ON THE REPRESENTATION OF INTEGERS AS SUMS OF DISTINCT TERMS FROM A FIXED SEQUENCE

JON FOLKMAN

1. Introduction. Let $A=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ be a sequence of positive integers. We let

$$
P(A)=\left\{\sum_{n=1}^{\infty} \epsilon_{n} a_{n} \mid \epsilon_{n}=0 \text { or } 1, \text { almost all } \epsilon_{n}=0\right\}
$$

denote the set of integers that are sums of distinct terms of A. If $P(A)$ contains all sufficiently large integers, we say that A is complete. We shall show that certain classes of sequences that are characterized by their rate of growth are complete.

Theorem 1.1. Let $A=\left(a_{1} \leqslant a_{2} \leqslant a_{3} \leqslant \ldots\right)$ be an increasing sequence of positive integers. Suppose that A satisfies

$$
\begin{equation*}
a_{n} \leqslant M n^{\alpha} \quad \text { for all } n \text { where } 0 \leqslant \alpha<1 \tag{1.1}
\end{equation*}
$$

and
(1.2) for every integer $m, P(A)$ contains an element from each residue class modulo m.

Then A is complete.
If we assume that the sequence A is strictly increasing, then condition (1.1) may be weakened considerably.

Theorem 1.2. Let $A=\left(a_{1}<a_{2}<a_{3}<\ldots\right)$ be a strictly increasing sequence of positive integers that satisfies (1.2) and

$$
\begin{equation*}
a_{n} \leqslant M n^{1+\alpha} \quad \text { for all } n \text { where } 0 \leqslant \alpha<1 . \tag{1.3}
\end{equation*}
$$

Then A is complete.
Erdös (2) proved Theorem 1.2 in the case where

$$
\alpha \leqslant(\sqrt{ } 5-1) / 2=0.6180 \ldots
$$

and conjectured that the result was true for $\alpha<1$.
We shall say that a sequence A is subcomplete if $P(A)$ contains an infinite arithmetic progression. Theorems 1.1 and 1.2 follow easily from condition (1.2),

[^0]once we have established that the restrictions on the rate of growth of A ensure that A is subcomplete.

Theorem 1.3. Let A be an increasing sequence of positive integers. If A satisfies (1.1) or if A is strictly increasing and satisfies (1.3), then A is subcomplete.
2. Preliminary lemmas. The letters A, B, C, \ldots will denote sequences of positive integers $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}, \ldots$ We shall sometimes write $a(n)$ for a_{n}.

Lemma 2.1. Let A be an increasing sequence of positive integers with disjoint subsequences B, C, and D. Suppose that

$$
\begin{equation*}
\text { for each } m>0, \quad \lim _{n \rightarrow \infty} \frac{1}{b_{n+m}} \sum_{i=1}^{n} b_{i}=\infty, \tag{2.1}
\end{equation*}
$$

and that

$$
\begin{align*}
& c_{n}>d_{n} \text { for each integer } n \text {, and the sequence } \\
& E \text { defined by } e_{n}=c_{n}-d_{n} \text { is subcomplete. } \tag{2.2}
\end{align*}
$$

Then A is subcomplete.
To establish this lemma, we first need another result.
Lemma 2.2. Let B be an increasing sequence satisfying (2.1). For each integer $r>0$, there is an integer $m(r)$ such that for any $k \geqslant 0$, at least one of the numbers

$$
(k+1) r,(k+2) r, \ldots,(k+m(r)) r
$$

is in $P(B)$.
Proof. Let $n>0$ be an integer. We claim that for some i and j with $0 \leqslant i<j \leqslant r$, the sum

$$
s_{i j}=b((n-1) r+i+1)+b((n-1) r+i+2)
$$

is divisible by r. Consider the r sums

$$
+\ldots+b((n-1) r+j)
$$

$$
\begin{aligned}
s_{01} & =b((n-1) r+1) \\
s_{02} & =b((n-1) r+1)+b((n-1) r+2), \\
& \cdot \\
& \cdot \\
& \cdot \\
s_{0 \tau} & =b((n-1) r+1)+\ldots+b((n-1) r+r) .
\end{aligned}
$$

If they are distinct $(\bmod r)$, then one of them, $s_{0 j}$, is divisible by r. On the other hand, if

$$
s_{0 i} \equiv s_{0 j} \quad(\bmod r) \quad \text { for } i<j,
$$

then $s_{i j}=s_{0 j}-s_{0 i}$ is divisible by r.

