6.1. An operator (A, B) satisfies the SL-condition if, for any x ∈ � and ξ ′ �= 0,
the complex

0 �� ker(A(x, ξ ′, Dn)) ∩ M+
Bw(x,ξ ′,Dn) �� G1|x (�22

1 )w(x,ξ ′)
�� G2|x (6.1)

is exact.

Here the operator Bw(x, ξ ′, Dn) is interpreted as Bw(x, ξ ′, Dn)u(xn)|xn=0.
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Remark 6.1. Perhaps it would be more appropriate to use the term the generalized SL-
condition in the above definition. However, for simplicity of language we prefer to use ‘the
SL-condition’, even in this case.

The basic theorem on the solvability of the boundary problem (5.1) is as follows.

Theorem 6.1 (see [9]). Let (A, B) : C∞(E0) → C∞(E1)×C∞(G1) be a regular boundary
value problem operator, and suppose that A is involutive and elliptic, (A, B) satisfies the
SL-condition and the number dim(ker(A(x, ξ ′, Dn))) does not depend on (x, ξ ′). In this
case, if all the mappings in the complex

0 �� Hs(E0)
(A,B) �� Hs−q(E1) × Hs−r−1/2(G1)

�1 �� Hs−q−1(E2) × Hs−η(G2) ,

where η is some appropriate vector, are bounded, then there is a number s such that its
cohomologies are finite-dimensional and their dimensions remain invariant when s is
replaced by s′ > s.

We would like to propose a computational test for checking the SL-condition, but first
we need to consider some preliminary results.

6.2. Reduction of an overdetermined system to an equivalent square upper triangular one

Fixing some boundary point (x′, 0) ∈ � and some vector ξ ′ �= 0, we consider an
overdetermined ordinary differential system with constant coefficients

A(ξ ′, Dn)u(xn) = 0. (6.2)

We will first reduce this system to the upper triangular system

U(ξ ′, Dn)u(xn) =




∗ ∗ . . . ∗
∗ . . . ∗

. . .
...

∗
...

∗




u(xn) = 0, (6.3)

where Uij = 0 if i > j and j < m. Writing now ζ for Dn, we may interpret the elements
of A and U as elements of the ring R[ζ ].
Theorem 6.2. There is a matrix T ∈ (R[ζ ])k×k such that T A = U with U as in (6.3) and
det(T ) = 1.

Proof. Let a and b be two rows of A, and let C be a 2 × m matrix whose first row is a and
whose second row is b. Now we want to construct a matrix P such that PC has zero in
position (2, 1) and det(P ) = 1.

First note that if b1 = 0, then we take P = I and if a1 = 0, then

P =
(

0 −1
1 0

)
.

Now let us suppose that a1 �= 0 and b1 �= 0. Let h = gcd(a1, b1) be the greatest common
divisor of a1 and b1. Then we have a1 = −hp22 and b1 = hp21 for some polynomials
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p21 and p22 such that gcd(p21, p22) = 1. Denote by 〈p21, p22〉 the ideal generated by the
polynomials p21 and p22. Since

〈p21, p22〉 = 〈gcd(p21, p22)〉 = 〈1〉 = R[ζ ],
there are polynomials p11 and p12 such that det(P1) = 1, where

P =
(

p11 p12
p21 p22

)
. (6.4)

Then by construction we have

PC =
(∗ ∗ . . . ∗

0 ∗ . . . ∗
)

,

where ∗ denotes some element.
Now consider the following matrix:

P̃ =




Is1 0 0 0 0
0 p11 0 p12 0
0 0 Is2 0 0
0 p21 0 p22 0
0 0 0 0 Is3


 , (6.5)

where Ii is the identity i × i matrix and k = s1 + s2 + s3 + 2 (if si = 0, then we delete
the corresponding row and column). Now, if we construct polynomials pij as above, then
det(P̃ ) = 1 and multiplying A by P̃1 produces a zero in the row s1 + s2 + 2.

