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MEASURING THE SUBOPTIMALITY OF DIVIDEND CONTROLS IN A
BROWNIAN RISK MODEL

JULIA EISENBERG,∗ Technische Universität Wien
PAUL KRÜHNER,∗∗ Wirtschaftsuniversität Wien

Abstract

We consider an insurance company modelling its surplus process by a Brownian motion
with drift. Our target is to maximise the expected exponential utility of discounted divi-
dend payments, given that the dividend rates are bounded by some constant. The utility
function destroys the linearity and the time-homogeneity of the problem considered. The
value function depends not only on the surplus, but also on time. Numerical considera-
tions suggest that the optimal strategy, if it exists, is of a barrier type with a nonlinear
barrier. In the related article of Grandits et al. (Scand. Actuarial J. 2, 2007), it has been
observed that standard numerical methods break down in certain parameter cases, and no
closed-form solution has been found. For these reasons, we offer a new method allowing
one to estimate the distance from an arbitrary smooth-enough function to the value func-
tion. Applying this method, we investigate the goodness of the most obvious suboptimal
strategies—payout on the maximal rate, and constant barrier strategies—by measuring
the distance from their performance functions to the value function.

Keywords: Suboptimal control; Hamilton–Jacobi–Bellman equation; dividend payouts;
exponential utility function
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1. Introduction

A company’s dividend payments are among the most important factors for analytic investors
to consider when deciding whether to invest in the firm. Furthermore, dividends serve as a sort
of litmus paper, indicating the financial health of the company. Indeed, the reputation, and con-
sequently the commercial success, of a company with a long record of dividend payments will
be negatively affected if the company drops the payments. On the other hand, new companies
can strengthen their position by declaring dividends. For the sake of fairness, it should be men-
tioned that there are also some serious arguments against dividend payouts; for example, for
tax reasons it might be advantageous to withhold dividend payments. A discussion of the pros
and cons of dividend distributions is beyond the scope of the present manuscript. We refer to
surveys on the topic by Avanzi [6] or Albrecher and Thonhauser [4].

Because of its importance, the value of expected discounted dividends has long been, and
still remains, one of the most popular risk measures in the actuarial literature. Modelling the
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entire surplus of an insurance company by a Brownian motion, a compound Poisson process,
or a general Lévy process with an infinite or finite time horizon—many papers have been
written on maximising expected discounted dividends. The papers of Gerber [13], Bühlmann
[10], Azcue and Muler [7], and Albrecher and Thonhauser [3] contain just a few of the results
obtained since de Finetti’s groundbreaking paper [11]. Shreve, Lehoczky and Gaver [20] con-
sidered the problem for a general diffusion process, where the drift and the volatility fulfil some
special conditions. Asmussen and Taksar [5] modelled the surplus process via a Brownian
motion with drift and found the optimal strategy to be a constant barrier.

All the papers mentioned above deal with linear dividend payments, in the sense that
the lump-sum payments or dividend rates are not skewed by a utility function. Hubalek and
Schachermayer [16] apply various utility functions to the dividend rates before accumulation.
Their result differs significantly from the classical result described in Asmussen and Taksar [5].

An interesting question is to consider the expected ‘present utility’ of the discounted divi-
dend payments. This means the utility function will be applied to the value of the accumulated
discounted dividend payments up to ruin. In this way, one considers as a risk measure the util-
ity of the present value of dividends. The dividend payments are not attributed to a specific
owner (the shareholders); they serve as the only cash-flow stream used to evaluate the com-
pany’s financial health. Therefore, the present utility of the accumulated payments accounts
for the company’s risk aversion by exercising a dividend payment strategy. The fact that the
considerations are stopped at ruin indicates that the negative surplus is considered as a high
risk. A higher utility of the present value of future dividend payments makes the company
more attractive for potential investors. Early ruin will of course lead to a smaller utility of the
present value of dividends. Thus, the event of ruin is a technical feature and does not mean that
the company actually goes out of business.

For strategic and reputational reasons, some big companies (such as Munich Re; see [14])
do not reduce their dividends even during periods of crisis. Recently, researchers have started
to investigate the problem of non-decreasing dividend payments; some examples are Albrecher
et al. [1, 2]. In this case, even with a linear utility function, the problem becomes two-
dimensional. Adding a nonlinear utility function to this setting further complicates the solution
to the problem.

