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Abstract
We study the community detection problem on a Gaussian mixture model, in which vertices are divided into
k ≥ 2 distinct communities. The major difference in our model is that the intensities for Gaussian perturbations
are different for different entries in the observation matrix, and we do not assume that every community has
the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of
the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the
Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection
on hypergraphs.

1. Introduction

Community structures are ubiquitous in graphs modelling natural and social phenomena. In natural
sciences, atoms form molecules so that atoms in the same molecule have stronger connections compared
to those in different molecules. In social sciences, individuals form groups in such a way that individuals
in the same group have more communications compared to individuals in different groups. The main
aim for community detection is to determine the specific groups that specific individuals belong to based
on observations of (random) connections between individuals. Identifying different communities in the
stochastic block model is a central topic in many fields of science and technology; see [1] for a summary.

In this paper, we study the community detection problem for the Gaussian mixture model, in which
there are n vertices belonging to k (k ≥ 2) different communities. We observe a p × 1 vector for each one
of the n vertices, perturbed by a p × 1 Gaussian vector with independent (but not necessarily identically
distributed), mean-0 entries. More precisely, each entry of the p × n perturbation matrix is obtained by
a multiple of a standard Gaussian random variable, while the intensities of different entries are differ-
ent. Given such an observation, we find the maximum likelihood estimation (MLE) for the community
assignment and study the probability that the MLE equals the true community assignment as the number
of vertices n → ∞. If this probability tends to 1 as n → ∞, we say exact recovery occurs. Heuristically,
it is natural to conjecture that exact recovery may occur when the intensities of the perturbations are
small but does not occur when these intensities are large. The major theme of the paper is to investigate
how small the intensities of the perturbations are needed in order to ensure the exact recovery and how
large the intensities are required to stop the occurrences of the exact recovery.

Clustering problems in the Gaussian mixture model have been studied extensively; see [5, 7, 15, 18]
for an incomplete list. We mention some recent related work here.
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2 Z. Li

The Gaussian mixture model when all the entries of the perturbation matrix are i.i.d was studied
in [4], in which a condition for the exact recovery of the semi-definite programming (SDP) is proved.
When all the communities have the same size, a condition that exact recovery does not occur was also
proved in [4] when the number of communities k ≤ log n. The case of unbalanced communities was
investigated in [8]. In this paper, we obtain conditions when the exact recovery happens and does not
happen for the more general Gaussian mixture model when the entries of the perturbation matrix are
not necessarily identically distributed. Our result can be applied to the special case when intensities of
the Gaussian perturbations are all equal, and in particular, we obtain a condition that the exact recovery
of MLE does not occur when the number of communities k is eo( log n) in the hypergraph model; see the
explanations at the end of Example 4.5. We can also see from the sufficient condition (17) for the exact
recovery and the sufficient condition (22) that the exact recovery does not occur that when k is eo( log n),
these two conditions match and there is a sharp phase transition. In Section 7, we see an example in
which these necessary and sufficient conditions of the exact recovery give a sharp phase transition when
the Gaussian perturbations are not i.i.d.

When p = n in our model, we may consider the rows and columns of the observation matrix are
indexed by the n vertices, and each entry represents an edge. In this case, we obtain the community
detection problem on a graph. When p = ns with s ≥ 2, we may consider the rows of the observation
matrix are indexed by ordered s-tuples of vertices, and each entry of the observation matrix repre-
sents a (s + 1)-hyperedge. In this case, we obtain the community detection problem on a hypergraph.
Community detections on hypergraphs with Gaussian perturbations were studied in [11], where the ver-
tices are divided into two equal-sized communities, and a weight-1 (d + 1)-hyperedge exists if and only
if all the vertices are in the same group. The results proved in this paper can be applied to the commu-
nity detection problems on hypergraphs with Gaussian perturbation to obtain necessary and sufficient
conditions for the exact recovery, in which the number of communities is arbitrary and communities
are not necessarily equal-sized; moreover, the hyperedges have general weights as represented in the
(unperturbed) observation matrix. Community detection problems on random graphs were also studied
in [2, 3, 6, 9, 14, 16]. Algorithms to efficiently implement the community recovery in mixture models
include the Expectation-Maximization (EM) algorithm ([5]) and the spectral method ([10, 12, 19]). The
EM algorithm is a local search heuristic that can fail. The spectral method is based on the singular value
decomposition of the dataset and then only use data related to a fixed finite number of largest singu-
lar values to achieve dimension reduction. The performance of the spectral method when the Gaussian
perturbations consist of i.i.d. Gaussian random variables was discussed in [12]. The major differences
between results in this paper and those in [12] are (1) this paper focuses on exact recovery, that is, the
probability that the estimation is exactly equal to the true community assignment and no mislabel is
allowed, while [12] allows a small number of mislabelled vertices (almost exact recovery) and (2) [12]
focuses on Gaussian mixture model with isotropic covariance matrix; while in this paper, the covariances
matrices for the model can be more general. Partial recovery was also discussed in [8].

The implement of the MLE is usually very slow; in some cases, relaxing some constraints in MLE
leads to the more efficient SDP. However, most SDPs require the partition to be balanced or that, at least,
the size of each group is known in advance. The MLE optimisation discussed here has the advantage to
attack the case of unbalanced sizes of groups, and the case when the size of each group is unknown. When
the perturbations for the entries of the observation matrix are assumed to be i.i.d. Gaussian, and using
the average value of the observations associated with each group to approximated the expectation of the
observation to the group, in this case the MLE becomes the K-means estimation. The SDP relaxation for
K-means have been studied extensively, see for example [17]. We expect a similar SDP relaxation for K-
means in the dependent case in which the inner product in the objective function should be defined with
respect to the inverse of the covariance matrix; yet in this paper, we shall focus on the more fundamental
MLE and try to investigate its statistical limit.

The organisation of the paper is as follows. In Section 2, we review the definition of the Gaussian
mixture models and hypergraphs and state the main results proved in this paper. In Section 3, we prove
conditions for the exact recovery of the Gaussian mixture model when the number of vertices in each
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community is unknown. In Section 4, we apply the results proved in Section 3 to the exact recovery of
the community detection in hypergraphs and also prove conditions when exact recovery does not occur
in hypergraphs under the assumption that the number of vertices in each community is unknown. In
Section 5, we prove conditions for the exact recovery of the Gaussian mixture model when the number
of vertices in each community is known and fixed. In Section 6, we prove conditions when exact recovery
does not occur in hypergraphs under the assumption that the number of vertices in each community is
known and fixed. In Section 7, we give an example in which these necessary and sufficient conditions of
the exact recovery give a sharp phase transition when the Gaussian perturbations are not i.i.d.; results of
numerical experiments are also included to show the performance of MLE with difference parameters
to illustrate the sharp phase transition. In Section A, we prove a lemma used to obtain the main results
of the paper.

2. Backgrounds and main results

In this section, we review the definition of the Gaussian mixture models and hypergraphs and state the
main results proved in this paper.

2.1. Gaussian mixture model

Let n ≥ k ≥ 2 be positive integers. Let

[n] = {1, 2, . . . , n}
be a set of n vertices divided into k different communities. Let

[k] := {1, . . . , k}
be the set of communities. A mapping x : [n] → [k] which assigns a unique community represented by
an integer in [k] to each one of the n vertices in [n] is called a community assignment mapping. Let �

be the set consisting of all the possible mappings from [n] to [k], that is,

� := {x : [n] → [k]}.
Each mapping in � is a community assignment mapping.

We shall define a function θ , which assigns to each vertex a p × 1 vector, depending on the commu-
nity of this vertex. Indeed, we require that all the vertices in the same community correspond to the same
p × 1 vector under θ . Observing θ perturbed by some Gaussian noise, our goal is to identify the commu-
nity assignment and determine when exactly recovery occurs. It is natural to believe that those vertices
have corresponding observations close to each other are in the same community, while those vertices
whose corresponding observations are far away from each other are in different communities, but this
intuition may be complicated by the existence of the Gaussian noise. See Sections 4.1, 4.2 and 4.3 for
examples with specific θ .

More precisely, let p ≥ 1 be a positive integer. Let

θ : � × [p] × [k] →R

be a function on the set � × [p] × [k] taking real values.
For a community assignment mapping x ∈ �, let Ax be a p × n matrix whose entries are given by:

(Ax)i,j = θ (x, i, x(j)), ∀i ∈ [p], j ∈ [n]. (1)

Let � be a p × n matrix with positive real entries defined by:

� := (σi,j)i∈[p],j∈[n] ∈ (R+)p×n
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Let P, Q be two p × n matrices. Define the inner product of P, Q by

〈P, Q〉 =
∑
i∈[p]

∑
j∈[n]

Pi,jQi,j.

The norm ‖P‖ for a matrix P is defined by:

‖P‖ =√〈P, P〉.
Let P ∗ Q be a p × n matrix defined by:

P ∗ Q := (Pi,jQi,j)i∈[p],j∈[n]

Define a random observation matrix Kx by:

Kx = Ax + � ∗ W; (2)

where W is a random p × n matrix with i.i.d. standard Gaussian entries. Note that if the entries of � are
not all equal, the perturbation matrix � ∗ W has independent but not identically distributed entries.

Let y ∈ � be the true community assignment mapping. Given the observation Ky, the goal is to
determine the true community assignment mapping y. We shall apply the MLE.

Let n1, . . . , nk be positive integers satisfying
k∑

i=1

ni = n.

and

|y−1(i)| = ni, ∀i ∈ [k];

that is, ni is the number of vertices in community i for each i ∈ [k] under the mapping y.
Let

�n1,...,nk := {x ∈ � : |x−1(i)| = ni, ∀i ∈ [k]}
be the set of all the community assignment mappings such that there are exactly ni vertices in the
community i, for each i ∈ [k].

For each real number c ∈ (0, 1), let

�c :=
{

x ∈ � :
|x−1(i)|∑

j∈[k] |x−1(j)| ≥ c, ∀i ∈ [k]

}
,

that is, �c consists of all the community assignment mappings such that the percentage of the numbers
of vertices in each community is at least c.

Assume the true community assignment mapping y ∈ �c for some c ∈ (0, 1). Let � be an p × n matrix
whose entries are given by:

(�)i,j = 1

σi,j

, ∀i ∈ [p], j ∈ [n];

in other words, the (i, j)-entry of � is the reciprocal of the (i, j)-entry of �. Define

ŷ := argminx∈� 2c
3

‖� ∗ (Ky − Ax)‖2 (3)

and

y̌ := argminx∈�n1,...,nk
‖� ∗ (Ky − Ax)‖2 (4)

Then we have the following lemma

Lemma 2.1. ŷ is the MLE with respect to the observation Ky in � 2c
3
. y̌ is the MLE with respect to the

observation Ky in �n1,...,nk .
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Proof. By definition, the MLE with respect to the observation Ky in � 2c
3

(resp. �n1,...,nk ) should maximise
the probability density of the observation Ky among all x ∈ � 2c

3
(resp. x ∈ �n1,...,nk ). If the true community

assignment mapping y = x, we may consider Ky as a random matrix with mean value Ax and independent
entries, such that variance of its (i, j)-entry is σ 2

i,j. Therefore, the probability density of Ky is given by:( ∏
i∈[p],j∈[n]

1√
2πσi,j

)
e

−∑
i∈[p],j∈[n]

(Ky−Ax )2i,j

2σ2
i,j ,

where the exponent is exactly

−1

2
‖� ∗ (Ky − Ax)‖2.