Then choosing appropriate matrices of this form, we can form a product T = P̃j . . . P̃1
which has the properties stated in the theorem.

Let us define an m×m matrix Ũ by Ũij = Uij ,except that Ũmm = gcd(Umm, . . . , Ukm).
Substituting now Dn for ζ , we consider the upper triangular square system of ordinary

differential equations

Ũ(ξ ′, Dn)u(xn) = 0, xn > 0. (6.6)

Lemma 6.1. For any fixed ξ ′ �= 0, the solution spaces of the systems (6.2) and (6.3) are
equal. In particular, for any fixed ξ ′ �= 0,

dim
(

ker(A(x, ξ ′, Dn)) ∩ M+
) = dim

(
ker(Ũ(x, ξ ′, Dn)) ∩ M+

) = ν.

Proof. The statement of this lemma follows from the equivalence of systems (6.6) and
(6.2), and Lemma 4.1.

6.3. Algebraic criterion for checking the SL-condition

First we fix some ξ ′ �= 0. Let ζ1, . . . , ζν be the roots of the polynomial pA ∈ R[ζ ] lying
in the upper half of the complex plane. We set

p+
A = (ζ − ζ1) . . . (ζ − ζν) =

ν∑
j=0

bj ζ
j ,

and introduce the polynomials p+
l , l = 1, . . . , ν, as in (2.2).
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Lemma 6.2. Let As be some m × m submatrix of the matrix A. Then the columns of the
matrix

Wl(xn) = 1

2πi

∮
γ+

adj(As(ζ ))p+
l (ζ )eiζxn

p+
A (ζ )

dζ, l = 1, . . . , ν,

belong to the space ker(A(Dn)) ∩ M+.

Proof. Note that

A(Dn)Wl(xn) = 1

2πi

∮
γ+

A(ζ ) adj(As(ζ ))p+
l (ζ )eiζxn

p+
A (ζ )

dζ, l = 1, . . . , ν.

Hence, if we show that all elements of the matrix Ã = A adj(As) are divisible by the
polynomial p+

A , then by the Cauchy integral theorem we get A(Dn)Wl(xn) = 0. Since
�(iζ ) < 0, we see that the columns of Wl belong to ker(A(Dn)) ∩ M+.

Let us now show that elements of Ã are divisible by p+
A . Let us denote by (ai1, . . . , aim)

the ith row of the matrix A. Then, by the definition of the adjoint matrix for the ith row of
Ã, we get

Ãii = det(As), Ãij = 0, i �= j,

if the ith row of the matrix A belongs to As , or

Ãi = (ai1, . . . , aim) adj(As),

otherwise. In case of the first possibility, by the definition of the polynomial p+
A every Ãij

is divisible by p+
A .

Let us now consider the second case. By the definition of the adjoint matrix, the elements
of adj(As) are (adj(As))ij = (−1)i+jBji , where Bij is the (i, j) minor of the matrix As .
Hence

Ãij = ai1(−1)1+jBj1 + . . . + aim(−1)m+jBjm.

But then Ãij is ± the determinant of the m × m submatrix of A which consists of the row
(ai1, . . . , aim) and all rows of As except the j th row. So, again by the definition of the
polynomial p+

A , every Ãij is divisible by p+
A .

Lemma 6.3. There is a m × m submatrix of A such that some element of its adjoint is not
divisible by p+

A .

Proof. Suppose the contrary — that is, that all elements of all submatrices adj(As) are
divisible by p+

A : adj(As) = p+
A Cs for all s = 1, . . . , r . Setting qs = det(As) and by the

property of adjoint matrix we get det(adj(As)) = qm−1
s . So we have (p+

A )m det(Cs) = qm−1
s .

Since pA = gcd(q1, . . . , qr ), we get qs = p+
A q̃s for all s = 1, . . . , r . Thus, p+

A det(Cs) =
(q̃s)

m−1. Hence, q̃s , s = 1, . . . , r , are divisible by p+
A , and so pA is divisible by (p+

A )2. But
this contradicts the definition of p+

A .