Modelling the surplus by a Brownian motion with drift, Grandits et al. [15] applied an
exponential utility function to the value of unrestricted discounted dividends. In other words,
they considered the expected utility of the present value of dividends and not the expected
discounted utility of the dividend rates. In [15], the existence of the optimal strategy was not
shown. We will investigate the related problem where the dividend payments are restricted to a
finite rate. Note that using a nonlinear utility function increases the dimension of the problem.
Therefore, tackling the problem via the Hamilton–Jacobi–Bellman (HJB) approach in order to
find an explicit solution seems to be an unsolvable task. Of course, one can prove the value
function to be the unique viscosity solution to the corresponding HJB equation and then try
to solve the problem numerically. However, on this path one faces two problems that are not
easy to tackle. First, the proof that the value function is a (unique) viscosity solution to the
corresponding HJB equation can be very complex, time-consuming, and space-consuming. In
particular, if one chooses a nonlinear and non-exponential utility function, the value function
will depend on three variables: the time t, the surplus x, and the accumulated dividend pay-
ments prior to the starting time t. Using an exponential utility allows one to get rid of the third
variable. This is also one of the reasons why an exponential utility is considered in the present
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paper. Having just two variables to consider allows us to represent the proposed method in a
clearer way, avoiding unnecessary details.

Second, if the maximal allowed dividend rate is quite big, then the standard numerical
methods such as finite differences and finite elements break down. We discuss some numerical
problems in Section 5.

In this paper, we offer a new approach. Instead of proving the value function to be the
unique viscosity solution to the corresponding HJB equation, we investigate the ‘goodness’ of
suboptimal strategies. In this way, one avoids both problems described above. There is no need
to prove that the value function is a classical or a viscosity solution to the HJB equation, and
no need to solve the HJB equation numerically. One simply chooses an arbitrary control with
an easy-to-calculate return function and compares its performance, or rather an approximation
of its performance, against the unknown value function.

The method is based on sharp occupation bounds which we find by a method developed for
sharp density bounds in Baños and Krühner [8]. This enables us to make an educated guess and
to check whether our pick is indeed almost as good as the optimal strategy. This approach dif-
fers drastically from the procedures normally used to calculate the value function, in two ways.
First, unlike in most numerical schemes, there is no convergence to the value function; i.e. one
gets only a bound for the performance of one given strategy, but no straightforward procedure
to get better strategies. Second, our criterion has almost no dependence on the dimension of
the problem and is consequently directly applicable in higher dimensions.

The paper is organised as follows. In the next section, we motivate the problem and derive
some basic properties of the value function. In Section 3, we consider the case of the maximal
constant dividend rate strategy, the properties of the corresponding return function, and the
goodness of this strategy (a bound for the distance from the return function to the unknown
value function). Section 4 investigates the goodness of a constant barrier strategy. In Section 5,
we consider examples illustrating the classical and the new approach. Finally, in the appendix
we gather technical proofs and establish occupation bounds.

2. Motivation

We consider an insurance company whose surplus is modelled as a Brownian motion with
drift

Xt = X0 +μt + σWt, t ≥ 0,

where μ, σ, X0 ∈R. We will use the Markov property of X. To be exact, we mean that (�,A)
is a measurable space, P(t,x), x ∈R, t ≥ 0 is a family of measures, X,W :�×R+ →R are
continuous sample path processes, and under P(t,x) we have that (Ws+t)s≥0 is a standard
Brownian motion Wu = 0, u ∈ [0, t], Xs = x +μmax{t − s, 0} + Ws, s ≥ 0, and (Ft)t≥0 is the
right-continuous filtration generated by X. In particular, we have P(t,x)(Xt = x) = 1. Note that
the process X is defined for all time points s ≥ 0, but we have P(t,x)(Xs = x) = 1 for 0 ≤ s ≤ t,
which basically means that X is constant, equal to its starting value x, before its starting
time t. We denote by E(t,x) the expectation corresponding to P(t,x); also we use the notation
Ex := E(0,x).