It is straightforward to check that the minimiser of ‖� ∗ (Ky − Ax)‖2 is exactly the maximiser of the
probability density. Then the lemma follows.

We shall investigate under which conditions we have y̌ = y and ŷ = y with high probability.
To state the main theorems proved in this paper, we first introduce a few assumptions.
For x, y ∈ �, let

L�(x, y) := ‖� ∗ (Ax − Ay)‖2. (5)

For x ∈ �, let

ni(x) = |x−1(i)|, ∀ i ∈ [k];

then ni(x) is the number of vertices in community i under the community assignment mapping x. It is
straightforward to check that

k∑
i=1

ni(x) = n.

For i, j ∈ [k] and x, z ∈ �, let ti,j(x, z) be a non-negative integer given by:

ti,j(x, z) = |x−1(i) ∩ z−1(j)|.
That is, ti,j(x, z) is the number of vertices in [n] which are in community i under the mapping x and in
community j under the mapping z. Then∑

j∈[k]

ti,j(x, z) = ni(x);
∑
i∈[k]

ti,j(x, z) = nj(z); (6)

We now introduce an equivalence condition on �.

Definition 1. For x ∈ �, let C(x) consist of all the x′ ∈ � such that x′ can be obtained from x by a
θ -preserving bijection of communities. More precisely, x′ ∈ C(x) ⊂ � if and only if the following
condition holds

• for i ∈ [p] and j ∈ [n], θ (x, i, x(j)) = θ (x′, i, x′(j)).

We define an equivalence relation on � as follows: we say x, z ∈ � are equivalent if and only if
x ∈ C(z). Let � be the set of all the equivalence classes in �.

We see that if x and z are equivalent in the sense of Definition 1, the non-random parts of the observa-
tion matrices corresponding to x and z satisfy Ax = Az. Hence, any algorithm based on this observation
will not distinguish equivalent community assignments; and the best we expect is to exactly recover the
equivalent class of the community assignment. We want to assume this θ function to be able to distin-
guish community assignments up to the composition with a bijection of communities more precisely.
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Assumption 2.2. Let x, z ∈ �. If for any i ∈ [p] and j ∈ [n],

θ (x, i, x(j)) = θ (z, i, z(j)); (7)

then there is a bijection η : [k] → [k], such that

x = η ◦ z (8)

where ◦ denotes the composition of two mappings.

Note that (8) is equivalent of saying that for i, j ∈ [n], x(i) = x(j) if and only if x′(i) = x′(j). See
Section 4.1 for examples.

Define a set

B :=
{

(t1,1, t1,2, . . . , tk,k) ∈ {0, 1, 2, . . . , n}k2
:

k∑
i=1

ti,j = nj

}
. (9)

For ε > 0, define a set Bε consisting of all the (t1,1, t1,2, . . . , tk,k) ∈ B satisfying all the following
conditions:

1. ∀ i ∈ [k], maxj∈[k] tj,i ≥ ni − nε.
2. For i ∈ [k], let tw(i),i = maxj∈[k] tj,i. Then w is a bijection from [k] to [k].
3. w is θ -preserving, that is, for any x ∈ �, i ∈ [p] and a ∈ [k], we have

θ (x, i, a) = θ (w ◦ x, i, w(a)).

We may assume θ and � satisfy the following assumptions.

Assumption 2.3. Suppose ε ∈ (0, 2c
3k

), x ∈ � 2c
3

and y ∈ �c. Then for all x, y ∈ �, and

(t1,1(x, y), t1,2(x, y), . . . , tk,k(x, y)) ∈ B \ Bε, (10)

we have

L�(x, y) ≥ R(n) > 0. (11)

Here R(n) is some function of n, such that (11) combined with (15) leads to the desired exact recovery
result in Theorem 2.6.

Assumption 2.4. Assume ε ∈ (0, 2c
3k

), x ∈ � 2c
3

and y ∈ �c. Assume there exists 
 > 0 such that the
following holds:

Let y1, y2 ∈ � 2c
3

and a, b ∈ [k] and a �= b. Let i, j ∈ [n] such that i ∈ y−1
1 (a) ∩ x−1(b). Let y2 : [n] → [k]

be defined as follows:

y2(j) :=
{

b if j = i

y1(j) if j ∈ [n] \ {i} .

When (
t1,1(x, y1), t1,2(x, y1), . . . , tk,k(x, y1)

) ∈ Bε (12)

such that for all i ∈ [k]

ti,i = max
j∈[k]

tj,i(x, y1);

ε ∈ (0, 2c
3k

)
, and

y1 /∈ C(x);

we have

L�(x, y1) − L�(x, y2) ≥ 
(1 + o(1)).

where o(1) → 0, as n → ∞.
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Assumptions 2.3 and 2.4 are technical. One may interpret Assumption 2.4 as follows: when a com-
munity assignment mapping y1 ∈ � is sufficiently close to the community assignment mapping x in the
sense of (12), change the community of exactly one vertex j from y1(j) to x(j) and obtain a new com-
munity assignment mapping y2(j), then the distance between y2 and x, in the sense of L�, approximately
decreases by 
 from the distance between y1 and x. In other words, as y1 is close to x and approaching
x, L�(y1, x) decreases linearly with rate 
. As we see later, this will create a convergent geometric series
when computing the lower bound for the probability of exact recovery.

Note that Assumption 2.3 can be guaranteed by the following stronger assumption with R(n) = T(n)
B2

1
;

see Lemma 3.5.

Assumption 2.5.

1. There exists B1 > 0, such that for all i, j ∈ [p] × n, we have

|σi,j| ≤ B1.

2. Assume ε ∈ (0, 2c
3k

), x ∈ � 2c
3

and y ∈ �c. Then for all x, y ∈ �, and

(t1,1(x, y), t1,2(x, y), . . . , tk,k(x, y)) ∈ B \ Bε, (13)

we have ∑
i∈[p],j∈[n]

(θ (x, i, x(j)) − θ (y, i, y(j)))2 ≥ T(n) > 0. (14)

Here T(n) is some function of n, such that (14) combined with (16) leads to the desired exact recovery
result in Theorem 2.6.

Assumption 2.5(1) gives an upper bound on the standard deviation of the Gaussian perturbations
(which may depend on n); Assumption 2.5(2) may be interpreted as when x, y ∈ � are “far away” from
each other in the sense of (13), the corresponding θ functions are “far away” from each other in the sense
of (11).

Theorem 2.6. Assume y ∈ �c is the true community assignment mapping. Suppose that Assumptions
2.5 and 2.4 hold. Let ε ∈ (0, 2c

3k
). Suppose one of the following cases occurs

1. Assumption 2.3 holds and

lim
n→∞

n log k − R(n)

8
= −∞, (15)

2. Assumption 2.5 holds and

lim
n→∞

n log k − T(n)

8B2
1

= −∞. (16)

Moreover, suppose that for any constant δ > 0 independent of n,

lim
n→∞

log k + log n − 
(1 − δ)

8
= −∞, (17)

then limn→∞ Pr (ŷ ∈ C(y)) = 1.

Theorem 2.6 gives a sufficient condition for the exact recovery of MLE in the Gaussian mixture
model. It is proved in Section 3. An application of Theorem 2.6 on the exact recovery of community
detection on hypergraphs is discussed in Section 4.3.

We also obtain a condition for the exact recovery when the sample space of the MLE is restricted to
�n1,...,nk , that is, the number of vertices in each community is known and fixed.

Assumption 2.7. Assume x, ym, yh ∈ � such that

1. D�(ym, yh) = j, where j ≥ 2 is a positive integer; and
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2. There exist u1, . . . , uj ∈ [n], such that
(a) ym(v) = yh(v), for all v ∈ [n] \ {u1, . . . , uj}; and
(b) ym(ui) �= yh(ui) = x(ui) = ym(ui−1) for all i ∈ [j].
(c) (t1,1(x, ym), t1,2(x, ym), . . . , tk,k(x, ym)) ∈ Bε with ε ∈ (0, 2c

3k

)
and w(i) = i.

Then

L�(x, ym) − L�(x, yh) ≥ j
(1 + o(1)) (18)

Theorem 2.8. Suppose that Assumptions 2.5, 2.7, (15) and (17) hold. Then limn→∞ Pr (y̌ ∈ C(y)) = 1.

Indeed, Assumption 2.4 implies Assumption 2.7; see Lemma 5.5. Theorem 2.8 is proved in
Section (5).

2.2. Hypergraphs

A special case for the Gaussian mixture model is the hypergraph model. Let s, s1, s2 be positive integers
satisfying

2 ≤ s1 ≤ s ≤ s2.

A hypergraph H = (V , E) has vertex set V := [n] and hyperedge set E defined as follows:

E := {(a1, . . . , as) : a1, . . . , as ∈ [n], s ∈ {s1, s1 + 1, . . . , s2}}
Let φ : ∪s2

s=s1
[k]s → [0, ∞) be a function which assigns a unique real number φ(c1, . . . , cs) to each

s-tuple of communities (c1, . . . , cs) ∈ [k]s, and s ∈ [s1, s2].
For a community assignment mapping x, the weighted adjacency tensor Ax is defined by:

(Ax)a1,...,as =
{

φ(x(a1), . . . , x(as)), if (a1, . . . , as) ∈ E

0 otherwise.
(19)

and

�(a1,...,as) := σ(a1,...,as)

Define a random tensor Kx as in (2). Recall that y ∈ �c is the true community assignment mapping.
Define ŷ and y̌ as in (3) and (4).

Recall that y ∈ � is the true community assignment mapping satisfying |y−1(i)| = ni, for all i ∈ [k].
Let a ∈ [n]. Let y(a) ∈ � be defined by:

y(a)(i) =
{

y(i) if i ∈ [n], and i �= a

y(a)(a) if i = a.
(20)

such that

y(a) �= y(a)(a) ∈ [k].

Theorem 2.9. Assume

lim
n→∞

min
i∈[k]

ni = ∞. (21)

Suppose that there exists a subset H ⊂ [n] satisfying all the following conditions:

1. |H| = h = o(n);
2. limn→∞

log h
log n

= 1;
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3. For each g ∈ H,
s2∑

s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\H)s−1

1

σ 2
(i1,...,ij−1,g,ij+1,...,is)

×(φ(y(i1), . . . , y(g)(g), . . . , y(is)) − φ(y(i1), . . . , y(g), . . . , y(is)))
2

= (1 + o(1))L�(y(g), y)

4. there exists a constant β > 0 independent of n, such that

maxa∈H L�(y(a), y)

mina∈H L�(y(a), y)
≤ β2, ∀n.

If there exists a constant δ > 0 independent of n, such that

max
a∈H

L�(y(a), y) < 8(1 − δ) log n (22)

Then limn→∞ Pr (ŷ ∈ C(y)) = 0.

Theorem 2.9 is proved in Section 4. An example is given in Section 4.2.
Let a, b ∈ [n] such that y(a) �= y(b). Let y(ab) ∈ �n1,...,nk be the community assignment mapping defined

by:

y(ab)(i) =

⎧⎪⎨⎪⎩
y(i) if i ∈ [n] \ {a, b}
y(b) if i = a

y(a) if i = b

(23)

In other words, y(ab) is obtained from y by exchanging y(a) and y(b).
We also prove a condition when the exact recovery does not occur if the sample space of the MLE is

restricted in �n1,...,nk .

