
ON THE REPRESENTATION OF INTEGERS AS 
SUMS OF DISTINCT TERMS FROM A 

FIXED SEQUENCE 

JON FOLKMAN 

1. Introduction. Let A = (ai, #2, #3, • . •) be a sequence of positive 
integers. We let 

P(A) = i ^ €n &n \*n = 0 or 1, almost all en = Or 

denote the set of integers that are sums of distinct terms of A. If P(A ) contains 
all sufficiently large integers, we say that A is complete. We shall show that 
certain classes of sequences that are characterized by their rate of growth are 
complete. 

THEOREM 1.1. Let A = (ai < a2 < a% < . . .) be an increasing sequence of 
positive integers. Suppose that A satisfies 

(1.1) an < Mna for all n where 0 < a < 1, 

and 

(1.2) for every integer m, P(A) contains an element from each residue class 
modulo m. 

Then A is complete. 

If we assume that the sequence A is strictly increasing, then condition (1.1) 
may be weakened considerably. 

THEOREM 1.2. Let A = (a± < a2 < a^ < . . .) be a strictly increasing sequence 
of positive integers that satisfies (1.2) and 

(1.3) an < Mn1+a for all n where 0 < a < 1. 

Then A is complete. 

Erdôs (2) proved Theorem 1.2 in the case where 

a < (V5 - l ) / 2 = 0.6180. . . , 

and conjectured that the result was true for a < 1. 
We shall say that a sequence A is subcomplete if P{A) contains an infinite 

arithmetic progression. Theorems 1.1 and 1.2 follow easily from condition (1.2), 

Received April 19, 1965. 

643 

https://doi.org/10.4153/CJM-1966-065-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-065-2
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once we have established that the restrictions on the rate of growth of A 
ensure that A is subcomplete. 

THEOREM 1.3. Let A be an increasing sequence of positive integers. If A satisfies 
(1.1) or if A is strictly increasing and satisfies (1.3), then A is subcomplete. 

2. Preliminary lemmas. The letters A, B, C, . . . will denote sequences 
of positive integers {a^}, {bn}, {cn}, . . . . We shall sometimes write a(n) for 
an. 

LEMMA 2.1. Let A be an increasing sequence of positive integers with disjoint 
subsequences B, C, and D. Suppose that 

1 n 

(2.1) for each m > 0, lim - — ]T bt = oo , 

and that 
cn > dnfor each integer n, and the sequence 

(2.2) E defined by en = cn — dn is subcomplete. 

Then A is subcomplete. 

To establish this lemma, we first need another result. 

LEMMA 2.2. Let B be an increasing sequence satisfying (2.1). For each integer 
r > 0, there is an integer m (r) such that for any k > 0, at least one of the numbers 

(k + l)r , (* + 2 ) r , . . . , (k + m(r))r 
is in P(B). 

Proof. Let n > 0 be an integer. We claim that for some i and j with 
0 < i < j < r, the sum 

Sij = b((n - l)r + i + 1) + b((n - l)r + i + 2) 

+ . . . + b((n - l)r+j) 
is divisible by r. Consider the r sums 

5oi = b((n - l)r + 1), 

So2 = b((n - l)r + 1) + &((» - l ) r + 2), 

sor = i ( (n - l ) r + 1) + . . . + 6((n - l ) r + r) . 

If they are distinct (mod r), then one of them, s0j, is divisible by r. On the 
other hand, if 

sot = s0j (mod r) for i < j , 

then 50- = 5oj — 5o< is divisible by r. 
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Set cn = stj, where stj is divisible by r. Then 

b(n-i)r+i K cn ^ rbnr. 
Hence, 

^ n 1 n 

~ 22 Ci > ~T 22 &(i-Dr+l 
Cn+1 i=l rO(n+l)r z-1 

- 1 1 V h 
- 2 7 Z ^ ^ ( i - l ) r + l 

P 0(n+l)r i= l 
i j (re-Dr+1 

>-2 7 Z i i , 
r U{n+l)T i=l 

which tends to infinity with n by (2.1). Therefore, there is an n0 such that 

n 

Cn+i <^2 Ci for n > w0. 

