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A NOTE ON CONDITIONING AND STOCHASTIC
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Abstract

For an order statistic (X1:n, . . . , Xn:n) of a collection of independent but not necessarily
identically distributed random variables, and any i ∈ {1, . . . , n}, the conditional
distribution of (Xi+1:n, . . . , Xn:n) given Xi:n > s is shown to be stochastically increasing
in s. This answers a question by Hu and Xie (2006).
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1. Introduction

Let X1, . . . , Xn be independent but not necessarily identically distributed random variables,
and let

(X1:n, . . . , Xn:n)

be their order statistic. In other words, if X1, . . . , Xn is given then (X1:n, . . . , Xn:n) is the
unique rearrangement of their values such that

X1:n ≤ X2:n ≤ · · · ≤ Xn:n.

It is reasonable to expect the order statistic to exhibit various positive dependence properties.
For instance, it turns out that they satisfy what is known in the probability literature as
positive associations and as the FKG (Fortuin–Kasteleyn–Ginibre) inequality; a collection
(W1, . . . , Wn) of random variables is said to have this property if, whenever f, g : R

n → R

are two bounded and increasing (in the coordinatewise partial order) functions, the correlation
inequality

E[f (W1, . . . , Wn)g(W1, . . . , Wn)] ≥ E[f (W1, . . . , Wn)] E[g(W1, . . . , Wn)] (1)

holds (here and henceforth, ‘increasing’ is taken to mean ‘nondecreasing’). The well-known
Harris inequality (see [4] or, for instance, [3]) states that any collection of independent random
variables is positively associated. Positive associations for (X1:n, . . . , Xn:n) follow from this
in conjunction with the observations that each Xi:n is an increasing function of (X1, . . . , Xn)

and that increasing functions of increasing functions are again increasing.
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We will be interested in further such properties of the order statistic. To this end, recall
the usual notion of stochastic ordering between n-dimensional random vectors: for two such
vectors, Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn), we say that Y is stochastically dominated
by Z, writing Y �st Z, if

E[f (Y1, . . . , Yn)] ≤ E[f (Z1, . . . , Zn)]
whenever f is bounded and increasing. By Strassen’s theorem (see [6] or [8]), Y �st Z is
equivalent to the existence of a coupling of Y and Z such that P(Yi ≤ Zi for each i) = 1.

Conditioning on Xi:n being large is good news for the other components of the order statistic,
in the sense that

(X1:n, . . . , Xn:n) �st [(X1:n, . . . , Xn:n) | Xi:n > s];
this follows from (1) applied with (W1, . . . , Wn) = (X1:n, . . . , Xn:n) and g equal to the indicator
1{Xi:n>s}. But is it better news the larger s is? In other words, we may wonder whether

[(X1:n, . . . , Xn:n) | Xi:n > s] �st [(X1:n, . . . , Xn:n) | Xi:n > s′] (2)

whenever s < s′. This, however, turns out to be too much to ask for, as the following simple
example (similar to one given in [1]) shows. Let n = 2, let X1 = 1 or 3 with probability 1

2
each, and let X2 = 2 or 4 with probability 1

2 each. A direct calculation shows that

P(X1:2 > 1 | X2:2 > 2) = 2
3 > 1

2 = P(X1:2 > 1 | X2:2 > 3),

disproving (2). Not all is lost, however, and we will prove the following weaker version of (2)
obtained by considering only order statistics larger than Xi:n.

Theorem 1. Let X1, . . . , Xn be independent random variables, and let (X1:n, . . . , Xn:n) be
their order statistic. For any i ∈ {1, . . . , n} and any s, s′ ∈ R such that s < s′, we have

[(Xi:n, . . . , Xn:n) | Xi:n > s] �st [(Xi:n, . . . , Xn:n) | Xi:n > s′]. (3)

This answers a question by Hu and Xie [5], who established the weaker result that

P(Xi+1:n > xi+1, Xi+2:n > xi+2, . . . , Xn:n > xn | Xi:n > s) (4)

is increasing as a function of s for any (xi+1, . . . , xn) ∈ R
n−i .