Set $c_{n}=s_{i j}$, where $s_{i j}$ is divisible by r. Then

$$
b_{(n-1) r+1} \leqslant c_{n} \leqslant r b_{n r} .
$$

Hence,

$$
\begin{aligned}
\frac{1}{c_{n+1}} \sum_{i=1}^{n} c_{i} & \geqslant \frac{1}{r b_{(n+1) r}} \sum_{i=1}^{n} b_{(i-1) r+1} \\
& =\frac{1}{r^{2}} \frac{1}{b_{(n+1) r}} \sum_{i=1}^{n} r b_{(i-1) r+1} \\
& \geqslant \frac{1}{r^{2}} \frac{1}{b_{(n+1) r}} \sum_{i=1}^{(n-1) r+1} b_{i}
\end{aligned}
$$

which tends to infinity with n by (2.1). Therefore, there is an n_{0} such that

$$
c_{n+1} \leqslant \sum_{i=1}^{n} c_{i} \quad \text { for } n \geqslant n_{0}
$$

Let

$$
M=\sum_{i=1}^{n_{0}} c_{i}
$$

If $n \geqslant n_{0}$ and x is an integer with

$$
0 \leqslant x \leqslant \sum_{i=1}^{n} c_{i}
$$

then there is a $y \in P\left(\left\{c_{1}, \ldots, c_{n}\right\}\right)$ such that $x \leqslant y \leqslant x+M$. For $n=n_{0}$, we take $y=M$. Suppose that the assertion is true for some $n \geqslant n_{0}$ and we shall prove it for $n+1$.

Suppose

$$
0 \leqslant x \leqslant \sum_{i=1}^{n+1} c_{i}
$$

If

$$
x \leqslant \sum_{i=1}^{n} c_{i}
$$

the required y exists by assumption. If

$$
x>\sum_{i=1}^{n} c_{i}
$$

then

$$
0 \leqslant x-\sum_{i=1}^{n} c_{i} \leqslant x-c_{n+1} \leqslant \sum_{i=1}^{n+1} c_{i}-c_{n+1}=\sum_{i=1}^{n} c_{i}
$$

Hence, there is a $y \in P\left(\left\{c_{1}, \ldots, c_{n}\right\}\right)$ with

$$
x-c_{n+1} \leqslant y \leqslant x-c_{n+1}+M
$$

Now

$$
y+c_{n+1} \in P\left(\left\{c_{1}, \ldots, c_{n+1}\right\}\right) \quad \text { and } \quad x \leqslant y+c_{n+1} \leqslant x+M
$$

We have now shown that if $x \geqslant 0$, there is a $y \in P(C)$ with $x \leqslant y \leqslant x+M$. But $P(C) \subset P(B)$ and every element of $P(C)$ is divisible by r. Hence, we may take $m(r)=M / r+1$ and the lemma is proved. We can now use this result to prove Lemma 2.1.

Proof of Lemma 2.1. Let r and r_{0} be integers such that $r_{0}+k r \in P(E)$ for every $k \geqslant 0$. Let $m(r)$ be as in Lemma 2.2. For some n, the integers

$$
r_{0}, r_{0}+r, \ldots, r_{0}+m(r) r
$$

are in $P\left(\left\{e_{1}, \ldots, e_{n}\right\}\right)$. Let

$$
r_{1}=r_{0}+m(r) r+\sum_{i=1}^{n} d_{i}
$$

Let $k \geqslant 0$. By Lemma 2.2, $(k+i) r \in P(B)$ for some i with $1 \leqslant i \leqslant m(r)$. Now

$$
r_{0}+(m(r)-i) r \in P\left(\left\{e_{1}, \ldots, e_{n}\right\}\right)
$$

Let

$$
r_{0}+(m(r)-i) r=\sum_{j=1}^{n} \epsilon_{j}\left(c_{j}-d_{j}\right), \quad \epsilon_{j}=0 \text { or } 1
$$

Then

$$
\begin{aligned}
r_{0}+(m(r)-i) r+\sum_{j=1}^{n} d_{j} & =\sum_{j=1}^{n}\left(d_{j}+\epsilon_{j} c_{j}-\epsilon_{j} d_{j}\right) \\
& =\sum_{j=1}^{n} \epsilon_{j} c_{j}+\sum_{j=1}^{n}\left(1-\epsilon_{j}\right) d_{j} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
r_{1}+k r & =r_{0}+m(r) r+\sum_{j=1}^{n} d_{j}+k r \\
& =(k+i) r+(m(r)-i) r+r_{0}+\sum_{j=1}^{n} d_{j} \\
& =(k+i) r+\sum_{j=1}^{n} \epsilon_{j} c_{j}+\sum_{j=1}^{n}\left(1-\epsilon_{j}\right) d_{j} .
\end{aligned}
$$

The first term is in $P(B)$, the second is in $P(C)$, and the third is in $P(D)$. Therefore, the sum is in $P(A)$. This is true for any $k \geqslant 0$, so A is subcomplete.