Let As be as in Lemma 6.3, and denote by v some column of the matrix adj(As) which
is nonzero modulo p+

A . Also, as in the square case, we set

ωl(xn) = 1

2πi

∮
γ+

v(ζ )p+
l (ζ )eiζxn

p+
A (ζ )

dζ, l = 1, . . . , ν,

and we let ω be a matrix with columns ωl .
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Lemma 6.4. The columns of ω are a basis of the space ker(A(Dn)) ∩ M+.

Proof. Due to Lemma 6.2 and Lemma 6.3, the proof is the same as in the square case (see
Lemma 4.3).

Let us now consider the vector h = Bwv. Dividing each element of h by the polynomial
p+

A , we get

h = q p+
A + h, where h =

ν−1∑
τ=0

hτ ζ τ .

Let us introduce the ν̃ × ν matrix H :

H = (
h0, . . . , hν−1). (6.7)

Now we formulate the algebraic criterion for checking the coerciveness condition.

Theorem 6.3. The following statements are equivalent.

(i) An operator (A, B) satisfies the SL-condition.

(ii) For any x ∈ � and ξ ′ �= 0, there is a column v of some matrix adj(As) that
is not divisible by p+

A such that rank(H , d) = ν for all d ∈ ker((�22
1 )w) and

dim(ker((�22
1 )w)) = ν, where H is defined as in (6.7) using v.

Proof. (ii) =⇒ (i): First we fix some x ∈ � and ξ ′ �= 0. We take a column v of some matrix
adj(As) that is not divisible by p+

A such that rank(H , d) = ν for all d ∈ ker((�22
1 )w). Since

(�22
1 )w is a linear operator, we get 0 ∈ ker((�22

1 )w). This implies that rank(H) = ν. So for
all d ∈ ker((�22

1 )w) we have rank(H) = rank(H , d) and therefore the system Hc = d has
a solution. Using this vector c we construct the following function u(xn) = ω(xn)c. Lemma
6.4 implies that u ∈ ker(A(Dn))∩M+. By Lemma 4.4 we get Bw(Dn)u(xn)|xn=0 = Hc =
d. So we have ker((�22

1 )w) ⊂ im(Bw). The definition of a compatibility operator implies
that im(Bw) ⊂ ker((�22

1 )w). Hence, ker((�22
1 )w) = im(Bw). So dim(im(Bw)) = ν. By

Lemma 6.1 we know that dim(ker(A(Dn)) ∩ M+) = ν. Since Bw is a linear operator, we
get dim(ker(Bw)) = 0. So ker(Bw) = {0}, and hence the complex (6.1) is exact.

(i) =⇒ (ii): Suppose now that the complex (6.1) is exact. Take some x ∈ � and
ξ ′ �= 0. This, together with the linearity of the operator Bw, implies that dim(im(Bw)) =
dim(ker((�22

1 )w)) = ν. Take some column v of some adj(As) that is not divisible by p+
A

and construct the matrix ω using v. According to Lemma 6.4 the columns of the matrix ω

are a basis of the space ker(A(Dn)) ∩ M+. Since Bw is a linear operator, ker(Bw) = {0}
and dim(im(Bw)) = ν, we find that the columns of Bwω(xn)|xn=0 = H are a basis of the
space im(Bw). We see also that ker((�22

1 )w) = im(Bw), and hence rank(H , d) = ν for all
d ∈ ker((�22

1 )w).

Remark 6.2. If condition (ii) of Theorem 6.3 holds, then for any column of any matrix
adj(A1), . . . , adj(Ar ) that is not divisible by p+

A , we have rank(H , d) = ν for all d ∈
ker((�22

1 )w), where H is defined using this column.