(To see that the orthant property, (4), is not enough to immediately deduce the stochastic
domination property, (3), consider two pairs of {0, 1}-valued random variables (W1, W2) and
(W ′

1, W
′
2) such that (W1, W2) equals (0, 0), (0, 1), (1, 0), or (1, 1) with probability 1

4 each, while
(W ′

1, W
′
2) equals (0, 0) or (1, 1) with probability 1

2 each. Then P(W1 < w1, W2 < w2) ≤
P(W ′

1 < w1, W ′
2 < w2) for all w1, w2 ∈ R, while, on the other hand, (W1, W2) ��st (W ′

1, W
′
2),

since P(W1 + W2 ≥ 1) = 3
4 > 1

2 = P(W ′
1 + W ′

2 ≥ 1).)
We will prove Theorem 1 in Section 2. Before that, let us comment on two easy extensions.

First, (3) still holds if we replace the event Xi:n > s by Xi:n ≥ s and/or replace the event
Xi:n > s′ by Xi:n ≥ s′; this follows from trivial changes to our proof. Second, by substituting
−X1, . . . ,−Xn for X1, . . . , Xn we see that Theorem 1 implies that (under the same conditions)

[(X1:n, . . . , Xi:n) | Xi:n < s] �st [(X1:n, . . . , Xi:n) | Xi:n < s′].
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2. Proof of main result

We will make use of the following known result.

Lemma 1. Let X1, . . . , Xn be independent, but not necessarily identically distributed, {0, 1}-
valued random variables, and let T = ∑n

i=1 Xi be their sum. We then have, for any t, t ′ ∈
{1, . . . , n} such that t < t ′,

(X1, . . . , Xn | T = t) �st (X1, . . . , Xn | T = t ′).

The seemingly weaker result that, for each fixed i,

P(Xi = 1 | S = t) ≤ P(Xi = 1 | S = t ′)

is stated in [3, Proposition 1]—a result which, by the way, goes back all the way to
Newton [7]—but the proof in [3] of that result contains a coupling of (X1, . . . , Xn | T = t)

and (X1, . . . , Xn | T = t ′) from which Lemma 1 can immediately be deduced. Efron [2], who
proved a similar result for a certain class of continuous distributions, mentioned an unpublished
proof of Lemma 1 due to Proschan and Barlow.

Proof of Theorem 1. The core of the proof consists of establishing the desired stochastic
domination under the additional assumption that

the supports of the distributions of X1, . . . , Xn are finite and disjoint. (5)

Once that is done, we will complete the proof using a couple of standard limiting arguments.
Assume that (5) holds, and write {x1, . . . , xl} with x1 ≤ · · · ≤ xl for the union of the supports

of the distributions of the Xis. To show (3) is then tantamount to showing that

[(Xi:n, . . . , Xn:n) | Xi:n > xm−1] �st [(Xi:n, . . . , Xn:n) | Xi:n > xm] (6)

for m = 2, 3, . . . , l − 1. We may assume that P(Xi:n = xm) > 0, because otherwise (6) holds
trivially (with equality). Under that assumption, showing (6) is equivalent to showing that

[(Xi:n, . . . , Xn:n) | Xi:n = xm] �st [(Xi:n, . . . , Xn:n) | Xi:n > xm] (7)

for each such m. Fix such an m. We will show (7) using the coupling method: to establish (7),
it is enough to jointly construct two random vectors (X∗

1, . . . , X∗
n) and (X∗∗

1 , . . . , X∗∗
n ) whose

distributions are those of
[(X1, . . . , Xn) | Xi:n = xm]

and
[(X1, . . . , Xn) | Xi:n > xm],

respectively, and such that their order statistics satisfy

X∗
j :n ≤ X∗∗

j :n for j = i, i + 1, . . . , n. (8)

The construction of (X∗
1, . . . , X∗

n) and (X∗∗
1 , . . . , X∗∗

n ) is carried out in several steps. We know
that X∗

i:n = xm. By the disjointness assumption in (5) we can read off the (unique) k for
which X∗

k = X∗
i:n = xm. We then reveal the value of X∗∗

k . Next, we define L as the number
of indices j ∈ {1, . . . , k − 1, k + 1, . . . , n} such that X∗∗

j > xm, and pick L according to its
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correct conditional distribution given X∗∗
k . If X∗∗

k ≤ xm then L ≥ n − i + 1, and if X∗∗
k > xm

then L ≥ n − i. In either case
L ≥ n − i. (9)