Lemma 2.3. Let A be a sequence and let t be a non-decreasing function from the positive integers to the positive integers. Suppose that for each $r>0$, either $P\left(\left\{a_{1}, \ldots, a_{t(r)}\right\}\right)$ contains an element from each residue class $(\bmod r)$ or the sequence $a_{1}, \ldots, a_{t(r)}$ contains at least r terms not divisible by r. Then for each $r>0, P\left(\left\{a_{1}, \ldots, a_{t(r)}\right\}\right)$ contains an element from each residue class $(\bmod r)$.

Proof. Suppose the contrary. Let r be the smallest integer for which the lemma fails. Then $r>1$ and the sequence $a_{1}, \ldots, a_{t(r)}$ contains r terms not divisible by r. Let $X=\left\{x_{1}, \ldots, x_{s}\right\}$ be representatives for the distinct residue
classes $(\bmod r)$ which appear in $P\left(\left\{a_{1}, \ldots, a_{t(r)}\right\}\right)$. Then $s<r$. By a lemma of Erdös (2, Lemma 2), there is a subsequence b_{1}, \ldots, b_{k} of $a_{1}, \ldots, a_{t(r)}$ with $k \leqslant s$ such that every element of X is congruent $(\bmod r)$ to a sum of distinct terms from the sequence b_{1}, \ldots, b_{k}.

Since $k \leqslant s<r$, there is a term a_{i} in the sequence $a_{1}, \ldots, a_{t(r)}$ that is not in the subsequence and is not divisible by r. Hence, if the residue class of x is in X, so is the residue class of $x+a_{i}$. By induction, the residue class of $x+p a_{i}$ is in X for all $p \geqslant 0$.

Let $d=\left(r, a_{i}\right)$. Then $1 \leqslant d<r$ and $d=p a_{i}+q r$ where p may be chosen to be positive. By the choice of r, the lemma holds for d. Hence, since $d \mid r$ and $t(d) \leqslant t(r), X$ contains a representative from every residue class $(\bmod d)$. Let y be any integer. Then

$$
y \equiv x_{j} \quad(\bmod d) \quad \text { for some } x_{j} \in X
$$

Therefore,

$$
y \equiv x_{j}+l d \equiv x_{j}+l p a_{i}+l q r \equiv x_{j}+l p a_{i} \quad(\bmod r)
$$

for some l. But the residue class of $x_{j}+l p a_{i}$ is in X. This is a contradiction since y is arbitrary.

Lemma 2.4. Let A be an increasing sequence satisfying (1.1). Then there is an integer $d \geqslant 1$ such that all but a finite number of terms of A are divisible by d, and for each $r>1$, at least r terms of A are divisible by d but not by $r d$.

Proof. Let S be the set of all integers $d \geqslant 1$ such that the number of terms of A not divisible by d is less than d. Now S is non-empty because $1 \in S$. Since $\alpha<1$, there is an n_{0} such that for $n \geqslant n_{0}$,

$$
a_{n} \leqslant M n^{\alpha}<n
$$

Hence if $d \geqslant n_{0}$, then the first d terms of A are not divisible by d. Therefore, S is finite.

Let d be the largest element of S. Clearly, all but a finite number of terms of A are divisible by d. Let $r>1$. Then $r d>d$ so $r d \notin S$. Hence, at least $r d$ terms of A are not divisible by $r d$. At most $d-1$ of these terms are not divisible by d, so there are at least

$$
r d-(d-1)=(r-1) d+1 \geqslant r
$$

terms of A which are divisible by d but not by $r d$.
If A is a sequence and r is an integer, we let $l(r, A)$ denote the number of terms in A that are equal to r. We may have $l(r, A)=\infty$.

Lemma 2.5. Let A be an increasing sequence satisfying (1.1). Suppose that

$$
l(r, A) / r^{\alpha}, \quad r \geqslant 1,
$$

is unbounded. Then A is subcomplete.