Theorem 2.10. Assume

lim
n→∞

min
i∈[k]

ni = ∞. (24)

Suppose that there exist two subsets H1, H2 ⊂ [n] satisfying all the following conditions:

1. |H1| = |H2| = h = o(n);
2. limn→∞

log h
log n

= 1;
3. For any u1, u2 ∈ H1 and v1, v2 ∈ H2,

y(u1) = y(u2) �= y(v1) = y(v2);

4. For any u ∈ H1 and v ∈ H2

s2∑
s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\(H1∪H2))s−1

(
1

σ 2
(i1,...,ij−1,u,ij+1,...,is)

+ 1

σ 2
(i1,...,ij−1,v,ij+1,...,is)

)
(φ(y(i1), . . . , y(v), . . . , y(is)) − φ(y(i1), . . . , y(u), . . . , y(is)))

2

= (1 + o(1))L�(y(uv), y)

5. For any g ∈ H1 ∪ H2, the quantity
s2∑

s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\(H1∪H2))s−1

1

σ 2
(i1,...,ij−1,g,ij+1,...,is)

(φ(y(i1), . . . , y(b), . . . , y(is)) − φ(y(i1), . . . , y(a), . . . , y(is)))
2

is a constant and is independent of g.
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If there exists a constant δ > 0 independent of n, such that

max
u∈H1,v∈H2

L�(y(uv), y) < 16(1 − δ) log n, (25)

limn→∞ Pr (y̌ ∈ C(y)) = 0.

Theorem 2.10 is proved in Section 6.

3. Community detection on K-community Gaussian mixture models

In this section, we consider the MLE when the number of vertices in each community is unknown. We
shall obtain a sufficient condition for the occurrence of the exact recovery. The main goal is to prove
Theorem 2.6.

Recall that we defined an equivalence relation on � in Definition 1. It is straightforward to check that

Ky = Ky′ , and Ay = Ay′ , if y′ ∈ C(y).

Therefore, the MLE based on the observation Ky can only recover the community assignment mapping
up to equivalence.

The main idea to prove Theorem 2.6 is as follows:

• We find an upper bound for the probability that the MLE is not in the equivalence class of the true
community assignment; see (32).

• We show this upper bound converges to zero as n → ∞ under the assumptions of Theorem 2.6.
This is achieved by splitting the upper bounds into two parts: one part I2 is the sum over all the
community assignment functions that differs from the true community assignment functions by at
most nε and other part I1 is the sum over all the community assignment functions that differs from
the true community assignment functions by at least nε. The fact that I2 converges to 0 as n → ∞
follows directly from Assumption 2.5. To prove that I2 converges to 0 as n → ∞, we bound I1 by a
geometric series that converges to 0 as n → ∞.

Note that

〈� ∗ Ax, � ∗ Az〉 =
∑

i∈[p],j∈[n]

(Ax)i,j(Az)i,j

σ 2
i,j

(26)

=
∑

i∈[p],j∈[n]

θ (x, i, x(j))θ (z, i, z(j))

σ 2
i,j

In particular for each x ∈ �, we have

‖� ∗ Ax‖2 =
∑

i∈[p];j∈[n]

(θ (x, i, x(j)))2

σ 2
i,j

(27)

Recall that y ∈ �n1,...,nk is the true community assignment mapping. Note that

‖� ∗ (Ky − Ax)‖2 = ‖� ∗ Ky‖2 − 2〈� ∗ Ky, � ∗ Ax〉 + ‖� ∗ Ax‖2 (28)

For each fixed observation Ky, ‖� ∗ Ky‖2 is fixed and independent of x ∈ �. Therefore,

ŷ := argminx∈� 2c
3

‖� ∗ (Ky − Ax)‖2

= argminx∈� 2c
3

(−2〈� ∗ Ky, � ∗ Ax〉 + ‖� ∗ Ax‖2
)

For x ∈ �, define

f (x) := −2〈� ∗ Ky, � ∗ Ax〉 + ‖� ∗ Ax‖2 (29)
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Then

f (x) − f (y) = ‖� ∗ Ax‖2 − ‖� ∗ Ay‖2 (30)
−2〈� ∗ Ay, � ∗ (Ax − Ay)〉 − 2〈W, � ∗ (Ax − Ay)〉

= ‖� ∗ (Ax − Ay)‖2 − 2〈W, � ∗ (Ax − Ay),

where we use the identity

� ∗ (� ∗ W) = W.

Then f (x) − f (y) is a Gaussian random variable with mean value

E (f (x) − f (y)) = L�(x, y);

and variance

Var(f (x) − f (y)) = 4L�(x, y).

Lemma 3.1. For x, z ∈ �. If x ∈ C(z), then

f (x) = f (z).

Proof. By Definition 1, if x ∈ C(z), then for any i ∈ [p] and j, h ∈ [n], x(j) = x(h) if and only if z(j) = z(h)
and θ (x, i, x(j)) = θ (z, i, z(j)), then Ax = Az by (19). Moreover, since for any i ∈ [p] and j ∈ [n],

(Ax)i,j = (Az)i,j;

we have
(Ax)i,j

σi,j

= (Az)i,j

σi,j

;

this implies

� ∗ Ax = � ∗ Az. (31)

Then the lemma follows from (29).

Define

p(ŷ ; σ ) := Pr
(
ŷ ∈ C(y)

)= Pr

(
f (y) < min

C(x)∈� 2c
3

,C(x)�=C(y)
f (x)

)
Then

1 − p(ŷ ; σ ) ≤
∑

C(x)∈� 2c
3

: C(x)�=C(y)

Pr(f (x) − f (y) ≤ 0) (32)

=
∑

C(x)∈� 2c
3

: C(x)�=C(y)

Prξ∈N(0,1)

(
ξ ≤ −√

L�(x, y)

2

)

≤
∑

C(x)∈� 2c
3

: C(x)�=C(y)

e− (L� (x,y))2

8 .

Lemma 3.2. Let x, y, x′, y′ ∈ �, such that x′ ∈ C(x) and y′ ∈ C(y), then

L�(x, y) = L�(x′, y′).

Proof. By (31), we obtain that when x′ ∈ C(x) and y′ ∈ C(y),

� ∗ Ax = � ∗ Ax′ ; � ∗ Ay = � ∗ Ay′ .

Then the lemma follows from (5).
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Lemma 3.3. For x, y ∈ �, L�(x, y) ≥ 0. Moreover,

1. If x ∈ C(y), then L�(x, y) = 0.
2. If θ satisfies Assumption 2.2 and L�(x, y) = 0, then x ∈ C(y).

Proof. From (5), it is straightforward to check that L�(x, y) ≥ 0 for any x, y ∈ �. Moreover, from (5),
we obtain

L�(x, y) =
∑

i∈[p],j∈[n]

σ 2
i,j(θ (x, i, x(j)) − θ (y, i, y(j)))2

By the fact that σi,j > 0 for all i ∈ [p], j ∈ [n], we obtain that L�(x, y) = 0 if and only if

θ (x, i, x(j)) = θ (y, i, y(j)), ∀i ∈ [p], j ∈ [n]. (33)

If x ∈ C(y), then there exists a θ -preserving bijection η : [k] → [k], such that x = η ◦ y. Then (33) holds
by the θ -preserving property of η, then we obtain Part(1).

On the other hand, if L�(x, y) = 0, we have (33) holds. Then x ∈ C(y) follows from Assumption 2.2.

Lemma 3.4. Assume that y ∈ �c and x ∈ � 2c
3
. For i ∈ [k], let

tw(i),i(x, y) = max
j∈[k]

tj,i(x, y), (34)

where w(i) ∈ [k]. When ε ∈ (0, 2c
3k

)
and (t1,1(x, y), t1,2(x, y), . . . , tk,k(x, y)) ∈R

k2 satisfies

max
j∈[k]

tj,i(x, y) ≥ ni − nε, ∀i ∈ [k]

w is a bijection from [k] to [k].

Proof. See Lemma 5.6 of [13].

Definition 2. Define the distance function D� : � × � → [n] as follows:

D�(x, y) =
∑

i,j∈[k],i �=j

ti,j(x, y).

for x, y ∈ �.

From Definition 2, it is straightforward to check that

D�(x, y) = n −
∑
i∈[k]

ti,i(x, y)

Lemma 3.5. Assume that θ , � satisfies Assumptions 2.5. Then for all the x, y ∈ � such that (10) holds,
we have

L�(x, y) ≥ T(n)

B2
1

.

Proof. Note that

L�(x, y) =
( ∑

i∈[p],j∈[n]

(θ (x, i, x(j)) − θ (y, i, y(j)))2

)⎛⎝∑i∈[p],j∈[n]
1

σ 2
i,j

(θ (x, i, x(j)) − θ (y, i, y(j)))2∑
i∈[p],j∈[n] (θ (x, i, x(j)) − θ (y, i, y(j)))2

⎞⎠
By Assumption 2.5(1), we have∑

i∈[p],j∈[n]
1

σ 2
i,j

(θ (x, i, x(j)) − θ (y, i, y(j)))2∑
i∈[p],j∈[n] (θ (x, i, x(j)) − θ (y, i, y(j)))2 ≥ 1

B2
1

Then the lemma follows from Assumption 2.5(2).
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Proof of Theorem 2.6. Note that ∑
C(x)∈�\C(y)

e− L� (x,y)
8 ≤ I1 + I2

where

I1 =
∑

C(x)∈� 2c
3

:(t1,1(x,y),...,tk,k(x,y))∈[B\Bε ],C(x)�=C(y)

e
−(L� (x,y))2

8

and

I2 =
∑

C(x)∈� 2c
3

:(t1,1(x,y),...,tk,k(x,y))∈Bε ,C(x)�=C(y)

e
−(L� (x,y))2

8 .

and ε ∈ (0, 2c
3k

)
.

By Lemma 3.5, when Assumption 2.5 holds, we have

I1 ≤ kne
− T(n)

8B2
1

When (15) holds, we obtain

lim
n→∞

I1 = 0. (35)

Now let us consider I2. Let w be the bijection from [k] to [k] as defined in (34). Let y∗ ∈ � be defined
by:

y∗(z) = w(y(z)), ∀z ∈ [n].

Then y∗ ∈ C(y) since w is θ -preserving by the definition of Bε. Moreover, x and y∗ satisfies

ti,i(x, y∗) ≥ ni(y
∗) − nε, ∀i ∈ [k]. (36)

We consider the following community changing process to obtain x from y∗:

1. If for all (j, i) ∈ [k]2, and j �= i, tj,i(x, y∗) = 0, then x = y∗.
2. If (1) does not hold, find the least (j, i) ∈ [k]2 in lexicographic order such that j �= i and tj,i(x, y∗) > 0.

Choose an arbitrary vertex u ∈ {x−1(j) ∩ (y∗)−1(i)
}
. Define y1 ∈ � as follows:

y1(z) =
{

j if z = u

y∗(z) if z ∈ [n] \ {u}
Then we have

tj,i(x, y1) = tj,i(x, y∗) − 1 (37)
tj,j(x, y1) = tj,j(x, y∗) + 1 (38)
ta,b(x, y1) = ta,b(x, y∗) ∀(a, b) ∈ ([k]2 \ {(j, i), (j, j)}) .

ni(y1) = ni(y
∗) − 1

nj(y1) = nj(y
∗) + 1

nl(y1) = nl(y
∗) ∀l ∈ [k] \ {i, j}.