Let 
no 

1 = 1 

If w > Wo and x is an integer with 

n 

0 < x < ]£ ct, 
i= l 

then there is a y G ^({ci, • • • , cn}) such that x < 3; < x + M. For n = w0, 
we take y = M. Suppose that the assertion is true for some n > n0 and we 
shall prove it for n + 1. 

Suppose 
n+l 

0 < x < 2^ d. 
%=\ 

If 
n 

x <^ 2^1 Ci, 
i=i 

the required y exists by assumption. If 

n 

X ^ / j Ci, 

then 
n n+l n 

{) ^ X 2i^ Ci "% X Cn+i <^ 2LJ Ci £n+l == 2Lt Ci» 
i=l z= l 

Hence, there is a y Ç P({ci, . . . ,c„j) with 

^ — cn+i < y < * — cn+i + M. 
Now 

y + cn+1 e P({ci, . . . , cn+i}) and x < y + cn+i < x + Af. 
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We have now shown that if x > 0, there is a y G P(C) with x < y < x + ikf. 
But P(C) C P(B) and every element of P(C) is divisible by r. Hence, we may 
take m(r) = M/r + 1 and the lemma is proved. We can now use this result 
to prove Lemma 2.1. 

Proof of Lemma 2.1. Let r and r0 be integers such that r0 + kr Ç P(E) for 
every k > 0. Let m(r) be as in Lemma 2.2. For some n, the integers 

ro, r0 + r, . . . , rQ + m(r)r 

are in P({ei, . . . , en\). Let 
n 

ri = r0 + w(r)r + X ^*-

Let & > 0. By Lemma 2.2, (k + i)r G P(B) for some i with 1 < i < m(r). 
Now 

r0 + (m(r) - i)r G P({eh . . . , en}). 
Let 

To + (m(r) — i)r = ^2 ej(cJ — dj), ej = 0 or 1. 

Then 

r0 + (m(r) — i)r + ]C rfi = 2Z (dj + ^ cû — e, d,) 

= X) e; ^i + X (1 - €y)d,. 

Hence, 
w 

ri + kr = r0 + m{r)r + ^2 dj + kr 

= (k + i)r + (m(r) — i)r + r0 + ^ dj 

rc n 

= (k + i)r + X) ej ̂  + X) (1 - cy)dy. 

The first term is in P(B), the second is in P(C), and the third is in P(D). 
Therefore, the sum is in P{A). This is true for any k > 0, so A is subcomplete. 

LEMMA 2.3. Z^/ A be a sequence and let t be a non-decreasing function from the 
positive integers to the positive integers. Suppose that for each r > 0, either 
P({ai, . . . , at(T)}) contains an element from each residue class (mod r) or the 
sequence ai, . . . , a^r> contains at least r terms not divisible by r. Then for each 
r > 0, P({ai, . . . , at(r)}) contains an element from each residue class (mod r). 

Proof. Suppose the contrary. Let r be the smallest integer for which the 
lemma fails. Then r > 1 and the sequence ai, . . . , at(T) contains r terms not 
divisible by r. Let X = {xi, . . . , xs} be representatives for the distinct residue 
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classes (mod r) which appear in P({ah . . . , atiT)}). Then 5 < r. By a lemma of 
Erdôs (2, Lemma 2), there is a subsequence bi, . . . , bk of ai, . . . , a*(r> with 
& < s such that every element of X is congruent (mod r) to a sum of distinct 
terms from the sequence 6i, . . . , bk. 

Since & < 5 < r, there is a term a* in the sequence a,\, . . . , af(r) that is not 
in the subsequence and is not divisible by r. Hence, if the residue class of x is in 
Xy so is the residue class of x + at. By induction, the residue class of x + pat 

is in X for all p > 0. 
Let d = (r,at). Then 1 < d < r and d = pa{ + qr where p may be chosen 

to be positive. By the choice of r, the lemma holds for d. Hence, since d\r and 
t(d) < t(r), X contains a representative from every residue class (mod d). Let 
y be any integer. Then 

y = Xj (mod d) for some Xj G X. 

