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Dietary nucleotides are required nutrients for some tissues under certain circumstances. A lack of
dietary nucleotides negatively influences protein synthesis in both the liver and the small intestine
of rats. Ribosome degradation has been observed as being among the mechanisms responsible for
this effect. Dietary nucleotides can also modulate gene expression by interaction with specific
transcription factors, in both the liver and the small intestine.
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Introduction

Nucleotides are normal components of the human diet and
the body provides mechanisms for their absorption and
incorporation into tissues (for a review see Sánchez-Pozo
et al. 1998). These compounds are not considered to be
essential nutrients because they can be synthesized
endogenously. In fact, no particular disease has been
related to a nucleotide deficiency. However, in certain
circumstances, and for some tissues, a lack of dietary
nucleotides may impair important functions, suggesting a
key nutritional role.

Cellular proliferation, among other biological processes,
requires significant amounts of nucleotides. Synthesis of
nucleotides from amino acids and phosphoribosylpyrophos-
phate is an energy consuming process and therefore the
utilization of exogenous nucleotides may be beneficial from
a bioenergetic point of view. In the absence of exogenous
nucleotides the de novo synthesis is thought to be activated
(Yamaoka et al. 1997). Some tissues such as the lymphoid
tissue (Perignon et al. 1987) or the intestine (Leleiko et al.
1983) have a low biosynthetic capacity, probably being
dependent on an exogenous supply (Uauy, 1989; Van Buren
& Rudolph, 1997).

Dietary nucleotides may also be conditionally essential
nutrients in a variety of clinical situations and during
development. Thus, it has been shown that they accelerate
the recovery of the liver and small intestine after a variety of
insults (Núñez et al. 1990; Bueno et al. 1994; Uauy et al.
1994; Jackson et al. 1997; Torres et al. 1997; Tsujinaka et al.
1997; Yamamoto et al. 1997). They also promote
maturation in both the liver and the small intestine (Uauy,
1989; Carver, 1994; Ortega et al. 1995a). Maturation of the
small intestine is particularly important in neonates because
of their rapid growth, especially in low-birth-weight infants

due to their intrauterine malnutrition. Among other actions,
dietary nucleotides have a significant effect in immunity
(Carver, 1994; Yamamoto et al. 1997; Carver, 1999; Rueda
& Gil, 2000). Therefore, nucleotide supplementation of
formulas for infant nutrition or for parenteral nutrition is
considered beneficial.

The mechanisms by which dietary nucleotides exert their
effects are not fully understood. However, there are data to
suggest that they affect some biosynthetic processes such as
the synthesis of proteins. Furthermore, there is evidence that
they can modulate gene expression.

Dietary nucleotides and biosynthetic processes

When the rat diet does not contain nucleotides there is a
transient decrease in the RNA content of the liver (López-
Navarro et al. 1995). The lack of dietary nucleotides slightly
affects the total concentration of soluble nucleotides,
whereas the decrease in RNA is significant. We observed
a reduction of the number of ribosomes associated with the
endoplasmic reticulum as well as a reduction in the size of
the nucleolus of the cells (López-Navarro et al. 1996a).
Additional experiments showed that these changes are
proportional to the nucleotide content of the diet. These
findings indicate that ribosome formation is reduced and,
what is more remarkable, pre-existing ribosomes are
degraded in response to a lack of nucleotides in the diet.
We think that these observations indicate a buffering role of
RNA, which can protect the cell from nucleotide depletion
while the biosynthesis responds to the lack of nucleotides
from the diet. This buffering effect is conceivable, as there
are no cellular stores of nucleotides. As a consequence,
protein synthesis is decreased (López-Navarro et al. 1996b).

In the small intestine of rats, we have also found a
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decrease in RNA and soluble nucleotides, and consequently
in protein synthesis when a nucleotide-free diet is fed. In
addition, restriction of dietary nucleotides caused a decrease
in DNA content (López-Navarro et al. 1996b). The changes
were not transient as in the case of the liver and a degree of
mucosal atrophy was observed morphologically and
enzymatically (Ortega et al. 1995a,b).

These findings are consistent with the many studies in
which it has been shown that tissue recovery or maturity are
positively affected by dietary nucleotides. It is noteworthy
that the contribution of dietary nucleotides to maintain
nucleic acid levels is dependent on the tissue growth rate,
affecting RNA in resting cells such the liver and also DNA
in proliferating cells such the intestine.