Therefore, x, y1 and y∗ satisfy

tl,l(x, y1) ≥ nl(y1) − nε;

tl,l(x, y1) ≥ nl(y
∗) − nε;

nl(y1) ≥ nl(y
∗) − nε;

for all l ∈ [k].

https://doi.org/10.1017/S0956792524000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000263


14 Z. Li

From Assumption 2.4 and Lemma 3.2, we obtain

L�(x, y1) − L�(x, y) = L�(x, y1) − L�(x, y∗) ≤ −
(1 + o(1)).

Therefore,

e− L�(x,y)
8 ≤ e− L� (x,y1)

8 e− 
(1+o(1))
8 (39)

In general, if we have constructed yl ∈ � (r ≥ 1) satisfying all the following conditions:

tl,l(x, yr) ≥ nl(yr) − nε;

tl,l(x, yr) ≥ nl(y
∗) − nε;

nl(yr) ≥ nl(y
∗) − nε; (40)

for all l ∈ [k]. We now construct yr+1 ∈ � as follows:

(1) If for all (j, i) ∈ [k]2, and j �= i, tj,i(x, yr) = 0, then x = yr; then the construction process stops at this
step.

(2) If (a) does not hold, find the least (j, i) ∈ [k]2 in lexicographic order such that j �= i and tj,i(x, yr) > 0.
Choose an arbitrary vertex u ∈ {x−1(j) ∩ y−1

r (i)
}
. Define yr+1 ∈ � as follows:

yr+1(z) =
{

j if z = u

yr(z) if z ∈ [n] \ {u}
Then it is straightforward to check that

tl,l(x, yr+1) ≥ nl(yr+1) − nε;

tl,l(x, yr+1) ≥ nl(y
∗) − nε;

nl(yr+1) ≥ nl(y
∗) − nε;

for all l ∈ [k].
Then if (36) holds with y∗ replaced by yr, then (36) holds with y∗ replaced by yr+1. By Assumption 2.4,

we obtain

e− L�(x,yr )
8 ≤ e− L� (x,yr+1)

8 e− 
(1+o(1))
8 .

Recall that the distance D� in � is defined in Definition 2. From the constructions of yr+1, we have

D�(x, yr+1) = D�(x, yr) − 1.

Therefore, there exists h ∈ [n], such that yh = x. By (39) and Assumption 2.4, we obtain

e− L�(x,y)
8 ≤ e− h
(1+o(1))

8 .

Since any x in Bε can be obtained from y by the community changing process described above, we
have

I2 ≤
∞∑

l=1

(nk)le− l
(1+o(1))
8 ; (41)

The right-hand side of (41) is the sum of geometric series with both initial term and common ratio
equal to

V := elog k+log n− 
(1+o(1))
8 (42)

When (17) holds, we obtain

lim
n→∞

I2 = 0 (43)

Then the proposition follows from (35) and (43).
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4. Community detection on k-community hypergraphs

In this section, we apply the results proved in Section 3 to the exact recovery of the community detection
in hypergraphs and also prove conditions when exact recovery does not occur in hypergraphs under the
assumption that the number of vertices in each community is unknown.

The main idea to prove Theorem 2.9 is as follows:

• We obtain an lower bound for the probability that the MLE is not in the equivalent class of the true
community assignment function; see (50).

• We show this lower bound converges to 1 as n → ∞. The proof utilises the inequalities regarding the
distribution of the maximum of a number of Gaussian random variables as discussed in Section A.

In the case of a hypergraph, from (26), when

i = (i1, i2, . . . , is−1) ∈ [n]s−1;

θ (x, i, a) = φ(x(i1), . . . , x(is−1), a);

we obtain for x, z ∈ �

〈� ∗ Ax, � ∗ Az〉 (44)

=
s2∑

s=s1

∑
(i1,...,is)∈[n]s

(Ax)(i1,...,is)(Az)(i1,...,is)

σ 2
(i1,...,is)

=
s2∑

s=s1

∑
(i1,...,is)∈[n]s

φ(x(i1), . . . , x(is))φ(z(i1), . . . , z(is))

σ 2
(i1,...,is)

In particular,

‖� ∗ Ax‖2 = 〈� ∗ Ax, � ∗ Ax〉
=

s2∑
s=s1

∑
(i1,...,is)∈[n]s

(φ(x(i1), . . . , x(is)))2

σ 2
(i1,...,is)

Recall that y ∈ �c is the true community assignment mapping. Then

ŷ = argminx∈� 2c
3

‖� ∗ (Ky − Ax)‖2 = argminx∈� 2c
3

f (x)

where f (x) is given by (29).
By (30), we obtain that in the hypergraph case

f (x) − f (y) (45)
= ‖� ∗ (Ax − Ay)‖2 − 2〈W, � ∗ (Ax − Ay)〉
=

s2∑
s=s1

∑
(i1,...,is)∈[n]s

(φ(x(i1), . . . , x(is)) − φ(y(i1), . . . , y(is)))2

σ 2
(i1,...,is)

−2〈W, � ∗ (Ax − Ay)〉
Then f (x) − f (y) is a Gaussian random variable with mean value L�(x, y) and variance 4L�(x, y), where
L�(x, y) is defined by (5).

Proof of Theorem 2.9. When y(a) ∈ � is defined by (20),

ty(a)(a),y(a)(y
(a), y) = 1; (46)

ty(a),y(a)(y
(a), y) = ny(a) − 1; (47)

ti,i(y
(a), y) = ni; ∀ i ∈ [k] \ {y(a)}; (48)

ti,j(y
(a), y) = 0; ∀(i, j) ∈ [k]2 \ {(y(a)(a), y(a))}, and i �= j. (49)
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and

ny(a)(a)(y
(a)) = ny(a)(a) + 1;

ny(a)(y
(a)) = ny(a) − 1;

ni(y
(a)) = ni; ∀ i ∈ [k] \ {y(a)(a), y(a)}.

Moreover,

1 − p(ŷ; σ ) ≥ Pr
(∪a∈[n]{f (y(a)) − f (y) < 0}) (50)

Since any of the event {f (y(a)) − f (y) < 0} implies ŷ �= y.
Let H ⊂ [n] be given as in the assumptions of the proposition. Under Assumption (3) of the

proposition when a ∈ H, we have

‖� ∗ (Ay(a) − Ay)‖2

=
s2∑

s=s1

∑
(i1,...,is)∈[n]s

(
φ(y(a)(i1)), . . . , y(a)(is)) − φ(y(i1), . . . , y(is))

)2

σ 2
(i1,...,is)

= L�(y(a), y)

= (1 + o(1))

⎧⎨⎩
s2∑

s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\H)s−1

1

σ 2
(i1,...,ij−1,a,ij+1,...,is)

×(φ(y(i1), . . . , y(a)(a), . . . , y(is)) − φ(y(i1), . . . , y(a), . . . , y(is)))
2
}

Then from (45), we have

f (y(a)) − f (y)

= −2〈W, � ∗ Ay(a) − Ay〉 + (1 + o(1))

⎧⎨⎩
s2∑

s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\H)s−1

1

σ 2
(i1,...,ij−1,a,ij+1,...,is)

×(φ(y(i1), . . . , y(a)(a), . . . , y(is)) − φ(y(i1), . . . , y(a), . . . , y(is)))
2
}

.

Then 1 − p(ŷ; σ ) is at least

Pr
(∪a∈[n]

{
f (y(a)) − f (y) < 0

})
≥ Pr

(
maxa∈[n]

2〈W, � ∗ (Ay(a) − Ay)〉
‖� ∗ (Ay(a) − Ay)‖2

> 1

)
≥ Pr

(
maxa∈H

2〈W, � ∗ (Ay(a) − Ay)〉
‖� ∗ (Ay(a) − Ay)‖2

> 1

)
Let (X, Y, Z) be a partition of ∪s2

s=s1
[n]s defined by:

X = {α = (α1, α2, . . . , αs) ∈ ∪s2
s=s1

[n]s, {α1, . . . , αs} ∩ H = ∅}
Y = {α = (α1, α2, . . . , αs) ∈ ∪s2

s=s1
[n]s, |{i ∈ [s] : αi ∈ H}| = 1}

Z = {α = (α1, α2, . . . , αs) ∈ ∪s2
s=s1

[n]s, |{i ∈ [s] : αi ∈ H}| ≥ 2}
For η ∈ {X, Y, Z}, define the random tensor Wη from the entries of W as follows:

(Wη)(i1,i2,...,is) =
{

0 if (i1, . . . , is) /∈ η

(W)(i1,...,is), if (i1, . . . , is) ∈ η

For each a ∈ H, let

Xa = 〈WX, � ∗ (Ay(a) − Ay)〉
Ya = 〈WY, � ∗ (Ay(a) − Ay)〉
Za = 〈WZ, � ∗ (Ay(a) − Ay)〉
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For s ∈ {s1, s1 + 1, . . . , s2}, let

Js := (j1, . . . , js) ⊂ [n]s

Explicit computations show that

(Ay(a) )Js − (Ay)Js (51)

=
{

φ(y(a)(j1), . . . , y(a)(js)) − φ(y(j1), . . . , y(js)) if a ∈ {j1, . . . , js}
0 otherwise.

Claim 4.1. The followings are true:

1. Xa = 0 for a ∈ H.
2. For each a ∈ H, the variables Ya and Za are independent.

Proof. It is straightforward to check (1). (2) holds because Y ∩ Z = ∅.

For g ∈ H, let Y g ⊆ Y be defined by

Y g = {α = (α1, α2, . . . , αs) ∈ Y : s ∈ {s1, s1 + 1, . . . , s2}, ∃l ∈ [s], s.t. αl = g}.
Note that for g1, g2 ∈ H and g1 �= g2, Y g1 ∩ Y g2 = ∅. Moreover, Y = ∪g∈HY g. Therefore,

Ya =
∑
g∈H

〈WY g , � ∗ (Ay(a) − Ay)〉

Note also that 〈WY g , � ∗ (Ay(a) − Ay)〉 = 0, if g �= a. Hence,

Ya =
∑
α∈Y a

(W)α · {(Ay(a) − Ay)α}
σα

So by (51), we obtain∑
α∈Y a

(W)α · {(Ay(a) − Ay)α}
σα

=
s2∑

s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\H)s−1

1

σ(i1,...,ij−1,a,ij+1,...,is){
(φ(y(i1), . . . , y(a)(a), . . . , y(is)) − φ(y(i1), . . . , y(a), . . . , y(is)))(W)(i1,...,ij−1,a,ij+1,...,is)

}
Then {Yg}g∈H is a collection of independent centred Gaussian random variables. Moreover, the variance
of Yg is equal to

s2∑
s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\H)s−1

1

σ 2
(i1,...,ij−1,g,ij+1,...,is)

(52)

(φ(y(i1), . . . , y(g)(g), . . . , y(is)) − φ(y(i1), . . . , y(g), . . . , y(is)))
2

= (1 + o(1))L�(y(g), y)

by Assumption (3) of the proposition.
By Claim 4.1, we obtain

2〈W, � ∗ (Ay(a) − Ay)〉
‖� ∗ (A(a)

y − Ay)‖2
= 2Ya

‖� ∗ (Ay(a) − Ay)‖2
+ 2Za

‖� ∗ (Ay(a) − Ay)‖2

Moreover,

max
a∈H

2(Ya + Za)

‖� ∗ (Ay(a) − Ay)‖2
≥ max

a∈H

2Ya

‖� ∗ (Ay(a) − Ay)‖2
− max

a∈H

−2Za

‖� ∗ (Ay(a) − Ay)‖2

Recall that

‖� ∗ (Ay(a) − Ay)‖2 = L�(y(a), y)
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By Lemma A.1 about the tail bound result of the maximum of Gaussian random variables, if (A1)
holds with N replaced by h, the event

E1 :=
{

max
a∈H

2Ya

‖� ∗ (Ay(a) − Ay)‖2
≥ (1 − ε)

√
2 min

a∈H

4

L�(y(a), y)
log h

}
has probability at least 1 − e−hε , and the event

E2 :=
{

max
a∈H

2Za

‖� ∗ (Ay(a) − Ay)‖2
≤ (1 + ε)

√
2 log h · max

a∈H

4Var(Za)

(L�(y(a), y))2

}
has probability 1 − h−ε.