Proof. If $l(r, A)=\infty$ for some $r \geqslant 1$, the conclusion is immediate. Suppose $l(r, A)<\infty$ for all $r \geqslant 1$. Let d be as in Lemma 2.4. Let N be the number of terms of A not divisible by d. Let $a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots$ be the subsequence of A consisting of those terms divisible by d. Then $n_{k} \leqslant k+N$.

We define a sequence B by

$$
b_{k}=a_{n_{k}} / d
$$

This sequence has the following properties:

$$
\begin{equation*}
b_{k} \leqslant M(N+1) k^{\alpha} . \tag{2.3}
\end{equation*}
$$

We have

$$
b_{k} \leqslant a_{n_{k}} \leqslant M(k+N)^{\alpha} \leqslant M(N+1)\left(\frac{k+N}{N+1}\right)^{\alpha} \leqslant M(N+1) k^{\alpha}
$$

If d does not divide r, then $l(r, A) \leqslant N$. Hence,

$$
\frac{l(r d, A)}{(r d)^{\alpha}}, \quad r \geqslant 1
$$

is unbounded. But

$$
\frac{l(r d, A)}{(r d)^{\alpha}}=\frac{1}{d^{\alpha}} \frac{l(r, B)}{r^{\alpha}},
$$

so

$$
\begin{equation*}
\frac{l(r, B)}{r^{\alpha}}, \quad r \geqslant 1 \tag{2.4}
\end{equation*}
$$

is unbounded.
Choose n_{0} so that for $n \geqslant n_{0}, M(N+1) n^{\alpha}<n$. If $r \geqslant n_{0}$, then $b_{1}, b_{2}, \ldots, b_{r}$ are not divisible by r. By Lemma 2.4, for every $r>1$, at least r terms of B are not divisible by r. Choose r_{0} so that for each r with $1<r<n_{0}$, the sequence

$$
b_{1}, b_{2}, \ldots, b_{r_{0}}
$$

contains at least r terms not divisible by r. If we let $t(r)=\max \left(r, r_{0}\right)$, then the sequence B and the function t satisfy the hypotheses of Lemma 2.3. Hence,
(2.5) if $n=\max \left(r, r_{0}\right)$, then $P\left(\left\{b_{1}, \ldots, b_{n}\right\}\right)$ contains an element from each residue class $(\bmod r)$.
We claim that there is an integer r with the following properties:

$$
\begin{gather*}
r \geqslant r_{0}, \tag{2.6}\\
b_{n} \leqslant \frac{1}{4} n \quad \text { for } n \geqslant r, \tag{2.7}\\
\sum_{i=1}^{[n / 2]} b_{i} \geqslant b_{n+1} \quad \text { for } n \geqslant r, \tag{2.8}\\
r l(r, B) \geqslant 2 \sum_{i=1}^{r} b_{i} . \tag{2.9}
\end{gather*}
$$

By (2.3),

$$
b_{n} \leqslant M(N+1) n^{\alpha} \leqslant \frac{1}{4} n
$$

for n sufficiently large. Furthermore,

$$
\sum_{i=1}^{[n / 2]} b_{i} \geqslant[n / 2] \geqslant M(N+1)(n+1)^{\alpha} \geqslant b_{n+1}
$$

for n sufficiently large. Hence, conditions (2.6)-(2.8) are satisfied by all sufficiently large r.

On the other hand, by (2.4), there are arbitrarily large r that satisfy

$$
r l(r, B) \geqslant 2 M(N+1) r^{1+\alpha}
$$

But

$$
2 M(N+1) r^{1+\alpha} \geqslant 2 \sum_{i=1}^{r} b_{i}
$$

so there are arbitrarily large r satisfying (2.9).
Let $l=l(r, B)$ and let m be the integer such that

$$
b_{m-1}<b_{m}=b_{m+1}=\ldots=b_{m+l-1}=r
$$

By (2.7),

$$
b_{r} \leqslant \frac{1}{4} r<r=b_{m} .
$$

Therefore, since B is increasing, $r<m$. It now follows from (2.7) that $r=b_{m} \leqslant \frac{1}{4} m$ or

$$
\begin{equation*}
4 r \leqslant m \tag{2.10}
\end{equation*}
$$

The remainder of the proof consists of two assertions, which we prove by induction.