Therefore, 

y == Xj + Id = Xj + lpat + Iqr = Xj + /£a* (mod r) 

for some /. But the residue class of Xj + lpat is in X. This is a contradiction 
since y is arbitrary. 

LEMMA 2.4. Le/ 4̂ ôe aw increasing sequence satisfying (1.1). 77zerc there is an 
integer d > 1 swc& /^a/ a// but a finite number of terms of A are divisible by d, 
and for each r > 1, at least r terms of A are divisible by d but not by rd. 

Proof. Let S be the set of all integers d > 1 such that the number of terms of 
A not divisible by d is less than d. Now S is non-empty because 1 Ç 5. Since 
a < 1, there is an n0 such that for n > no, 

an < Mna < n. 

Hence if d > no, then the first d terms of A are not divisible by d. Therefore, 
5 is finite. 

Let d be the largest element of S. Clearly, all but a finite number of terms 
of A are divisible by d. Let r > 1. Then rd > d so rd £ S. Hence, at least rd 
terms of A are not divisible by rd. At most d — 1 of these terms are not 
divisible by d, so there are at least 

rd - (d - 1) = (r - l)d + 1 > r 

terms of A which are divisible by d but not by rd. 
If A is a sequence and r is an integer, we let /(r, A) denote the number of 

terms in A that are equal to r. We may have l(r, A) — oo . 

LEMMA 2.5. Let A be an increasing sequence satisfying (1.1). Suppose that 

l(r, A)/r«t r > 1, 

is unbounded. Then A is subcomplete. 
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Proof. If l(r, A) = co for some r > 1, the conclusion is immediate. Suppose 
/(r, A) < oo for all r > 1. Let d be as in Lemma 2.4. Let iV be the number of 
terms of A not divisible by d. Let anv ano1 anv . . . be the subsequence of A 
consisting of those terms divisible by d. Then nk < k + N. 

We define a sequence B by 

This sequence has the following properties: 

(2.3) bk < M(N + 1)JK 

We have 

bk < ank < M(* + iV)a < M(N + 1) ( ^ - f ) " < M(N + l)ka. 

If d does not divide r, then l(r, A) ^ N. Hence, 

is unbounded. But 

so 

(2.4) 

is unbounded. 
Choose tt0 so that for n > n0, M(N + l)na < n.lir > #0, then bi, 62, . . . , bT 

are not divisible by r. By Lemma 2.4, for every r > 1, at least r terms of B are 
not divisible by r. Choose r0 so that for each r with 1 < r < n0, the sequence 

bu b2, . . . , bro 

contains at least r terms not divisible by r. If we let t(r) = max(r, ro), then 
the sequence B and the function / satisfy the hypotheses of Lemma 2.3. Hence, 

(2.5) if n — max(r, r0), then P({bi, . . • , bn}) contains an element from each 
residue class (mod r). 

We claim that there is an integer r with the following properties: 

(2.6) r > r0, 

(2.7) bn < \n for n > r, 

[n/2] 

(2.8) X &, > ZVi_i for n *^> r, 

lira, A) 
(rd)" ' 

r> 1, 

l(rd,A) 
' (rd)a ' 

1 
d" 

Kr, B) 
r" 

l(r, B) 
r" ' r> 1, 

(2.9) r / ( r , J B ) > 2 2 : 6 j . 
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By (2.3), 

bn< M(N + l )w»< \n 

for n sufficiently large. Furthermore, 

t»/2J 

T, bt> [n/2] > M(N + 1)(» + 1)" > bn+1 

for n sufficiently large. Hence, conditions (2.6)-(2.8) are satisfied by all 
sufficiently large r. 