6.4. Computational test for checking the SL-condition in the case of two independent
variables

Let p̂A ∈ K[ζ ], where K is, as before, the dehomogenised characteristic polynomial, and
let us denote by Â, B̂w and (�̂22

1 )w the dehomogenised symbol matrices. Also, we denote
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the splitting field of p̂A by K(α). It is evident that p̂A = gcd(det(Â1), . . . , det(Âr )) and we
have homomorphisms ι and ι̃ as in (4.7) and (4.8).

We define polynomials p̂+
A , p̃+

A and p̃−
A as in (4.9) and (4.10). As in the square case, we

will work with the polynomial p̂+
A in our computational test. The following result is similar

to Lemma 4.5.

Lemma 6.5. There is an element d̂ of some adj(Âs) such that:

(i) d̂ is not divisible by p̂+
A ;

(ii) d̂ is not divisible by ι̃(p̂+
A );

(iii) the corresponding element d of adj(As) is not divisible by p̃+
A ;

(iv) for any fixed ξ1 �= 0 the corresponding element d of adj(As) is not divisible by p+
A .

Suppose that d̂ is in the j th column of adj(Âs). We denote by v̂ the j th column of adj(Âs),
and by v the j th column of adj(As).

Now, for any fixed ξ1 �= 0, we construct the matrix H as in (6.7) using the j th column of
adj(As) and polynomial p+

A . Then, working with polynomials in two variables in the same
way, we construct a matrix H̃ using the same j th column of adj(As) and polynomial p̃+

A . It
is immediate that for any fixed ξ1 �= 0,

H =
{

H̃ , if ξ1 > 0,

H̃ , if ξ1 < 0.
(6.8)

Let us now consider dehomogenised symbols and construct a matrix Ĥ using the j th column
of adj(Âs) and polynomial p̂+

A . Is is easily seen that the matrix constructed using the j th
column of adj(Âs) and polynomial ι̃(p̂+

A ) is ι(Ĥ). Moreover, one can check that

h̃τ
i = ξ

ri+(m−1)q−τ
1 ι(ĥτ

i ), τ = 0, . . . , ν − 1; i = 1, . . . , ν̃. (6.9)

Now we are ready to formulate the computational test for the SL-condition.

Theorem 6.4. An operator (A, B) satisfies the SL-condition if and only if

(i) rank((�̂22
1 )w) = ν̃ − ν;

(ii) rank(Ĥ) = rank(Ĥ , k̂l) = ν, l = 1, . . . , ν, where k̂1, . . . , k̂ν is a basis of the vector
space ker((�̂22

1 )w).

Note that elements of (�̂22
1 )w are in K because �22

1 is an operator on the boundary only.
Hence ker((�̂22

1 )w) is really a vector space and not just a module.

Proof. From Theorem 6.3, we deduce that the SL-condition is equivalent to the following
conditions: for all ξ1 �= 0,

(1) dim(ker((�22
1 )w)) = ν, and

(2) rank(H , d) = ν for all d ∈ ker((�22
1 )w).

First note that condition (1) is equivalent to saying: for all ξ1 �= 0, rank((�22
1 )w) =

ν̃ − ν. Then for a fixed ξ1 �= 0, the matrix (�22
1 )w is obtained from the matrix (�̂22

1 )w by

multiplication of each j th column by ξ
rj
1 and each ith row by ξ

δi

1 . Since the rank does not
change under multiplication of columns and rows by nonzero elements, condition (1) is also
equivalent to condition (i) of the theorem.
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Then, fixing some ξ1 �= 0, we see that d ∈ ker((�22
1 )w) has the following form:

d = (
d̂1ξ

m̃+r1
1 , . . . , d̂ν̃ξ

m̃+rν̃
1

)
(6.10)

where d̂ = (d̂1, . . . , d̂ν̃ ) ∈ ker((�̂22
1 )w) and m̃ ∈ Z. Conversely, if d̂ ∈ ker((�̂22

1 )w), then
d ∈ ker((�22

1 )w) for any m̃ and ξ1 �= 0.
Now (6.8), (6.10) and (6.9) imply that condition (2) is equivalent to the following state-

ments.