Further, we assume that the company has to pay out dividends, characterised by a dividend
rate. Denoting the dividend rate process by C, we can write the ex-dividend surplus process as

XC
t = x +μt + σWt −

∫ t

0
Csds.
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In the present manuscript we only allow dividend rate processes C which are progressively
measurable and satisfy 0 ≤ Cs ≤ ξ for some maximal rate ξ > 0 at any time s ≥ 0. We call
these strategies admissible. Let U(x) = 1

γ
− 1

γ
e−γ x, γ > 0, be the underlying utility function

and τC := inf{s ≥ t : XC
s < 0} the ruin time corresponding to the strategy C under the measure

P(t,x). Our objective is to maximise the expected exponential utility of the discounted dividend
payments until ruin. Since we can start our observation at every time point t ∈R+, the target
functional is given by

VC(t, x) := E(t,x)

[
U

( ∫ τC

t
e−δsCsds

)]
.

Here, δ > 0 denotes the preference rate of the insurer, helping to transfer the dividend payments
to the starting time t. Further, we assume that the dividend payout up to t equals 0; for a rigorous
simplification see [15], or simply note that with already paid dividends C̄ up to time t we have

E(t,x)

[
U

(
C̄ +

∫ τC

t
e−δsCsds

)]
= U(C̄) + e−γ C̄VC(t, x).

The corresponding value function V is defined by

V(t, x) := sup
C

E(t,x)

[
U

( ∫ τC

t
e−δsCsds

)]
,

where the supremum is taken over all admissible strategies C. Note that V(t, 0) = 0, because
ruin will happen immediately owing to the oscillation of Brownian motion, i.e. τC = min{s ≥
t : XC

s = 0} for any strategy C under P(t,x). The HJB equation corresponding to the problem can
be found similarly as in [15]; for general explanations see for instance [19]:

Vt +μVx + σ 2

2
Vxx + sup

0≤y≤ξ

[
y
(
−Vx + e−δt(1 − γV)

)]
= 0. (1)

We would like to stress at this point that we show neither that the value function solves the HJB
in some sense, nor that a good-enough solution is the value function. In fact, our approach of
evaluating the goodness of a given strategy compared to the unknown optimal strategy does
not assume any knowledge about the optimal strategy or its existence.

Assuming that the HJB equation has a classical solution (i.e. that it is smooth enough), one
would expect that an optimal strategy C∗ is the maximiser in the HJB equation at any given
point of time, which would depend on the state of the optimal strategy, i.e.

C∗(s, X∗
s

)=

⎧⎪⎨
⎪⎩

0 if − Vx
(
s, X∗

s

)+ e−δs(1 − γV
(
s, X∗

s

))
< 0,

∈ [0, ξ ] if − Vx
(
s, X∗

s

)+ e−δs(1 − γV
(
s, X∗

s

))= 0,

ξ if − Vx
(
s, X∗

s

)+ e−δs(1 − γV
(
s, X∗

s

))
> 0,

P(t,x)-almost surely for any s ≥ t.

Remark 2.1. For every dividend strategy C it holds that

VC(t, x) =E(t,x)

[
U

( ∫ τC

t
Cse

−δsds

)]
≤ U

(
ξ

∫ ∞

t
e−δsds

)
= U

(
ξ

δ
e−δt

)
.
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We conclude that

lim
x→∞ V(t, x) ≤ U

(
ξ

δ
e−δt

)
,

and V is a bounded function. Consider now a constant strategy Ct ≡ ξ ; i.e. we always pay on
the rate ξ . The ex-dividend process becomes a Brownian motion with drift μ− ξ and volatility
σ . Define further, for n ≥ 1,

ηn := ξ −μ−√
(ξ −μ)2 + 2δσ 2n

σ 2
< 0, (2)

and let τ ξ := inf{s ≥ t : x + (μ− ξ )s + σWs ≤ 0}; i.e. τ ξ is the ruin time under the strategy ξ .
Here and in the following we define

	 := ξγ /δ. (3)

With help of a change-of-measure technique (see for example [19, p. 216]), we can calculate
the return function Vξ of the constant strategy Ct ≡ ξ by using the power series representation
of the exponential function:

Vξ (t, x) =Ex

[
U

(
ξ

∫ τ ξ

t
e−δsds

)]
= 1

γ
− 1

γ
Ex

[
e
−	

(
e−δt−e

−δ
(

t+τξ
))]

= 1

γ
− 1

γ
e−	e−δt

Ex

[
e	e

−δ
(

t+τξ
)]

= 1

γ
− e−	e−δt

γ

∞∑
n=0

e−δtn	n

n! Ex

[
e−δτ ξ n

]

= 1

γ
− e−	e−δt

γ
− e−	e−δt

γ

∞∑
n=1

e−δtn	n

n! eηnx. (4)

It is obvious that in the above power series lim
x→∞ and summation can be interchanged, yielding

lim
x→∞ Vξ (t, x) = U

(
ξ
δ

e−δt
)

. In particular, we can now conclude

lim
x→∞ V(t, x) = 1

γ
− 1

γ
exp

(−	e−δt)= U

(
ξ

δ
e−δt

)

uniformly in t ∈ [0,∞).