Assertion A. Let $r \leqslant n \leqslant m-1$. If x is an integer satisfying

$$
\sum_{i=1}^{r} b_{i} \leqslant x \leqslant l r+\sum_{i=r+1}^{n} b_{i},
$$

then $x \in P\left(\left\{b_{1}, \ldots, b_{n}, b_{m}, b_{m+1}, \ldots, b_{m+l-1}\right\}\right)$.
First let $n=r$. By (2.5) and (2.6), there is a $y \in P\left(\left\{b_{1}, \ldots, b_{r}\right\}\right)$ with $x-y \equiv 0(\bmod r)$. Now

$$
0 \leqslant x-\sum_{i=1}^{r} b_{i} \leqslant x-y \leqslant x \leqslant l r .
$$

Therefore,

$$
x-y \in\{0, r, 2 r, \ldots, l r\}=P\left(\left\{b_{m}, b_{m+1}, \ldots, b_{m+l-1}\right\}\right),
$$

and the conclusion follows.

Assume that the assertion is true for some n with $r \leqslant n<m-1$, and we shall prove it for $n+1$. We may assume that

$$
l r+\sum_{i=r+1}^{n} b_{i}<x
$$

since otherwise our assertion follows from the inductive assumption. Hence,

$$
x>\operatorname{lr}+\sum_{i=r+1}^{n} b_{i} \geqslant 2 \sum_{i=1}^{\tau} b_{i}+\sum_{i=r+1}^{n} b_{i}=\sum_{i=1}^{r} b_{i}+\sum_{i=1}^{n} b_{i}
$$

by (2.9). Therefore,

$$
x-b_{n+1}>\sum_{i=1}^{r} b_{i}+\sum_{i=1}^{n} b_{i}-b_{n+1} \geqslant \sum_{i=1}^{r} b_{i}
$$

by (2.8).
On the other hand,

$$
x-b_{n+1} \leqslant l r+\sum_{i=r+1}^{n+1} b_{i}-b_{n+1}=l r+\sum_{i=r+1}^{n} b_{i} .
$$

Thus, $x-b_{n+1} \in P\left(\left\{b_{1}, \ldots, b_{n}, b_{m}, b_{m+1}, \ldots, b_{m+l-1}\right\}\right)$ by the inductive assumption. The conclusion now follows.

Assertion B. Let $m+l-1 \leqslant n$. If x is an integer satisfying

$$
\sum_{i=1}^{r} b_{i} \leqslant x \leqslant \sum_{i=r+1}^{n} b_{i},
$$

then $x \in P\left(\left\{b_{1}, \ldots, b_{n}\right\}\right)$.
If $n=m+l-1$, the conclusion follows from Assertion A with $n=m-1$. Assume that the assertion is valid for some $n \geqslant m+l-1$; then we shall prove it for $n+1$.

In view of the inductive assumption, we may as well assume that

$$
x>\sum_{i=r+1}^{n} b_{i} .
$$

By (2.10), $n \geqslant m \geqslant 4 r$. Therefore,

$$
\begin{aligned}
x>\sum_{i=r+1}^{n} b_{i} & =\sum_{i=r+1}^{2 r} b_{i}+\sum_{i=2 r+1}^{n} b_{i} \\
& \geqslant \sum_{i=1}^{\tau} b_{i}+\sum_{i=[n / 2]+1}^{n} b_{i} \\
& \geqslant \sum_{i=1}^{r} b_{i}+\sum_{i=1}^{[n / 2]} b_{i} .
\end{aligned}
$$

Hence, by (2.8),

$$
x-b_{n+1} \geqslant \sum_{i=1}^{r} b_{i} .
$$

But

$$
x-b_{n+1} \leqslant \sum_{i=r+1}^{n+1} b_{i}-b_{n+1}=\sum_{i=r+1}^{n} b_{i},
$$

so $x-b_{n+1} \in P\left(\left\{b_{1}, \ldots, b_{n}\right\}\right)$. The conclusion now follows.
Assertion B implies that B is complete. If $x \in P(B)$, then $d x \in P(A)$, so A is subcomplete. Lemma 2.5 has now been proved.

Lemma 2.6. Let A be a sequence of positive integers. There is an increasing sequence B such that $P(B) \subset P(A)$ and

$$
\sum_{i=1}^{n} b_{i} \leqslant \sum_{i=1}^{n} a_{i}
$$

for any n.
Proof. Let b_{n} be equal to the nth smallest term of A, where the smaller of two terms with the same value is taken to be the one with the smaller index. Clearly B is increasing. We have $P(B) \subset P(A)$ because B is a permutation of a subsequence of A.