In conditions of dietary nucleotide restriction, nucleotide
diphosphates are significantly reduced in both the liver and
the small intestine. These findings point to other relevant
biosynthetic effects, as they are involved in many
biosynthetic processes such as glycogen synthesis through
uridine diphosphate derivatives, phospholipids through
cytidine diphosphate derivatives and protein glycosylation.
With regard to proteins, we believe that not only protein
synthesis but also secretion of proteins may be influenced by
dietary nucleotides. This is consistent with many studies
showing a reduction of secreted proteins such as
apolipoproteins (Morillas et al. 1994; Sánchez-Pozo et al.
1994, 1995) or immunoglobulins (Navarro et al. 1996;
Martı́nez-Augustin et al. 1997; Navarro et al. 1999) and
may explain why dietary nucleotides promote an optimal
immune response.

Dietary nucleotides and gene expression

Two lines of evidence support the idea that dietary
nucleotides may exert a direct effect on gene expression.
Using isolated nuclei from the small intestine or from an
intestinal epithelial cell line (IEC-18) we observed a
significant effect of nucleotide availability on the hypox-
anthine phosphoribosyl transferase (HPRT) gene transcrip-
tion rate (Walsh et al. 1990). A down regulation of HPRT
expression was observed when there were no nucleotides
available. Thus, the enzyme responsible for nucleotide
salvage is not expressed when there are no nucleotides
available. Further characterization of the effect of
nucleotides on HPRT expression was conducted by
transfecting IEC-18 with several constructs containing
deletions of the HPRT promoter and 50 flanking sequences
and placing the cells in media containing or lacking
nucleotides. A region of 35 bp upstream from the HPRT
gene was characterized as the specific responsible cis-acting
element, which confers sensitivity to nucleotides (Walsh
et al. 1990). Experiments performed afterwards resulted in
the purification of a sequence-specific DNA binding protein
of 66 kD, the trans-acting element (Walsh et al. 1992) with
the characteristics of the type of enhancers present in other
class II genes. Footprint analysis has mapped the protection
from DNAase hydrolysis to a sequence of GTCTGGGT by
using both affinity-purified protein and crude nuclear
extracts (Walsh et al. 1992). Database searches have
identified similar sequences of this DNA motif in other
genes related to cell growth and proliferation, such as the

ornithine decarboxylase gene. Thus, it is conceivable that
many genes that respond to dietary nucleotides may
influence cell division.

Experiments with diets containing or lacking nucleotides
identical to those used for RNA studies described before,
have shown that the genes for both the sodium-dependent
purine nucleoside transporter (SPNT) and concentrative
nucleoside transporter (CNT1) are modulated by the
nucleotide content of the diet (Valdés et al. 2000). In the
case of the purine-preferring carrier SPNT, mRNA and
protein amounts, in both the liver and the small intestine,
decreased when no nucleotides were in the diet. A result
expected considering the lower need for purine uptake.
Interestingly, it has been reported that the expression of this
carrier is linked to the cell cycle and in regenerating
conditions such as partial hepatectomy (Felipe et al. 1997).
In the case of the pyrimidine-preferring carrier CNT1, we
found additional levels of regulation. Thus, whereas in the
liver CNT1 is regulated in a similar way to SPNT, in the
intestine, a reduction in the mRNA is observed together with
higher amounts of protein. These findings may be explained
as a result of post-transcriptional regulation. The opposite
behavior of intestine and liver regarding CNT1 expression
may be a consequence of the high nucleotide biosynthetic
capacity of the liver and the low capacity of the small
intestine. Thus, the down-regulation in the liver occurs
when no nucleotides are available, whereas there is a higher
uptake in the intestine in order to compensate for the low
biosynthetic capacity. The regulation of carrier expression
by the diet is relevant, as nucleotide carriers participate in
the uptake of drugs used in antiviral and cancer therapies.

In conclusion, it is clear that dietary nucleotides influence
biosynthetic processes and modulate gene expression, at
least of those genes involved in nucleotide metabolism. This
high degree of regulation suggests that the uptake and
metabolism of nucleotides are of great importance to a
number of cell types.
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