(2)′ For all ξ1 �= 0, rank(H̃ , d) = ν for any d ∈ ker((�22
1 )w).

(2)′′ rank(ι(Ĥ), d̂) = ν for any d̂ ∈ ker((�̂22
1 )w).

The equalities d̂ = ι(d̂) and det(ι(C)) = ι(det(C)) for any matrix C, and the injectivity
of ι yield that condition (2)′′ is equivalent to rank(Ĥ , d̂) = ν for any d̂ ∈ ker((�̂22

1 )w). But
by elementary algebra this condition is equivalent to

rank(Ĥ) = rank(Ĥ , k̂l) = ν, l = 1, . . . , ν,

where k̂1, . . . , k̂ν is a basis of ker((�̂22
1 )w).

Corollary 6.1. Let ν = ν̃. An operator (A, B) satisfies the SL-condition if and only if
rank(Ĥ) = ν.

Example 6.1. Consider the transformation of the two-dimensional Laplace equation
u20 + u02 = 0 to the first-order elliptic system

A :




y1
10 + y2

01 = 0,

y1
01 − y2

10 = 0,

y3
10 − y1 = 0,

y3
01 − y2 = 0,

in R2+ = {x ∈ R2 : x2 > 0}, (6.11)

with the following boundary conditions:

B :
{

y1 = 0,

y3 = 0,
on ∂R2+. (6.12)

Note that these boundary conditions are the Dirichlet condition (y3 = 0 on ∂R2+) for the
Laplace equation, and a differential consequence of the relations y3 = 0 and y3

10 − y1 = 0
on ∂R2+ (the tangent part of the operator A). We will prove that these boundary conditions
satisfy the SL-condition.

Now we will construct the component �22
1 of a compatibility operator �1 for the bound-

ary value problem operator (A, B). Note that the operator (A, B) is normalised, and the
tangent part of the operator A is Aτy = y3

10 − y1. Let us define a differential operator

�τy = (Aτ y, By) = (y3
10 − y1, y1, y3).

To construct a compatibility operator �τ
1 for the operator �τ , we compute the syzygy

module for the module generated by the rows of the matrix
−1 0 ξ1

1 0 0
0 0 1


 .

323https://doi.org/10.1112/S1461157000001285 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001285


The Shapiro–Lopatinskij condition

Using Singular we get (−1, −1, ξ1), and hence

ϒτ (f τ , g1, g2) = −f τ − g1 + ∂g2

∂x1
.

So the component �22
1 of the compatibility operator �1 and its weighted principal symbol

with weights r1 = r2 = 0 and δ1 = 1 are

�22
1 (g1, g2) = −g1 + ∂g2

∂x1
, (�22

1 )w = (
0 ξ1

)
, (�̂22

1 )w = (
0 1

)
.

Let us consider the principal symbol of the operator A:

A =




ξ1 ζ 0
ζ −ξ1 0
0 0 ξ1
0 0 ζ


 .

So the characteristic polynomial of the operator A is

pA = gcd
( − ζ 3 − ζ ξ2

1 , −ζ 2ξ1 − ξ3
1

) = ζ 2 + ξ2
1 , p̂A = ζ 2 + 1, p̂+

A = ζ − i.

Thus rank((�̂22
1 )w) = ν̃ − ν = 1. Hence condition (i) of Theorem 6.4 holds. Let us then

consider the following submatrix of the dehomogenised principal symbol Â:

Â123 =

1 ζ 0

ζ −1 0
0 0 1


 .

Computing with Singular the adjoint of Â123, we get

adj(Â123) =

−1 −ζ 0

−ζ 1 0
0 0 −ζ 2 − 1


 .

Let v̂ be the first column of adj(Â123). The vector v̂ is nonzero modulo p̂+
A , since the

reduction of v̂ with respect to p̂+
A is (−1, −i, 0). Note that

B̂ =
(

1 0 0
0 0 1

)
.