Since $b_{1}, b_{2}, \ldots, b_{n}$ are equal to the n smallest terms of A, their sum is less than or equal to the sum of any n terms of A. In particular,

$$
\sum_{i=1}^{n} b_{i} \leqslant \sum_{i=1}^{n} a_{i} .
$$

3. Proofs of the theorems.

Proof of Theorem 1.3. First suppose that A is increasing and satisfies (1.1). Let I denote the set of $\alpha, 0 \leqslant \alpha<1$, for which the theorem holds. If $\alpha=0$, then A is bounded, so it contains infinitely many terms with the same value. In this case A is clearly subcomplete, so $0 \in I$. If $0 \leqslant \beta \leqslant \alpha$ and $\alpha \in I$, then $\beta \in I$ because $n^{\beta} \leqslant n^{\alpha}$ for all $n \geqslant 1$. Hence, if $\alpha_{0}=\sup I$, it suffices to show that $\alpha_{0}=1$.

Suppose $0 \leqslant \alpha_{0}<1$. Let

$$
\alpha=\frac{2}{3} \alpha_{0}+\frac{1}{3} .
$$

Then $0 \leqslant \alpha<1$, but $\alpha \notin I$ because $\alpha>\alpha_{0}$. Hence, there is an increasing sequence A that is not subcomplete but satisfies

$$
\begin{equation*}
a_{n} \leqslant M n^{\alpha} \quad \text { for all } n \tag{3.1}
\end{equation*}
$$

for some M.
In view of Lemma 2.5, l(r, A)/r is bounded. Hence, there is an N such that

$$
\begin{equation*}
l(r, A) \leqslant N r^{\alpha} \quad \text { for all } r \tag{3.2}
\end{equation*}
$$

We define disjoint subsequences B, C, and D of A as follows:

$$
\begin{aligned}
& b_{n}=a_{3 n+2} \\
& c_{n}=a\left(3\left[n+N M^{\alpha} n^{\alpha^{2}}+1\right]+1\right), \\
& d_{n}=a_{3 n} .
\end{aligned}
$$

Here $[x]$ denotes the greatest integer in x. For each m,

$$
\frac{1}{b_{n+m}} \sum_{i=1}^{n} b_{i} \geqslant \frac{n}{M(3 n+3 m+2)^{\alpha}}
$$

The right-hand side tends to infinity with n, so B satisfies (2.1).
We have $c_{n} \geqslant d_{n}$ because A is increasing. Suppose that $c_{n}=d_{n}$ for some n. Then by (3.1) and (3.2),

$$
\begin{aligned}
l\left(a_{3 n}, A\right) & \geqslant 3\left[n+N M^{\alpha} n^{\alpha^{2}}+1\right]+1-3 n \\
& =3\left[N M^{\alpha} n^{\alpha^{2}}+1\right]+1 \\
& \geqslant 3 N M^{\alpha} n^{\alpha^{2}}+1 \\
& \geqslant N\left(M(3 n)^{\alpha}\right)^{\alpha}+1 \\
& \geqslant N\left(a_{3 n}\right)^{\alpha}+1 \\
& \geqslant l\left(a_{3 n}, A\right)+1
\end{aligned}
$$

This is a contradiction, so $c_{n}>d_{n}$ for all n.
Let $e_{n}=c_{n}-d_{n}$ and let F be the increasing sequence obtained from E by Lemma 2.6. Then for each $n>0$,

$$
\begin{aligned}
n f_{n} & \leqslant \sum_{i=n+1}^{2 n} f_{i} \leqslant \sum_{i=1}^{2 n} f_{i} \leqslant \sum_{i=1}^{2 n} e_{i} \\
& =\sum_{i=1}^{2 n} c_{i}-\sum_{i=1}^{2 n} d_{i} \\
& \leqslant \sum_{i=1}^{\left[2 n+N M^{a}(2 n)^{a^{2}}+1\right]} a_{3 i+1}-\sum_{i=1}^{2 n} a_{3 i} \\
& \leqslant \sum_{i=1}^{2 n-1}\left(a_{3 i+1}-a_{3 i+3}\right)+\sum_{i=2 n}^{\left[2 n+N M^{\alpha}(2 n)^{\left.a^{2}+1\right]}\right.} a_{3 i+1} \\
& \leqslant\left[N M^{\alpha}(2 n)^{\alpha^{2}}+2\right] a\left(3\left[2 n+N M^{\alpha}(2 n)^{\alpha^{2}}+1\right]+1\right) \\
& \leqslant Q n^{\alpha^{2}} M(R n)^{\alpha}=M Q R^{\alpha} n^{\alpha+\alpha^{2}},
\end{aligned}
$$

where $Q=N M^{\alpha} 2^{\alpha^{2}}+2$ and $R=10+3 N M^{\alpha} 2^{\alpha^{2}}$. Hence, for each n,

$$
f_{n} \leqslant M Q R^{\alpha} n^{\alpha+\alpha^{2}-1} \leqslant M Q R^{\alpha} n^{2 \alpha-1}
$$