Moreover, by Assumption (3) of the Proposition and (52),

VarZa = ‖� ∗ (Ay(a) − Ay)‖2 − Var(Ya) = o(1)L�(y(a), y)

Define an event E by

E :=
{

max
a∈H

2Ya + 2Za

‖� ∗ (Ay(a) − Ay)‖2
≥
(

1 − ε − (1 + ε)o(1)

√
maxa∈H L�(y(a), y)

mina∈H L�(y(a), y)

)

×
√

8 log h min
a∈H

1

L�(y(a), y)

}
Then E1 ∩ E2 ⊆ E.

When n is large, and (22) holds

Pr
(

maxa∈H

2〈W, � ∗ (Ay(a) − Ay)〉
‖� ∗ (Ay(a) − Ay)‖2

> 1

)
≥ Pr(E) ≥ Pr (E1 ∩ E2) ≥ 1 − Pr (Ec

1) − Pr (Ec
2) → 1,

as n → ∞. Then the proposition follows.

4.1. Examples of Assumption 2.2

We shall see some examples of the function θ : � × [k] × [k] →R satisfying Assumption 2.2. We first
see an example when θ can uniquely determine the community assignment mapping in �.

Example 4.2. Assume p = k. For a, b ∈ [k], x ∈ �

θ (x, a, b) =
{

1 if a = b

0 otherwise.

Then if for all a ∈ [p] and j ∈ [n], (7) holds, we have x(j) = a if and only if z(j) = a, then x = z.

We now see an example when θ cannot uniquely determine the community assignment mapping but
determines the community assignment mappings up to the equivalent class as defined in Definition 1.

Example 4.3. Assume p = n.

θ (x, i, a) =
{

1 if x(i) = a;

0 otherwise.

Then if for all i, j ∈ [n], (7) holds, we have x(j) = x(i) if and only if z(j) = z(i), then x ∈ C(z).

Example 4.4. Assume p = n, a ∈ [k] and i ∈ [n].

θ (x, i, a) = x(i) − a;
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Then if for all i, j ∈ [n], (7) holds, we have x(i) − x(j) = z(i) − z(j). This implies that x(i) = x(j) if and
only if z(i) = z(j), therefore x ∈ C(z). If both x and z are surjective onto [k], then x = z.

4.2. Example of Theorem 2.9

Example 4.5. Here we see an example about how to apply Theorem 2.9 to the exact recovery of com-
munity detection on hypergraphs. Let y ∈ �n1,...,nk be the true community assignment mapping. Assume
that for any s ∈ {s1, . . . , s2}, (i1, i2, . . . , is), (j1, j2, . . . , js) ∈ [n]s, we have

σ(i1,i2,...,is) = σ(j1,j2,...,js)

whenever

y(ir) = y(jr), ∀r ∈ [s];

that is, σ(i1,...,is) depends only on the communities of (i1, . . . , is) under the mapping y. In this case, we can
define σ : ∪s2

s=s1
[k]s → (0, ∞), such that

σ(i1,...,is) = σ (y(i1), . . . , y(is)), ∀(i1, . . . , is) ∈ [n]s (53)

Then for any a ∈ [n],

L�(y(a), y) = ‖� ∗ (Ay(a) − Ay)‖2 (54)

=
s2∑

s=s1

∑
(i1,...,is)∈[n]s

(φ(y(a)(i1), . . . , y(a)(is)) − φ(y(i1), . . . , y(is)))2

(σ (y(i1), . . . , y(is)))2

Moreover, for any a, b ∈ [n] such that

y(a) = y(b); y(a)(a) = y(b)(b)

we have

L�(y(a), y) = L�(y(b), y).

We consider

min
(y(a)(a),y(a))∈[k]2,y(a)(a)�=y(a)

L�(y(a), y) (55)

Assume that when y(a) = r0, y(a)(a) = r1, L�(y(a), y) achieves its minimum. Let H ⊂ y−1(r0), then h = |H| ≤
nr0 . Assume

lim
n→∞

log nr0

log n
= 1.

Then we may choose h = nr0
log n

such that Assumptions (1)(2) in Theorem 2.9 hold. Moreover, Assumption
(4) in Theorem 2.9 holds because if for all a ∈ H, let y(a)(a) = r1, then L�(y(a), y) takes the same value for
all a ∈ H. There are many mappings φ : ∪s1

s=s1
[k]s →R to guarantee Assumption (3) in Theorem 2.9.

For example, one may choose

φ(b1, . . . , bs) =
{

2s if b1 = . . . = bs

0 otherwise.
(56)

for s ∈ {s1, s1 + 1, . . . , s2} and b1, . . . , bs ∈ [k]. Then from (54), we obtain

L�(y(a), y) =
s2∑

s=s1

∑
(b1,...,bs)∈[k]s

∑
(d1,...,ds)∈[k]s

(57)

(φ(d1, . . . , ds) − φ(b1, . . . , bs))2

(σ (b1, . . . , bs))2

(
s∏

j=1

tdj ,bj (y
(a), y)

)
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From (46)–(49) and (56), we obtain that the terms actually contributing to the sum must satisfy

{(d1, b1), . . . , (ds, bs)} ⊆ {(r1, r1), (r1, r0)}
or

{(d1, b1), . . . , (ds, bs)} ⊆ {(r0, r0), (r1, r0)}
Then we obtain

L�(y(a), y) =
s2∑

s=s1

22s(L0,s + L1,s)

where

L0,s =
∑

(b1,...,bs)∈[k]s ,(d1,...,ds)∈[k]s ,(d1,b1),...,(ds ,bs)⊆{(r0,r0),(r1,r0)}

(∏s
j=1 tdj ,bj (y

(a), y)
)

(σ (r0, . . . , r0))2

L1,s =
∑

(b1,...,bs)∈[k]s ,(d1,...,ds)∈[k]s ,(d1,b1),...,(ds ,bs)⊆{(r1,r1),(r1,r0)}

(∏s
j=1 tdj ,bj (y

(a), y)
)

(σ (b1, . . . , bs))2

Assume

lim
n→∞

min{nr0 , nr1} = ∞.

If in {(d1, b1), . . . , (ds, bs)}, there exist more than one g ∈ [s], such that (dg, bg) = (r1, r0), then the sum of
such terms will be of order o((nr0 )s−1) (resp. o((nr1 )s−1)) in L0,s (resp. L1,s). Therefore, we obtain

L0,s = s
(
nr0

)s−1
(1 + o(1))

(σ (r0, . . . , r0))2

To analyse L1,s, assume that there exists a positive constant C > 0 independent of n, such that

0 < C <
minb1,...,bs∈{r0,r1} σ (b1, . . . , bs)

maxb1,...,bs∈{r0,r1} σ (b1, . . . , bs)
, ∀n ∈N, s ∈ {s1, s1 + 1, . . . s2}. (58)

Then we obtain

L1,s =
s∑

j=1

(
nr1

)s−1
(1 + o(1))

(σ (r1, . . . , r1, r0, r1, . . . , r1))2

Then Assumption (3) of Theorem 2.9 follows from the fact that |H| = nr0
log n

= o(nr0 ).
In the special case when all the communities have equal size, we may obtain a sufficient condition

that the exact recovery of MLE does not occur in the hypergraph case when the number of communites
k = eo( log n). Since in this case we have n1 = n2 = . . . = nk ≥ elog n−o( log n), then (21) holds. Choose h = n1

log n
,

then Assumptions (1) and (2) of Theorem 2.9 hold.

4.3. Example of Theorem 2.6

Example 4.6. We can also apply Theorem 2.6 to the case of exact recovery of community detection on
hypergraphs. Again we consider the case when σ(i1,...,is) depends only on (y(i1), . . . , y(is)). Hence, we may
define σ as in (53).
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To check Assumption 2.4, let ym, ym+1, x ∈ � be given as in the proof of Proposition 2.6. For the
simplicity of notation, we use y instead of y∗. By (57), we obtain

L�(x, ym) − L�(x, ym+1)

=
s2∑

s=s1

∑
(i1,...,is)∈[n]s

1

(σ (y(i1), . . . , y(is)))2[
(φ(x(i1), . . . , x(is)) − φ(ym(i1), . . . , ym(is)))

2 − (φ(x(i1), . . . , x(is)) − φ(ym+1(i1), . . . , ym+1(is)))
2
]

=
s2∑

s=s1

∑
(i1,...,is)∈[n]s

1

(σ (y(i1), . . . , y(is)))2

{
(φ(ym(i1), . . . , ym(is))

2 − (φ(ym+1(i1), . . . , ym+1(is))
2

−2φ(x(i1), . . . , x(is))
[
φ(ym(i1), . . . , ym(is)) − φ(ym+1(i1), . . . , ym+1(is))

]}
For j, p, q ∈ [k] and x, y, z ∈ �, we define

tj,p,q(x, y, z) = |{i ∈ [n] : x(i) = j, y(i) = p, z(i = q)}| = |x−1(j) ∩ y−1(p) ∩ z−1(q)|.
Then

L�(x, ym) − L�(x, ym+1) =
s2∑

s=s1

∑
(b1,...,bs)∈[k]s

1

(σ (b1, . . . , bs))2

∑
(d1,...,ds)∈[k]s

(59){
(φ(d1, . . . , ds))

2

(
s∏

r=1

tbr ,dr (y, ym) −
s∏

r=1

tbr ,dr (y, ym+1)

)
− 2

∑
(l1,...,ls)∈[k]s

φ(l1, . . . , ls)φ(d1, . . . , ds)

(
s∏

r=1

tbr ,dr ,lr (y, ym, x) −
s∏

r=1

tbr ,dr ,lr (y, ym+1, x)

)}
Recall that D�(ym, ym+1) = 1, and there exists u ∈ [n] such that

x(u) = j = ym+1(u) �= ym(u) = i = y(u).

where i, j ∈ [k] and i �= j, while ym(v) = ym+1(v) for all the v ∈ [n] \ {u}. This implies that if {d1, . . . , ds} ∩
{i, j} = ∅, then the corresponding summand in (59) is 0 and does not contribute to the sum. Under the
assumption that