On the other hand, by (2.4), there are arbitrarily large r that satisfy 

rl(r,B) > 2M(N + l)^+«. 
But 

2M(N+l)r1+a>2J2bû 

so there are arbitrarily large r satisfying (2.9). 
Let / = l{r, B) and let m be the integer such that 

bm-i < bm = bm+i — . . . = bm+i-i ~ r. 

By (2.7), 

bT < \r < r = bm. 

Therefore, since B is increasing, r < m. It now follows from (2.7) that 
r = bm < \m or 

(2.10) 4r < m. 

The remainder of the proof consists of two assertions, which we prove by 
induction. 

Assertion A. Let r < n < m — 1. Ifx is an integer satisfying 

T n 

Ys bt < x < Ir + X **» 

//^w x 6 P({#i, . . . , bm bmi bm+i, . . • , bm+i-i}). 

First let n = r. By (2.5) and (2.6), there is a y G P({ôi, . . . , br}) with 
x — y = 0 (mod r). Now 

r 

0 < x — ] ^ 6* < # — y < # < /r. 

Therefore, 

* — y £ {0, r, 2r, . . . , /r} = P({bm, bm+h . . . , &ro+j_i}), 

and the conclusion follows. 
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Assume that the assertion is true for some n with r < n < m — 1, and we 
shall prove it for n + 1. We may assume that 

n 

lr + Z bi < x, 
i=r+l 

since otherwise our assertion follows from the inductive assumption. Hence, 

x>lr+ Z bi>2y£bi+ Z a<=£ô<+£6< 

by (2.9). Therefore, 
r n r 

x — bn+x > Z bt + Z bt — bn+i >J^bi 
i=i i=i t = i 

by (2.8). 
On the other hand, 

n+1 n 

x — bn+i < lr + Z bt — bn+i = Zr + ' Z bt. 
i=r+l i=r+l 

Thus, x — bn+i £ P({6i, . . . , &w, ôOT> 6OT+i, . . . , 6OT+ï-i}) by the inductive 
assumption. The conclusion now follows. 

Assertion B. Le£ m + / — 1 < n. If x is an integer satisfying 

Z £* < x < Z **» 
t'=l t = r + l 

/Ae» x 6 -P({ii, • . • , bn}). 

H n = m + I — 1, the conclusion follows from Assertion A with n = m — 1. 
Assume that the assertion is valid for some n > m + / — 1 ; then we shall 
prove it for n + 1. 

In view of the inductive assumption, we may as well assume that 

x > Z bt. 
i=r+l 

By (2.10), n > m > 4r. Therefore, 

*> Z 6«= Z &<+ Z bt 
i=r+l i=r+l i=2r+l 

r ln/2] 

> Z * i + Z bt. 

Hence, by (2.8), 

x — bn+i > Z bi 
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But 
n+1 n 

x — bn+i < ^2 bi — bn+i = 2 *i» 
i=r+l i=r+l 

so x — bn+i G P{{bi, . • . , bn}). The conclusion now follows. 

Assertion B implies that B is complete. If x G P(B), then dx £ P(A), so A 
is subcomplete. Lemma 2.5 has now been proved. 

LEMMA 2.6. Let A be a sequence of positive integers. There is an increasing 
sequence B such that P(B) Q P(A) and 

n n 
y£ébi<

y£é
ai 

for any n. 

Proof. Let bn be equal to the nth. smallest term of A> where the smaller of 
two terms with the same value is taken to be the one with the smaller index. 
Clearly B is increasing. We have P{B) (Z P(A) because B is a permutation 
of a subsequence of A. 

Since bi, bz, . . . ,bn are equal to the n smallest terms of A, their sum is less 
than or equal to the sum of any n terms of A. In particular, 

n n 

3. Proofs of the theorems. 

Proof of Theorem 1.3. First suppose that A is increasing and satisfies (1.1). 
Let I denote the set of a, 0 < a < 1, for which the theorem holds. If a = 0, 
then A is bounded, so it contains infinitely many terms with the same value. 
In this case A is clearly subcomplete, so 0 G I. If 0 < /3 < a and a d I, then 
j8 G I because n& < na for all n > 1. Hence, if a0 = sup / , it suffices to show 
that a0 = l. 