We have $f_{n} \geqslant 1$ for all n, so $2 \alpha-1 \geqslant 0$. On the other hand,

$$
2 \alpha-1=2\left(\frac{2}{3} \alpha_{0}+\frac{1}{3}\right)-1=\frac{4}{3} \alpha_{0}-\frac{1}{3}=\alpha_{0}+\frac{1}{3}\left(\alpha_{0}-1\right)<\alpha_{0} .
$$

Therefore, $2 \alpha-1 \in I$, so F is subcomplete. Now $P(F) \subset P(E)$, so E is subcomplete. By Lemma 2.1, A is subcomplete, which is a contradiction.

Now suppose A is strictly increasing and satisfies (1.3). Define disjoint subsequences B, C, and D by

$$
b_{n}=a_{3 n+2}, \quad c_{n}=a_{3 n+1}, \quad d_{n}=a_{3 n}
$$

Since B is strictly increasing, for each m

$$
\frac{1}{b_{n+m}} \sum_{i=1}^{n} b_{i} \geqslant \frac{(1 / 2) n(n+1)}{M(3 n+3 m+2)^{1+\alpha}} .
$$

Hence, B satisfies (2.1).
Now $c_{n}=a_{3 n+1}>a_{3 n}=d_{n}$. Let $e_{n}=c_{n}-d_{n}$ and let F be the monotonic sequence obtained from E by Lemma 2.6. By Lemma 2.1 and what we have already proved, it now suffices to show that for some N,

$$
f_{n} \leqslant N n^{\alpha} \quad \text { for all } n
$$

We have

$$
\begin{aligned}
n f_{n} & \leqslant \sum_{i=n+1}^{2 n} f_{i} \leqslant \sum_{i=1}^{2 n} e_{i} \\
& =\sum_{i=1}^{2 n} a_{3 i+1}-\sum_{i=1}^{2 n} a_{3 i} \\
& \leqslant a_{6 n+1}+\sum_{i=1}^{2 n-1}\left(a_{3 i+1}-a_{3 i+3}\right) \\
& \leqslant a_{6 n+1} \leqslant M(6 n+1)^{1+\alpha} \leqslant 7^{1+\alpha} M n^{1+\alpha}
\end{aligned}
$$

Therefore,

$$
f_{n} \leqslant 7^{1+\alpha} M n^{\alpha}
$$

and the proof of Theorem 1.3 is complete.
Proof of Theorem 1.1 and 1.2. Let A be an increasing sequence satisfying (1.2). Suppose that either A satisfies (1.1) or A is strictly increasing and satisfies (1.3). We shall call these two situations Case I and Case II, respectively.

Suppose we can find sequences B and C that are disjoint subsequences of A and have the properties that $P(B)$ contains an element from each residue class $(\bmod r)$ for each r, and C is subcomplete. Let r_{0} and r be integers such that

$$
r_{0}+r k \in P(C) \quad \text { for each } k \geqslant 0
$$

Let $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \subset P(B)$ where $x_{i} \equiv i(\bmod r)$. If x is an integer and

$$
x \geqslant r_{0}+\max \left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

then $x-r_{0} \equiv x_{i}(\bmod r)$ for some i, so

$$
x=x_{i}+r_{0}+r\left(\frac{x-r_{0}-x_{i}}{r}\right) \in P(A)
$$

Hence, to show that A is complete it suffices to construct the sequences B and C.

Choose n_{0} so large that

$$
4 M(4 n)^{\alpha}<n \quad \text { for } n \geqslant n_{0} .
$$

By (1.2), $P(A)$ contains an element from each residue class $(\bmod r)$ for each r. Hence, we can choose r_{0} so that $P\left(\left\{a_{1}, a_{2}, \ldots, a_{r_{0}}\right\}\right)$ contains an element from each residue class $(\bmod r)$ for $1 \leqslant r<n_{0}$.