1. (t1,1(x, y), t1,2(x, y), . . . , tk,k(x, y)) ∈ Bε with w : [k] → [k] the identity map; and
2. n1 ≥ n2 ≥ . . . ≥ nk; and
3. min(b1,...,bs)∈[k]s |σ (b1, . . . , bs)| ≥ B3 > 0; and
4. limn→∞ nε

n1
= 0.

we obtain

L�(x, ym) − L�(x, ym+1) =
s2∑

s=s1

s∑
g=1

∑
(b1,...,̂bg ,...,bs)∈[k]s

1

(σ (b1, . . . , i, . . . , bs))2

∑
(d1,...,̂dg ,...,ds)∈[k]s⎧⎨⎩(φ(d1, . . . , i, . . . , ds))

2 − (φ(d1, . . . , j, . . . , ds))
2)

∏
r∈[s]\{g}

tbr ,dr (y, ym) − 2
∑

(l1,...,̂lg ,...,ls)∈[k]s

φ(l1, . . . , j, . . . , ls) (φ(d1, . . . , i, . . . , ds) − φ(d1, . . . , j, . . . , ds))( ∏
r∈[s]\{g}

tbr ,dr ,lr (y, ym, x)

)}
+ O

(
nk−2

1

B2
3

)
The identity above can be interpreted as follows. We can classify the terms satisfying {d1, . . . , ds} ∩
{i, j} �= ∅ by the number

Ni,j = {l ∈ [s] : dl ∈ {i, j}},
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and obtain that the leading term of L�(x, ym) − L�(x, ym+1) is given by the terms when Ni,j = 1. Moreover,
by Assumption (1) we have

L�(x, ym) − L�(x, ym+1) =
s2∑

s=s1

s∑
g=1

∑
(b1,...,̂bg ,...,bs)∈[k]s

1

(σ (b1, . . . , i, . . . , bs))2⎧⎨⎩(φ(b1, . . . , i, . . . , bs))
2 − (φ(b1, . . . , j, . . . , bs))

2)
∏

r∈[s]\{g}
nr − 2

∑
(l1,...,̂lg ,...,ls)∈[k]s

φ(b1, . . . , j, . . . , bs) (φ(b1, . . . , i, . . . , bs) − φ(b1, . . . , j, . . . , bs))( ∏
r∈[s]\{g}

nr

)}
+ O

(
ns−2

1

B2
3

)
+ O

(
εnns−2

1

B2
3

)

=
s2∑

s=s1

s∑
g=1

∑
(b1,...,̂bg ,...,bs)∈[k]s

1

(σ (b1, . . . , i, . . . , bs))2

(φ(b1, . . . , i, . . . , bs)) − (φ(b1, . . . , j, . . . , bs)))
2
∏

r∈[s]\{g}
nbr

+O

(
ns−2

1

B2
3

)
+ O

(
εnns−2

1

B2
3

)
Define


 := min
i,j∈[k],i �=j

s2∑
s=s1

s∑
g=1

∑
(b1,...,̂bg ,...,bs)∈[k]s

1

(σ (b1, . . . , i, . . . , bs))2

× (φ(b1, . . . , i, . . . , bs)) − (φ(b1, . . . , j, . . . , bs)))
2
∏

r∈[s]\{g}
nbr

We further make the assumptions below:

lim
n→∞

ns−2
1 + εnns−2

1

B2
3


= 0. (60)

Then

L�(x, ym) − L�(x, ym+1) ≥ 
(1 + o(1))

Then by Assumption 2.5(1), the exact recovery occurs with probability 1 when n → ∞ if (15) and
(17) hold, and

s2∑
s=s1

∑
(i1,...,is)∈[k]s

∑
(j1,...,js∈[k]s)

(φ(i1, . . . , is) − φ(j1, . . . , js))
2 (61)

×
(

s∏
r=1

tir ,jr (x, y)

)
≥ T(n)

when (10) holds.
There are a lot of functions φ : ∪s2

s=s1
[k]s →R satisfying (60) and (61) and Assumption 2.2. For

example, we may consider the function φ as defined in (56). Assume


 =
s2∑

s=s1

s∑
g=1

∑
(b1,...,̂bg ,...,bs)∈[k]s

1

(σ (b1, . . . , r0, . . . , bs))2

× (φ(b1, . . . , r0, . . . , bs)) − (φ(b1, . . . , r1, . . . , bs)))
2
∏

r∈[s]\{g}
nbr
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where r0, r1 ∈ [k] and r0 �= r1. As in Example 4.5, we obtain that


 =
s2∑

s=s1

22s(
0,s + 
1,s),

where


0,s = s(nr0 )s−1

(σ (r0, . . . , r0))2
≥ s((nr0 ))s−1

B2
1


1,s =
s∑

j=1

(nr1 )s−1

(σ (r1, . . . , r1, r0, r1, . . . , r1))2
≥ s((nr1 ))s−1

B2
1

where the inequality follows from Assumption 2.5(2). It is straightforward to check that when φ is given
by (56) and (60) hold if (58) holds.

To check (61), note that
s2∑

s=s1

∑
(i1,...,is)∈[k]s

∑
(j1,...,js∈[k]s)

(φ(i1, . . . , is) − φ(j1, . . . , js))
2 ×

(
s∏

r=1

tis ,js (x, y)

)

≥
s2∑

s=s1

∑
g∈[s]

∑
j∈[s]

∑
i∈[k],i �=j

(φ(w(i), . . . , w(i)) − φ(i, . . . , i, j, i, . . . , i))2

×tw(i),j(x, y)
∏

r=[s]\{g}
tw(i),i(x, y)

When (10) holds, the following cases might occur

• w is not a bijection from [k] to [k]. In this case, there exists i, j ∈ [k], such that w(i) = w(j), then when
(10) holds, we obtain

tw(i),j = tw(j),j ≥ nj

k

• w is a bijection from [k] to [k]. However, there exists i ∈ [k]2, such that

tw(j),j ≤ ni − εn.

Let

i := w−1(argmaxl∈[k]\{w(j)}tl,j),

then i �= j and

tw(i),j(x, y) ≥ εn

k − 1

When (10) holds and y ∈ �c, we have
s2∑

s=s1

∑
(i1,...,is)∈[k]s

∑
(j1,...,js∈[k]s)

(φ(i1, . . . , is) − φ(j1, . . . , js))
2 ×

(
s∏

r=1

tis ,js (x, y)

)

≥
s2∑

s=s1

s22s
(ni

k

)s−1

min

{
nj

k
,

εn

k − 1

}
≥

s2∑
s=s1

22ssns

(ck)s−1 max
{
ck, k−1

ε

}
Let

T(n) :=
s2∑

s=s1

22ssns

(ck)s−1 max
{
ck, k−1

ε

}
Then we obtain (61).
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5. Community detection on Gaussian mixture models with fixed number of vertices
in each community

In this section, we consider the MLE restricted to the sample space consisting of all the mappings satisfy-
ing the condition that the number of vertices in each community is the same as that of the true community
assignment mapping y ∈ �n1,...,nk . Again we shall prove a sufficient condition for the occurrences of exact
recovery.

Let x ∈ �n1,...,nk . By (28),

y̌ := argminx∈�n1,...,nk
‖� ∗ (Ky − Ax)‖2 = argminx∈�n1,...,nk

f (x)

Recall that f (x) is defined as in (29). Recall also that f (x) − f (y) is a Gaussian random variable with
mean value L�(x, y) and variance 4L�(x, y).

For each x ∈ �n1,...,nk , let

C∗(x) := C(x) ∩ �n1,...,nk ;

that is, C∗(x) consists of all the community assignment mappings in �n1,...,nk that are equivalent to x in
the sense of Definition 1. Let

�n1,...,nk := {C∗(x):x ∈ �n1,...,nk};
that is, �n1,...,nk consists of all the equivalence classes in �n1,...,nk .

Lemma 5.1. For x, z ∈ �n1,...,nk . If x ∈ C∗(z), then

f (x) = f (z).

Proof. The lemma follows from Lemma 3.1.

Define

p(y̌; σ ) := Pr (y̌ ∈ C(y)) = Pr

(
f (y̌) < min

C∗(x)∈(�n1,...,nk \{C∗(y)})
f (x)

)
Then

1 − p(y̌; σ ) ≤
∑

C∗(x)∈(�n1,...,nk \{C∗(y)})

Pr (f (x) − f (y) ≤ 0) (62)

=
∑

C∗(x)∈(�n1,...,nk \{C∗(y)})

Pr
ξ∈N(0,1)

(
ξ ≥ L�(x, y)

2

)
≤

∑
C∗(x)∈(�n1,...,nk \{C∗(y)})

e− L� (x,y)
8

Lemma 5.2. Let y ∈ �n1,...,nk ∩ �c be the true community assignment mapping. Let x ∈ �n1,...,nk . For i ∈
[k], let w(i) ∈ [k] be defined as in (34). Then

1. When ε ∈ (0, c
k

)
and (t1,1(x, y), . . . , tk,k(x, y)) ∈ Bε, w is a bijection from [k] to [k].

2. Assume there exist i, j ∈ [k], such that ni �= nj. If

ε < min
i,j∈[k]:ni �=nj

∣∣∣∣ni − nj

n

∣∣∣∣ (63)

Then for any i ∈ [k],

ni = |y−1(i)| = |y−1(w(i))| = nw(i). (64)

Proof. See Lemma 6.6 of [13].
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Definition 3. Let l ≥ 2 be a positive integer. Let x, y ∈ �n1,...,nk . We say l distinct communities (i1, . . . , il) ∈
[k]l is an l-cycle for (x, y), if tis−1,is (x, y) > 0 for all 2 ≤ s ≤ l + 1, where il+1 := i1.

Lemma 5.3. Let x, y ∈ �n1,...,nk and x �= y. Then there exists an l-cycle for (x, y) with 2 ≤ l ≤ k.

Proof. See Lemma 3.3 of [13].

Lemma 5.4. For any x, y ∈ �n1,...,nk , L�(x, y) ≥ 0, where the equality holds if and only if x ∈ C∗(y).

Proof. The lemma follows from Lemma 3.3.

Lemma 5.5. Suppose that Assumption 2.4 holds. Then Assumption 2.7 holds.

Proof. Let z0 = ym and zj = yh. For i ∈ [j − 1], define zi ∈ � by

zi(v) =
{

zi−1(v) if v ∈ [n] \ {ui}
x(ui) if v = ui

Then for any i ∈ [j],

D�(zi, zi−1) = 1.

by Assumption 2.4, we obtain

L�(x, zi−1) − L�(x, zi) ≥ 
(1 + o(1)), ∀i ∈ [j] (65)

summing over all the i ∈ [j], we obtain (18).

Proof of Theorem 2.8. Let

� :=
∑

C∗(x)∈(�n1,...,nk \{C∗(y)})

e− L� (x,y)
8 .