Suppose 0 < ao < 1. Let 

a = fa0 + h 

Then 0 < a < 1, but a & I because a > a0. Hence, there is an increasing 
sequence A that is not subcomplete but satisfies 

(3.1) an < Mna for all n 

for some M. 
In view of Lemma 2.5, l(r, A)/ra is bounded. Hence, there is an N such that 

(3.2) l(r, A) < Nra for all r. 
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We define disjoint subsequences B, C, and D of A as follows: 

cn = a(3[» + iVM«w«2 + 1] + 1), 

dn — #3w 

Here [x] denotes the greatest integer in x. For each m, 

i n 

— 2>«> n 
bn+m 1A l ' M(3n + 3m + 2)a ' 

The right-hand side tends to infinity with nf so B satisfies (2.1). 
We have cn > dn because A is increasing. Suppose that cn = dn for some n. 

Then by (3.1) and (3.2), 

l(au, A) > 3[« + NM«n«2 + 1] + 1 - Zn 

= 3[NMan°* + 1] + 1 

> 3NMan«2 + 1 

> iV(M(3»)«)« + 1 

> iV(a3w)« + 1 

>l(atn,A) + 1. 

This is a contradiction, so cw > dn for all w. 
Let en = cn — dn and let F be the increasing sequence obtained from E by 

Lemma 2.6. Then for each n > 0, 

2n 2n 2n 

nfn < S /i < 2 /* < 2 î 
i=n+l i—1 i=l 

In 

= ^2 ct — ^2 dt 

[2n+NMa(2n)a2+l] In 

i=l i=l 

2n-l [2n+NMa(2n)ai+l] 

<̂  2^f (a3z+i — azi+z) + z~* a*i+i 
i=l i=2n 

< [NMa(2n)a2 + 2]a(3[2n + NMa(2n)a2 + 1] + 1) 

< Qna*M(Rn)a = MQRana+a\ 

where Q = NMa2<*2 + 2 and R = 10 + 3iVilf«2«2. Hence, for each w, 

/„ < MQRana+a2-1 < MQRan2a-\ 

We have/w > 1 for all w, so 2a — 1 > 0. On the other hand, 

2a — 1 = 2(fa0 + | ) — 1 = 3«o — J = «o + i(«o — 1) < a0. 
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Therefore, 2a — 1 Ç 7, so F is subcomplete. Now P(F) QP(E), so £ is 
subcomplete. By Lemma 2.1, 4̂ is subcomplete, which is a contradiction. 

Now suppose A is strictly increasing and satisfies (1.3). Define disjoint 
subsequences B, C, and D by 

bn = #3ra+2 , £W = #3tt-fl> ^w = #3rc. 

Since B is strictly increasing, for each m 

J _ A (l/2)n(n + 1) 
èn+w t l " ^ M(3» + 3m + 2)1 + a ' 

Hence, B satisfies (2.1). 
Now cn = a3w+i > a%n = dn. Let e„ = cn — dn and let F be the monotonie 

sequence obtained from E by Lemma 2.6. By Lemma 2.1 and what we have 
already proved, it now suffices to show that for some N, 

fn < Nna for all n. 
We have 

2w In 

nfn < 2 ft < H *t 
i=n+l i = l 

2n 2w 

= Z-^ ^3i+l — 2-^ a3f 
z = l i = l 

2 n - l 

< #6rc+l + 2 ^ (#3i+l — #3i4-3) 

< a6w+i < M(6n + l ) 1 + a < 7 1 + t W + a . 

Therefore, 
/„ < 71+aMna

} 

and the proof of Theorem 1.3 is complete. 

Proof of Theorem 1.1 and 1.2. Let A be an increasing sequence satisfying (1.2). 
Suppose that either A satisfies (1.1) or A is strictly increasing and satisfies 
(1.3). We shall call these two situations Case I and Case II, respectively. 