Define sequences B and C by

$$
b_{n}= \begin{cases}a_{n} & \text { if } n \leqslant 2 r_{0} \\ a_{2\left(n-\tau_{0}\right)-1} & \text { if } n>2 r_{0}\end{cases}
$$

and

$$
c_{n}=a_{2\left(n+r_{0}\right)}
$$

Then B and C are disjoint subsequences of A. We have

$$
c_{n}=a_{2\left(n+r_{0}\right)} \leqslant M\left(2\left(n+r_{0}\right)\right)^{\gamma} \leqslant M\left(2+2 r_{0}\right)^{\gamma} n^{\gamma}
$$

where $\gamma=\alpha$ in Case I, and in Case II, C is strictly increasing and $\gamma=1+\alpha$. By Theorem 1.3, C is subcomplete.
Let $t(r)=\max \left(r_{0}, 4 r\right)$. We claim that the sequence B and the function t satisfy the hypotheses of Lemma 2.3. If $r<n_{0}$, then

$$
P\left(\left\{b_{1}, \ldots, b_{t(r)}\right\}\right) \supset P\left(\left\{a_{1}, \ldots, a_{r_{0}}\right\}\right),
$$

which contains an element from each residue class $(\bmod r)$. Suppose $r \geqslant n_{0}$. Note that

$$
a_{2 i-1}=\left\{\begin{array}{lll}
b_{2 i-1} & \text { if } & 2 i-1 \leqslant 2 r_{0} \\
b_{i+r_{0}} & \text { if } & 2 i-1>2 r_{0}
\end{array}\right.
$$

Furthermore, if $2 i-1>2 r_{0}$, then $i+r_{0} \leqslant 2 i-1$. Hence, the sequence $\bar{A}=\left(a_{1}, a_{3}, a_{5}, \ldots, a_{4 r-1}\right)$ is a subsequence of $\left(b_{1}, b_{2}, \ldots, b_{4 r}\right)$ which is a subsequence of $\left(b_{1}, b_{2}, \ldots, b_{t(r)}\right)$.

In Case I each term of \bar{A} is less than or equal to $a_{4 r}$, and

$$
a_{4 r} \leqslant M(4 r)^{\alpha} \leqslant 4 M(4 r)^{\alpha}<r .
$$

Hence, each of the $2 r$ terms in \bar{A} is not divisible by r.
Now suppose we are in Case II. If fewer than r terms of \bar{A} are not divisible by r, then more than r terms of \bar{A} are divisible by r. The terms of \bar{A} are distinct because A is strictly increasing, so for some $a_{i} \in \bar{A}, a_{i}>r^{2}$. Therefore,

$$
r^{2}<a_{i}<a_{4 r} \leqslant M(4 r)^{1+\alpha}=4 M(4 r)^{\alpha} r<{ }^{1} r^{2} .
$$

This is a contradiction.

By Lemma 2.3, $P(B)$ contains an element from each residue class $(\bmod r)$ for each r. This completes the proof.

4. Remarks. Let $\alpha>1$. It is easy to construct an increasing sequence A that satisfies

$$
a_{n} \leqslant n^{\alpha}
$$

but is such that

$$
\begin{equation*}
\sup _{n} a_{n+1}-\sum_{i=1}^{n} a_{i}=\infty . \tag{4.1}
\end{equation*}
$$

Such a sequence clearly is not subcomplete. A similar construction yields a strictly increasing sequence A that satisfies (4.1) and

$$
a_{n} \leqslant n^{1+\alpha} .
$$

These examples show that our theorems are false for $\alpha>1$. Cassels (1) constructs counter-examples to Theorem 1.2 and Theorem 1.3 in the strictly increasing case for $\alpha>1$. His sequences satisfy the additional regularity condition that

$$
a_{n+1}=a_{n}+o\left(a_{n}^{\frac{1}{2}+\epsilon}\right),
$$

where ϵ is an arbitrary preassigned positive number. Hence, these results are false for $\alpha>1$, even in the presence of rather strong "smoothness" conditions.

The following questions remain open:
If A is an increasing sequence satisfying

$$
a_{n} \leqslant M n \quad \text { for all } n
$$

then is A subcomplete?
If A is a strictly increasing sequence satisfying

$$
a_{n} \leqslant M n^{2} \quad \text { for } n \geqslant n_{0}
$$

where $M \leqslant 1 / 2$, then is A subcomplete? (We must require $M \leqslant 1 / 2$ in this case to ensure that A does not satisfy (4.1).)

References

1. J. W. S. Cassels, On the representation of integers as sums of distinct summands taken from a fixed set, Acta Szeged., 21 (1960), 111-124.
2. P. Erdös, On the representation of large integers as sums of distinct summands taken from a fixed set, Acta Arith., 7 (1962), 345-354.

The Rand Corporation,
Santa Monica, California

[^0]: Received April 19, 1965.