So we get ĥ = B̂v̂ = (−1, 0). Reducing the elements of ĥ with respect to p̂+
A , we get

ĥ = (−1, 0). Since ν = 1, we have Ĥ = ĥ. So rank(Ĥ) = rank(Ĥ , k̂) = 1, where
k̂ = (1, 0) is a basis of the vector space ker((�̂22

1 )w). Hence condition (ii) of Theorem 6.4
holds, and so the boundary conditions (6.12) satisfy the SL-condition.

Example 6.2. Let us consider the boundary value problem (A0, B) defined by (5.13) and
(5.14), where A0 is the involutive form of the Stokes system.

The dehomogenised principal symbol of A0 is

Â0 =




−ζ 2 − 1 0 0
0 −ζ 2 − 1 0
0 0 −ζ 2 − 1
0 0 0
1 ζ 0
ζ ζ 2 0


 .
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Hence p̂A = (ζ 2 + 1)2 and ν = 2. The part �22
1 of the compatibility operator for (A0, B)

was computed in (5.15). The dehomogenised weighted symbol of �22
1 is

(�̂22
1 )w =




1 −2 1 3 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1


 .

So rank((�̂22
1 )w) = 2 �= ν̃ − ν = 3. Hence condition (i) of Theorem 6.4 does not hold, and

(A0, B) does not satisfy the SL-condition.

7. Conclusions and perspectives

We have shown above how to check constructively the validity of the SL-condition in the
two-variable case. This case is already important in PDE computations; however, it would
clearly be desirable to extend our results to the case of arbitrary numbers of variables.

When there are ‘too many’ boundary conditions, we need the compatibility operator to
perform the test. One may wonder why one should try to impose more boundary conditions
than are strictly necessary. On the other hand, one could ask the same question about PDE
systems; yet it is clear that analysing only square systems is not enough. Perhaps the same
will happen with boundary conditions: when the systems get more complicated, situations
may arise where it is ‘natural’ or important to consider ‘too many’ boundary conditions.
However, as far as we know, there has been no work in this direction in the numerical
analysis of PDEs, so it is at present not clear how important this will be in the future.

In formulating our results we have supposed that the system is given in a specific (lo-
cal) coordinate system. Obviously, in practice we do not want to make explicit coordinate
transformations, so a natural goal would be to formulate the test in the original coordinate
system. On a more technical level, it is not clear whether it is really necessary to factor the
characteristic polynomial. Explicit factorisation of even quite simple polynomials can be
very time-consuming. Moreover, if we can avoid factoring in the two-variable case, perhaps
this alternative approach could be generalised to the many-variable case. Finally, a natural
way to extend our work is to apply this approach also to overdetermined parabolic and
hyperbolic systems. We hope to address all these issues in future papers.

Acknowledgement. The first author gratefully acknowledges the financial support of the
Academy of Finland, Grant 108394.

Appendix A. Useful commands in computer algebra systems Singular and MuPad

As we have seen, symbols of differential operators are naturally viewed as modules
generated by the rows of the symbol matrix. However, in Singular (and in commutative
algebra textbooks in general) modules are generated by the columns of matrices. Hence
in the following commands we will often need to transpose matrices. To use some of the
commands in Singular one needs to load some appropriate libraries. To access all libraries
one can use the following command.

> LIB "all.lib";
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Appendix A.1. Finding the splitting field of the characteristic polynomial and its roots

> ring r = 0, y, dp;
> poly p = y6 + y4 + y2 + 1;
> def r1 = Roots(p);
> setring r1;
> roots;
a3, −a3, a, −a, −a2, a2

> minpoly;
a4 + 1

Appendix A.2. Determining the admissible combinations of the roots of the characteristic
polynomial

> ring r2 = complex, a, dp;
> poly pmin = a4 + 1;
> list l = solve(pmin);
> poly root1 = a3;
> substitute(root1, a, l[1]);
−0.70710678 + i 0.70710678