At this point, the joint distribution of X∗
1, . . . , X∗

k−1, X
∗
k+1, . . . , X

∗
n is precisely the distribution

of X1, . . . , Xk−1, Xk+1, . . . , Xn conditional on exactly n−i of them taking a value that exceeds
xm, while the joint distribution of X∗∗

1 , . . . , X∗∗
k−1, X

∗∗
k+1, . . . , X

∗∗
n is precisely the distribution of

X1, . . . , Xk−1, Xk+1, . . . , Xn conditional on exactly L of them taking a value that exceeds xm.
Before obtaining full information about the variables X∗

1, . . . , X∗
k−1, X

∗
k+1, . . . , X

∗
n and

X∗∗
1 , . . . , X∗∗

k−1, X
∗∗
k+1, . . . , X

∗∗
n , we peek only at the indicator variables

1{X∗
1>xm}, . . . , 1{X∗

k−1>xm}, 1{X∗
k+1>xm}, . . . , 1{X∗

n>xm} (10)

and
1{X∗∗

1 >xm}, . . . , 1{X∗∗
k−1>xm}, 1{X∗∗

k+1>xm}, . . . , 1{X∗∗
n >xm} . (11)

Exactly n− i of the indicators in (10) take value 1, while exactly L of those in (11) take value 1.
Using (9), Lemma 1 allows us to couple them in such a way that 1{X∗

j >xm} ≤ 1{X∗∗
j >xm} for

j = 1, . . . , k − 1, k + 1, . . . , n. For all j ∈ {1, . . . , k − 1, k + 1, . . . , n} such that 1{X∗
j >xm} <

1{X∗∗
j >xm}, we then pick X∗

j and X∗∗
j independently according to their respective conditional

distributions. For all other j ∈ {1, . . . , k − 1, k + 1, . . . , n}, we have 1{X∗
j >xm} = 1{X∗∗

j >xm},
and the conditional distributions of X∗

j and X∗∗
j are thus identical (and equal to the conditional

distribution Xj given Xj > xm or Xj < xm depending on the value of the indicators 1{X∗
j >xm}

and 1{X∗∗
j >xm}). We may therefore take X∗

j = X∗∗
j for each such j . This defines the coupling. It

has the particular property that X∗∗
j = X∗

j whenever X∗
j > xm. It follows that X∗

j :n ≤ X∗∗
j :n for

j = i+1, . . . , n. Since the corresponding inequality for j = i is automatic by the conditioning,
we have (8). Thus, Theorem 1 is established in the special case where assumption (5) holds. It
remains to remove this assumption.

First drop the disjointness part of (5), again write x1 ≤ · · · ≤ xl for the union of the supports
of the distributions of the Xis, and define δ = mini �=j |xi − xj |. For each ε > 0 and for
each j ∈ {1, . . . , n}, define Xε

j = Xj − jε. As soon as ε < δ/n, the distributions of the
Xε

j variables have disjoint support, so, for all such ε, the desired conclusion, (3), holds with
(Xε

1, . . . , X
ε
n) in place of (X1, . . . , Xn). Sending ε → 0 gives Xε

j → Xj for each j , as well
as 1{Xε

i:n>s} → 1{Xi:n>s} and 1{Xε
i:n>s′} → 1{Xi:n>s′}. It follows that (3) holds whenever the Xis

have finite support.
Finally, remove assumption (5) altogether. For j ∈ {1, . . . , n} and any positive integer N ,

define XN
j to be Xj rounded down to the nearest ‘number’ in the set {−∞} ∪ {−N, −N +

1/N, −N + 2/N, . . . , N}. Then (3) holds with (XN
1 , . . . , XN

n ) in place of (X1, . . . , Xn).
Sending N → ∞ gives XN

j → Xj for each j , as well as 1{XN
i:n>s} → 1{Xi:n>s} and 1{XN

i:n>s′} →
1{Xi:n>s′}. So (3) holds with assumption (5) removed, and the proof is complete.

Remark. Note that our coupling of (X∗
1, . . . , X∗

n) and (X∗∗
1 , . . . , X∗∗

n ) satisfies X∗
j ≤ X∗∗

j for
every j except possibly for j = k. So in a sense the incorrect statement, (2), is not terribly far
from being true.
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