By (62), it suffices to show that limn→∞ � = 0.
Let

0 < ε < min

(
2c

3k
, min

i,j∈[k],ni �=nj

∣∣∣∣ni − nj

n

∣∣∣∣)
Note that

� ≤ �1 + �2;

where

�1 =
∑

C∗(x)∈�n1,...,nk : (t1,1(x,y),...,tk,k(x,y))∈(B\Bε),C∗(x)�=C∗(y)

e
−L�(x,y)

8

and

�2 =
∑

C∗(x)∈�n1,...,nk : (t1,1(x,y),...,tk,k(x,y))∈Bε ,C(x)�=C(y)

e
−L� (x,y)

8 . (66)

Under Assumption 2.5, by Lemma 3.5 we have

0 ≤ �1 ≤ kne
− T(n)

B2
1

By (15), we have

lim
n→∞

�1 = 0. (67)

Now let us consider �2. Recall that y ∈ �n1,...,nk ∩ �c is the true community assignment mapping. Let
w be the bijection from [k] to [k] as defined in (34). Let y∗ ∈ � be defined by:

y∗(z) = w(y(z)), ∀z ∈ [n].
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Then y∗ ∈ C(y). By Part (2) of Lemma 5.2, we obtain that for i ∈ [k]∣∣(y∗)−1(i)
∣∣= ∣∣y−1(w−1(i))

∣∣= ∣∣y−1(i)
∣∣ ;

therefore y∗ ∈ �n1,...,nk . Moreover, x and y∗ satisfies

ti,i(x, y∗) ≥ ni(y
∗) − nε, ∀i ∈ [k]. (68)

If x �= y∗, by Lemma 5.3, there exists an l-cycle (i1, . . . , il) for (x, y∗) with 2 ≤ l ≤ k. Then for each
2 ≤ a ≤ (l + 1), choose an arbitrary vertex um in Sim−1,im (x, y∗), and let y1(um) = im−1, where il+1 := i1. For
any vertex z ∈ [n] \ {u2, . . . , ul+1}, let y1(z) = y∗(z).

Note that y1 ∈ �n1,...,nk . Moreover, for 1 ≤ m ≤ l, we have

tim ,im (x, y∗) + 1 = tim ,im (x, y1);

tim ,im+1 (x, y∗) − 1 = tim ,im+1 (x, y1)

and

ta,b(x, y∗) = ta,b(x, y1), ∀(a, b) /∈ {(im, im), (im, im+1)}l
s=1.

When
(
t1,1(x, y), . . . , tk,k(x, y)

) ∈ Bε, From Assumption 2.4 and Lemma 5.5, we obtain

L�(x, y1) − L�(x, y) = L�(x, y1) − L�(x, y∗) ≤ −l
(1 + o(1))

Therefore,

e− L� (x,y)
8 ≤ e− L�(x,y1)

8 e− l
(1+o(1))
8 (69)

If y1 �= x, we find an l2-cycle (2 ≤ l2 ≤ k) for (x, y1), change community assignments along the l2-cycle
as above, and obtain another community assignment mapping y2 ∈ �n1,...,nk , and so on. Let y0 := y, and
note that for each r ≥ 1, if yr is obtained from yr−1 by changing colours along an lr cycle for (x, yr−1), we
have

D�(x, yr) = D�(x, yr−1) − lr

Therefore, finally we can obtain x from y by changing colours along at most
⌊

n
2

⌋
cycles. By similar

arguments as those used to derive (69), we obtain that for each r

e− L� (x,yr−1)
8 ≤ e− L�(x,yr )

8 e− lr
(1+o(1))
8

Therefore, if yh = x for some 1 ≤ h ≤ ⌊
n
2

⌋
, we have

e− L� (x,y)
8 ≤ e− L� (x,yh−1)

8 e− (
∑h−1

r=1 lr)
(1+o(1)))

8 .

By Assumption 2.4 and Lemma 5.5, we obtain

L�(x, yh−1))2 ≥ lh
(1 + o(1))

Therefore,

e− L� (x,y)
8 ≤

∏
i∈[h]

e− li
(1+o(1))
8 .

Note also that for any r1 �= r2, in the process of obtaining yr1 from yr1−1 and the process of obtaining
yr2 from yr2−1, we change community assignments on disjoint sets of vertices. Hence, the order of these
steps of changing community assignments along cycles does not affect the final community assignment
mapping we obtain. From (66), we have

�2 ≤
k∏

l=2

( ∞∑
ml=0

(nk)mlle− (1+o(1))
lml
8

)
− 1. (70)

On the right-hand side of (70), when expanding the product, each summand has the form:[
(nk)2m2 e− (1+o(1))
2m2

8

]
·
[
(nk)3m3 e− (1+o(1))
3m3

8

]
· . . . ·

[
(nk)kmk e− (1+o(1))
kmk

8

]
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where the factor
[
(nk)2m2 e− (1+o(1))
2m2

8

]
represents that we changed along 2-cycles m2 times, the factor[

(nk)3m3 e− (1+o(1))
3m3
8

]
represents that we changed along 3-cycles m3 times, and so on. Moreover, each

time we changed along an l-cycle, we need to first determine the l different colours involved in the
l-cycle, and there are at most kl different l-cycles; we then need to choose l vertices to change colours,
and there are at most nl choices. It is straightforward to check that if σ satisfies (17), then

lim
n→∞

nke− (1+o(1))

8 = 0.

Therefore, we have
∞∑

ml=0

(nk)mlle− (1+o(1))
lml
8 ≤ 1

1 − elog k+log n− (1+o(1))

8

;

when n is sufficiently large and ε is sufficiently small. Let

� :=
k∏

l=2

( ∞∑
ml=0

(nk)mlle− (1+o(1))mll

8

)
.

Since log (1 + x) ≤ x for x ≥ 0, we have

0 ≤ log � =
k∑

l=2

log

(
1 +

∞∑
ml=1

(nk)mlle− (1+o(1))
lml
8

)

≤
k∑

l=2

∞∑
ml=1

(nk)mlle− (1−δ)
lml
8

≤
k∑

l=2

(
nke− (1−δ)


8

)l

1 −
(

nke− (1−δ)

8

)l

≤
(

nke− (1−δ)

8

)2

[
1 −

(
nke− (1−δ)


8

)2
] [

1 −
(

nke− (1−δ)

8

)] → 0,

as n → ∞. Then

0 ≤ lim
n→∞

�2 ≤ lim
n→∞

elog � − 1 = 0. (71)

Then the proposition follows from (67) and (71).

6. Community detection on hypergraphs with fixed number of vertices in each community

In this section, we study community detection on hypergraphs under the assumption that the number of
vertices in each community is known and fixed. We shall prove a condition when exact recovery does
not occur.

Recall that y ∈ �n1,...,nk is the true community assignment mapping.

Proof of Theorem 2.10. When y(ab) ∈ �n1,...,nk is defined by (23):

ty(ab)(a),y(a)(y
(ab), y) − 1 = ty(ab)(a),y(a)(y, y) = ty(b),y(a)(y, y) = 0

ty(b),y(b)(y
(ab), y) + 1 = ty(b),y(b)(y, y) = ny(b)

ty(ab)(b),y(b)(y
(ab), y) − 1 = ty(a),y(b)(y

(ab), y) − 1 = ty(a),y(b)(y, y) = 0

ty(a),y(a)(y
(ab), y) + 1 = ty(a),y(a)(y, y) = ny(a).
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and

ti,j(y
(ab), y) = ti,j(y), ∀ (i, j) ∈ ([k]2 \ {(y(a), y(a)), (y(a), y(b)), (y(b), y(a)), (y(b), y(b))})

Note that

1 − p(y̌; σ ) ≥ Pr
(∪a,b∈[n],y(a)�=y(b)(f (y(ab)) − f (y) < 0)

)
,

since any of the event (f (y(ab)) − f (y) < 0) implies y̌ �= y. By (45), we obtain that f (y(ab)) − f (y) is a
Gaussian random variable with mean value ‖� ∗ (Ay(ab) − Ay)‖2 and variance 4‖� ∗ (Ay(ab) − Ay)‖2. So
1 − p(y̌; σ ) is at least

Pr
(∪a,b∈[n],y(a)�=y(b)(f (y(ab)) − f (y) < 0)

)
≥ Pr

(
maxa,b∈[n],y(a)�=y(b)

2〈W, � ∗ (Ay(ab) − Ay)〉
‖� ∗ (Ay(ab) − Ay)‖2

> 1

)
Let H1 and H2 be given as in the assumptions of the proposition. Then

1 − p(y̌; σ ) ≥ Pr
(

maxa∈H1,b∈H2

2〈W, � ∗ (Ay(ab) − Ay)〉
‖� ∗ (Ay(ab) − Ay)‖2

> 1

)
Let (X, Y, Z) be a partition of [n]s defined by:

X = {α = (α1, α2, . . . , αs) ∈ [n]s : s ∈ {s1, s1 + 1, . . . , s2}, {α1, . . . , αs} ∩ (H1 ∪ H2) = ∅}
Y = {α = (α1, α2, . . . , αs) ∈ [n]s : s ∈ {s1, s1 + 1, . . . , s2}, |r ∈ [s] : αr ∈ (H1 ∪ H2)| = 1}
Z = {α = (α1, α2, . . . , αs) ∈ [n]s : s ∈ {s1, s1 + 1, . . . , s2}, |r ∈ [s] : αr ∈ (H1 ∪ H2)| ≥ 2}

For η ∈ {X, Y, Z}, define a random tensor Wη from the entries of W as follows:

(Wη)(a1,...,as) =
{

0 if (a1, . . . , as) /∈ η

W(a1,...,as), if (a1, . . . , as) ∈ η

For each u ∈ H1 and v ∈ H2, let

Xuv = 〈WX, � ∗ (Ay(uv) − Ay)〉
Yuv = 〈WY, � ∗ (Ay(uv) − Ay)〉
Zuv = 〈WZ, � ∗ (Ay(uv) − Ay)〉

Lemma 6.1. The followings are true:

1. Xuv = 0 for u ∈ H1 and v ∈ H2.
2. For each u ∈ H1 and v ∈ H2, the variables Yuv and Zuv are independent.
3. Each Yuv can be decomposed into Yu + Yv where {Yu}u∈H1 ∪ {Yv}v∈H2 is a collection of i.i.d. Gaussian

random variables.

Proof. Note that for Js = (j1, j2, . . . , js) ∈ [n]s,

(Ay(uv) − Ay)Js (72)

=
{

φ(y(uv)(j1), y(uv)(j2), . . . , y(uv)(js)) − φ(y(j1), y(j2), . . . , y(js)) if {a, b} ∩ {j1, . . . , js} �= ∅
0 otherwise.