Appendix A.3. Computations in the SL-test

> ring r = (0, a), z, dp; minpoly = a2 + 1;
> poly p = z − a;
> matrix ma[3][3] = 1, z, 0, z, −1, 0, 0, 0, 1;
> matrix mb[2][3] = 1, 0, 0, 0, 0, 1;
// Finding of a vector v

> matrix maadj = adjoint(ma);
> ideal id = p; ideal idstd = std(id);
> int m = ncols(maadj);
int i; intj ;
for (j = 1; j <= m; j = j + 1)

{
for (i = 1; i <= m; i = i + 1)

{
maadj [i, j ] = reduce(maadj [i, j ], idstd);
}
}
// After the reduction we notice that the first column is nonzero.
> matrix v[3][1] = −1, −z, 0;
// Definition of a vector h and construction of a vector h
> matrix mh = mb ∗ v;
> int m = ncols(mh);
int n = nrows(mh);
int i; int j ;
for (j = 1; j <= m; j = j + 1)

{
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for (i = 1; i <= n; i = i + 1)

{
mh[i, j ] = reduce(mh[i, j ], idstd);
}
}
// Construction of a matrix H
> matrix mco = coeffs(mh, z);
int d = nrows(mco)/n;
int i; int j ; int i1; int k; int e1; int e2;
matrix mco1[n][d ∗ m];
for (i = 1; i <= n; i = i + 1)

{
k = 0;
e1 = (i − 1) ∗ d + 1;
e2 = i ∗ d;
for (i1 = e1; i1 <= e2; i1 = i1 + 1)

{
for (j = 1; j <= m; j = j + 1)

{
k = k + 1;
mco1[i, k] = mco[i1, j ];
}
}
}

Appendix A.4. Computation of the compatibility operator when there is no boundary
operator

> ring r = 0, (z, x), dp;
> matrix m[3][3] = −1, 0, x, 1, 0, 0, 0, 0, 1;
> matrix s = transpose(syz(transpose(m)));

Appendix A.5. Computation of the tangent part of the operator A

> ring r = 0, (z, x), (lp, c);
// Here we define TOP ordering with z > x.
> module m = [0, 0, 0, −x, 0, 1, −z, 0], [0, 0, 0, z, −x, 0, 0, 1],
[0, 0, 0, 0, 0, −x, 0, −z], [x, 0, 0, −1, 0, 0, 0, 0], [z, 0, 0, 0, 0, 0, −1, 0],
[0, x, 0, 0, −1, 0, 0, 0], [0, z, 0, 1, 0, 0, 0, 0], [0, 0, x, 0, 0, −1, 0, 0],
[0, 0, z, 0, 0, 0, 0, −1], [0, 0, 0, z, 0, 0, −x, 0], [0, 0, 0, x, z, 0, 0, 0],
[0, 0, 0, 0, 0, z, 0, −x];
> module ms = transpose(std(m));
> print(ms);
0, 0, 0, 0, x, 0, −x, −1,

0, 0, x, 0, 0, −1, 0, 0,

0, x, 0, 0, −1, 0, 0, 0,

x, 0, 0, −1, 0, 0, 0, 0,

0, 0, 0, 0, 0, x, 0, z,
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0, 0, 0, x, 0, −1, z, 0,

0, 0, 0, 0, 0, z, 0, −x,

0, 0, 0, x, z, 0, 0, 0,

0, 0, 0, z, 0, 0, −x, 0,

0, 0, z, 0, 0, 0, 0, −1,

0, z, 0, 1, 0, 0, 0, 0,

z, 0, 0, 0, 0, 0, −1, 0

Appendix A.6. Completion of a system to involutive form with MuPad

> LDF := Dom::LinearDifferentialFunction(Vars = [[x1, x2, x3], [y]],
Rest = [Types = "Indep"]) :

> sys := map([y([x3, x3]) − x2 ∗ y([x1, x1]), y([x2, x2])], LDF) :
> detools :: complete(sys, Output = 3);
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