Suppose we can find sequences B and C that are disjoint subsequences of A. 
and have the properties that P(B) contains an element from each residue class 
(mod r) for each r, and C is subcomplete. Let r0 and r be integers such that 

r0 + rk e P{C) for each k > 0. 

Let {%u x2, . . . , xr} C P(B) where xt = i (mod r). If x is an integer and 

x > fo + max(xi, x2, . . . , x r), 

then x — r0 = xt (mod r) for some i, so 

x = xt + n + r ( - - r ~ - ^ ) e P(A). 
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Hence, to show t h a t A is complete i t suffices to const ruct the sequences B 
and C. 

Choose no so large t h a t 

4:M(4:n)a < n for n > n0. 

By (1.2), P(A) contains an element from each residue class (mod r) for each r. 
Hence, we can choose r0 so t h a t P ( { a i , a2, . . . , aTQ} ) contains an element from 
each residue class (mod r) for 1 < r < n0. 

Define sequences B and C by 

= (an if n < 2r0, 

\a 2 (n-r 0 ) - i if w > 2r0, 

and 

Then B and C are disjoint subsequences of A. We have 

cn = aUn+r,) < M(2(n + r 0 ) ) T < M(2 + 2r0)w 

where y = a in Case I, and in Case I I , C is s tr ict ly increasing and y = 1 + a. 
By Theorem 1.3, C is subcomplete. 

Let / ( r ) = max(r 0 , 4 r ) . We claim t h a t the sequence i? and the function t 
satisfy the hypotheses of Lemma 2.3. If r < n0, then 

P ( { J i , . . . , f t i ( r ) } ) D P ( { a i , . . . , a r o } ) f 

which contains an element from each residue class (mod r). Suppose r > n0. 
Note t h a t 

= jb2t-i if 2i - 1 < 2r0, 
a 2 ' _ 1 (i«+ro ^ 2* - 1 > 2r0. 

Fur thermore , if 2i — 1 > 2r0, then i + r0 < 2i — 1. Hence, the sequence 
Â = (ai, a3, a5, . . . , #4r-i) is a subsequence of (6i, ô2, . . . , ^4r) which is a 
subsequence of (£i, ^2, . . . , 6/(r)). 

In Case I each term of A is less than or equal to a±r, and 

atr < M(4:r)a < 4 M ( 4 r ) a < r. 

Hence, each of the 2r t e rms in À is no t divisible by r. 
Now suppose we are in Case I I . If fewer than r t e rms of Â are no t divisible 

by r, then more than r t e rms of Â are divisible by r. T h e te rms of Â are d is t inct 
because A is str ict ly increasing, so for some di £ Â, af > r2. Therefore, 

r2 < at < aAr < ikf(4r)1 + a = 4Af(4r)«r < r2. 

This is a contradict ion. 
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By Lemma 2.3, P{B) contains an element from each residue class (mod r) 
for each r. This completes the proof. 

4. Remarks. Let a > 1. It is easy to construct an increasing sequence A 
that satisfies 

an < na 

but is such that 

n 

(4.1) sup an+1 — ]T at = œ. 
n i = l 

Such a sequence clearly is not subcomplete. A similar construction yields a 
strictly increasing sequence A that satisfies (4.1) and 

an < n1+a. 

These examples show that our theorems are false for a > 1. Cassels (1) 
constructs counter-examples to Theorem 1.2 and Theorem 1.3 in the strictly 
increasing case for a > 1. His sequences satisfy the additional regularity 
condition that 

an+i = an + o(aJ+e), 

where e is an arbitrary preassigned positive number. Hence, these results 
are false for a > 1, even in the presence of rather strong "smoothness" 
conditions. 

The following questions remain open: 
If A is an increasing sequence satisfying 

an < Mn for all n, 

then is A subcomplete? 
If A is a strictly increasing sequence satisfying 

an < Mn2 for n > w0 

where M < 1/2, then is A subcomplete? (We must require M < 1/2 in this 
case to ensure that A does not satisfy (4.1).) 
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