It is straightforward to check (1). (2) holds because Y ∩ Z = ∅.
For g ∈ H1 ∪ H2, let Yg ⊆ Y be defined by:

Yg = {α = (α1, α2, . . . , αs) ∈ Y:g ∈ {α1, . . . , αs}}.
Note that for g1, g2 ∈ H1 ∪ H2 and g1 �= g2, Yg1 ∩ Yg2 = ∅. Moreover, Y = ∪g∈H1∪H2Yg. Therefore,

Yab =
∑

g∈H1∪H2

〈WYg , � ∗ (Ay(ab) − Ay)〉
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Note also that 〈WYg , � ∗ (Ay(ab) − Ay)〉 = 0, if g /∈ {a, b}. Hence,

Yab =
∑

α∈Ya∪Yb

(W)α · {(Ay(ab) − Ay)α}
σα

So, we can define

Ya :=
∑
α∈Ya

(W)α · {(Ay(ab) − Ay)α}
σα

By (72), we obtain

Ya =
∑
α∈Ya

(W)α · {(Ay(ab) − Ay)α}
σα

=
s2∑

s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\(H1∪H2))s−1

1

σ(i1,...,ij−1,a,ij+1,...,is){
(φ(y(i1), . . . , y(ab)(a), . . . , y(is)) − φ(y(i1), . . . , y(a), . . . , y(is)))(W)(i1,...,ij−1,a,ij+1,...,is)

}
Similarly, define

Yb: =
∑
α∈Yb

(W)α · {(Ay(ab) − Ay)α}
σα

=
s2∑

s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\(H1∪H2))s−1

1

σ(i1,...,ij−1,b,ij+1,...,is){
(φ(y(i1), . . . , y(ab)(b), . . . , y(is)) − φ(y(i1), . . . , y(b), . . . , y(is)))(W)(i1,...,ij−1,b,ij+1,...,is)

}
Then Yab = Ya + Yb and {Yg}g∈H1∪H2 is a collection of independent Gaussian random variables. Moreover,
the variance of Yg is

s2∑
s=s1

s∑
j=1

∑
(i1,...,̂ij ,...,is)∈([n]\(H1∪H2))s−1

1

σ 2
(i1,...,ij−1,g,ij+1,...,is)

(φ(y(i1), . . . , y(b), . . . , y(is)) − φ(y(i1), . . . , y(a), . . . , y(is)))
2

By Assumption (6) of the proposition, this is independent of g.

By Lemma 6.1, we obtain

〈W, � ∗ (Ay(ab) − Ay)〉 = Ya + Yb + Zab

Moreover,

max
u∈H1,v∈H2

Yu + Yv + Zuv ≥ max
u∈H1,v∈H2

(Yu + Yv) − max
u∈H1,v∈H2

( − Zuv)

= max
u∈H1

Yu + max
v∈H2

Yv − max
u∈H1,v∈H2

( − Zuv)

By Lemma A.1, we obtain that when ε, h satisfy (A1) with N replaced by h, each one of the following
two events

F1 :=
{

max
u∈H1

Yu

‖� ∗ (Ay(uv) − Ay)‖2
≥ (1 − ε)

√
2 log h · min

u∈H1

Var(Yu)

(L�(y(u,v), y))2

}

F2 :=
{

max
v∈H2

Yv

‖� ∗ (Ay(uv) − Ay)‖2
≥ (1 − ε)

√
2 log h · min

v∈H2

Var(Yv)

(L�(y(u,v), y))2

}

https://doi.org/10.1017/S0956792524000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000263


30 Z. Li

has probability at least 1 − e−hε . Moreover, the event

F3 :=
{

max
u∈H1,v∈H2

Zuv

‖� ∗ (Ay(uv) − Ay)‖2
≤ (1 + ε)

√
2 log (2h) · max

u∈H1,v∈H2

Var(Zuv)

(L�(y(uv), y))2

}
occurs with probability at least 1 − h−2ε. Then by Assumption (4) of the proposition, we have

VarZuv = ‖� ∗ (Ay(uv) − Ay)‖2 − Var(Yu) − Var(Yv)

= L�(y(uv), y) − (1 + o(1))L�(y(uv), y)

= o(1)L�(y(uv), y).

By Assumption (5) of the proposition, for any u ∈ H1 and v ∈ H2, we have

Var(Yu) = Var(Yv).

Moreover, by Assumption (4) of the proposition,

Var(Yu) + Var(Yv) = (1 + o(1))L�(y(uv), y).

Hence, the probability of the event

F :=
{

max
a∈H1,b∈H2

〈W, � ∗ (Ay(ab) − Ay)〉
‖� ∗ (Ay(ab) − Ay)‖2

≥ (1 − ε)
√

2 log h

maxu∈H1,v∈H2 L�(y(u,v), y)(√
min
u∈H1

Var(Yu) +√
min
v∈H2

Var(Yv) − (1 + o(1))
√

max
u∈H1,v∈H2

Var(Zuv)

)}
=
{

max
a∈H1,b∈H2

〈W, � ∗ (Ay(ab) − Ay)〉
‖� ∗ (Ay(ab) − Ay)‖2

≥ 2(1 − ε)
√

log h√
maxu∈H1,v∈H2 L�(y(u,v), y)

(1 + o(1))

}
is at least

Pr(F1 ∩ F2 ∩ F3) = 1 − Pr((F1)
c ∪ (F2)c ∪ (F3)

c)

≥ 1 − Pr((F1)
c) − Pr((F2)

c) − Pr((F3)
c)

≥ 1 − 2e−hε − h−2ε.

When (25) holds, we have

Pr
(

maxa,b∈[n],y(a)�=y(b)

2〈W, � ∗ (Ay(ab) − Ay)〉
‖� ∗ (Ay(ab) − Ay)‖2

> 1)

)
≥ Pr(F) → 1,

as n → ∞. Then the proposition follows.

7. An example

Assume n vertices are divided into group I and group II such that group I contains �αn� vertices
and group II contains n − �αn� vertices, where α ∈ (0, 1). Let y : [n] → [2] be the true community
assignment mapping. For any x ∈ �, define

(Ax)i,j :=

⎧⎪⎨⎪⎩
1 if x(i) = x(j) = 1

0 if x(i) �= x(j)

2 if x(i) = x(j) = 2

and

σi,j =

⎧⎪⎨⎪⎩
δ1 if y(i) = y(j) = 1

δ0 if y(i) �= y(j)

δ2 if y(i) = y(j) = 2.
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Then

L�(x, y) =
∑
i∈[n]

∑
j∈[n]

1

σ 2
ij

[(Ax)i,j − (Ay)i,j]
2

= [t1,2(x, y)]2

δ2
2

+ [t2,1(x, y)]2

δ2
1

+ 2t1,1(x, y)t1,2(x, y)

δ2
0

+ 2t1,1(x, y)t2,1(x, y)

δ2
1

+ 8t1,2(x, y)t2,2(x, y)

δ2
2

+ 8t2,1(x, y)t2,2(x, y)

δ2
0

Assume
α

δ2
0

+ 4(1 − α)

δ2
2

= α

δ2
1

+ 4(1 − α)

δ2
0

:= Q (73)

Note that (73) holds whenever δ0 = δ1 = δ2, which corresponds to the case when the Gaussian pertur-
bations for each pair of vertices are i.i.d.; however, (73) may also holds even when δ0, δ1, δ2 are not all
equal.

When (73) holds, one may check that Assumption 2.4 holds with


 = 2nQ

and Assumption 2.3 holds with

R(n) = 2Qεn2

We obtain that if

Q >
4(1 + δ) log n

n
then a.s. exact recovery occurs; if

Q <
4(1 − δ) log n

n
Then a.s. exact recovery does not occur by Theorem 2.9.

In the following tables, we let (n1, n2) = (10, 6), n = 16 and α = 0.625. In this case, we have
4 log n

n
= log (2) ≈ 0.6931

For each triple (δ0, δ1, δ2) satisfying (73), we perform the MLE for m = 200 times to compute ŷ, and
let m+ be the number of experiments with ŷ = y. The values m+

m
are shown in the following tables.

(δ0, δ1, δ2) (1,1,1) (1.2,1.2,1.2) (1.26,1.26,1.26) (1.3,1.3,1.3) (1.5,1.5,1.5) (1.6,1.6,1.6) (1.7,1.7,1.7)

Q 2.125 1.4757 1.3385 1.2574 0.9444 0.8301 0.7353
Qn

4 log n
3.0657 2.1290 1.9310 1.8140 1.3625 1.1975 1.0608

m+
m

1 1 1 0.995 0.960 0.955 0.930

(δ0, δ1, δ2) (1.8,1.8,1.8) (2,2,2) (2.5,2.5,2.5) (3,3,3) (5,5,5) (7,7,7) (8,8,8)

Q 0.6559 0.5313 0.4390 0.2361 0.0850 0.0434 0.0332
Qn

4 log n
0.9462 0.7664 0.6334 0.3406 0.1226 0.0626 0.0479

m+
m

0.910 0.810 0.660 0.395 0.06 0 0
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(δ0, δ1, δ2) (0.6769,1.2,0.8) (0.8069,2,1) (1.0938,2,1.3) (1.3016,3,1.6)

Q 3.7078 2.4598 1.4099 0.9549
Qn

4 log n
5.3493 3.5488 2.0341 1.3776

m+
m

1 1 0.995 0.980

(δ0, δ1, δ2) (1.9997,1.6,1.8) (3.6228,2.5,3) (7.2457,5,6) (12.4864,5,7)

Q 0.6193 0.2143 0.0536 0.0346
Qn

4 log n
0.8934 0.3091 0.0773 0.0499

m+
m

0.910 0.270 0.025 0
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Appendix

A. Maximum of Gaussian Random Variables

Lemma A.1. Let G1, . . . , GN be Gaussian random variables with mean 0. Let ε ∈ (0, 1). Then

Pr
(

max
i=1,...,N

Gi > (1 + ε)
√

2 max
i∈[N]

Var(Gi) log N

)
≤ N−ε
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and moreover, if Gi’s are independent, and ε, N satisfy

Nε−ε2
(1 − ε)

√
2 log N√

2π (1 + 2(1 − ε)2 log N)
> 1 (A1)

Then

Pr
(

max
i=1,...,N

Gi < (1 − ε)
√

2 min
j∈[N]

Var(Gj) log N

)
≤ exp ( − Nε)

Proof. It is known that for a Gaussian random variable Gi and x > 0,

xe− x2
2√

2π (1 + x2)
≤ Pr

(
Gi√

Var(Gi)
> x

)
≤ e− x2

2

x
√

2π
(A2)

Let G1, . . . , GN be N Gaussian random variables. Then by (A2), we have

Pr
(

max
i∈[N]

Gi ≥ (1 + ε)
√

2 max
i∈[N]

Var(Gi) log N

)
≤
∑
i∈[N]

Pr
(

Gi√
Var(Gi)

≥ (1 + ε)
√

2 log N

)

≤ Ne−(1+ε)2 log N

2(1 + ε)
√

π log N
≤ N−ε

If we further assume that Gi’s are independent, then

Pr
(

max
i∈[N]

Gi < (1 − ε)
√

2 min
j∈[N]

Var(Gj) log N

)
=
∏
i∈[N]

Pr
(

Gi < (1 − ε)
√

2 min
j∈[N]

Var(Gj) log N

)
=
∏
i∈[N]

[
1 − Pr

(
Gi > (1 − ε)

√
2 min

j∈[N]
Var(Gj) log N

)]
≤
∏
i∈[N]

[
1 − Pr

(
Gi√

Var(Gi)
> (1 − ε)

√
2 log N

)]
By (A2), we obtain

Pr
(

max
i∈[N]

Gi < (1 − ε)
√

2 min
j∈[N]

Var(Gj) log N

)
≤
(

1 − (1 − ε)
√

2 log N√
2π (1 + 2(1 − ε)2 log N)

1

N(1−ε)2

)N

When (A1) holds, we have

Pr
(

max
i∈[N]

Gi < (1 − ε)
√

2 min
j∈[N]

Var(Gj) log N

)
≤
(

1 − 1

N1−ε

)N1−ε ·Nε

≤ e−Nε

Then the lemma follows.
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