Next we show that for some special values of the maximal rate ξ , with positive probability
the ex-dividend surplus process remains positive up to infinity.

Remark 2.2. Let C be an admissible strategy, where XC is the process under the strategy C.
Further, let Xξ be the process under the constant strategy ξ ; i.e. Xξ is a Brownian motion with
drift (μ− ξ ) and volatility σ . Then it is clear that

Xξs ≤ XC
s .

If μ> ξ , then it holds (see for example [9, p. 223]) that P(t,x)[τC = ∞] ≥ P(t,x)[τ ξ =
∞]> 0.

Finally, we give one structural property of the value function, which, however, is not used
later.

Theorem 2.1. The value function is Lipschitz-continuous, strictly increasing in x, and
decreasing in t.
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Proof. • Let h> 0, ε > 0 be arbitrary but fixed. Further, let C be an ε-optimal strategy
for (t, x) ∈R

2+, i.e. V(t, x) ≤ VC(t, x) + ε. Define the strategy C̃ for (t, x + h) in the following
way:

C̃s =
{

Cs if t ≤ s< τC,

ξ otherwise.

Then C̃ is an admissible strategy and is actually the same as the strategy C until the process
XC̃ reaches the level h. Afterwards it pays at maximal rate until ruin, which is strictly later
τC < τ C̃. Note that U(x + y) = U(x) + e−γ xU(y), and hence we have

V(t, x + h)−V(t, x) ≥ VC̃(t, x + h) − VC(t, x) − ε

=E(t,x+h)

[
U

( ∫ τ C̃

t
C̃se

−δsds

)]
−E(t,x)

[
U

( ∫ τC

t
Cse

−δsds

)]
− ε

=E(t,x+h)

[
e−γ ∫ τC

t C̃se−δsdsU

(∫ τ C̃

τC
ξe−δsds

)]
− ε

≥ E(t,x+h)

[
e−γ ∫∞

t ξe−δsdsU

(∫ τ C̃

τC
ξe−δsds

)]
− ε

≥ Kh − ε,

where Kh > 0 and can be chosen independent of the strategy C. Thus we find that V(t, x + h) −
V(t, x) ≥ Kh.

• Consider further (t, 0) with t ∈R+. Let h, ε > 0 and let C be an arbitrary admissible
strategy. Let τ 0 be the ruin time for the strategy which is constant and zero. Define

�n :=
√
μ2 + 2σ 2δn

σ 2
, θn := −μ

σ 2
+ �n, and ζn := −μ

σ 2
− �n (5)

for any n ∈N. Using Eh
[
e−δτ 0]= eζ1h (see for instance [9, p. 295]), X0

s ≥ XC
s , and the convexity

of the exponential function, U(x) = 1−e−γ x

γ
≤ x, it follows that

VC(t, h) =E(t,h)

[
U

( ∫ τC

t
e−δsCsds

)]
≤Eh

[
U

(
ξ

∫ t+τ 0

t
e−δsds

)]

=Eh

[
U

(
ξ

δ
e−δt(1 − e−δτ 0

))]
≤ ξ

δ
e−δt(1 − eζ1h)≤ −ξ

δ
ζ1h. (6)

Let h ≥ 0 and let τ 0 be the ruin time for the strategy which is constant and zero. Let (t, x) ∈R
2+

be arbitrary, and let C be an admissible strategy which is ε-optimal for the starting point
(t, x + h), i.e. V(t, x + h) − VC(t, x + h) ≤ ε. Define further τ̃ := inf{s ≥ t : XC

s = h}. Then
XC

s ≥ 0 for s ∈ [t, τ̃ ] under P(t,x) because XC
s ≥ h for s ∈ [t, τ̃ ] under P(t,x+h). Then the strategy

C, up to τ̃ , is an admissible strategy for (t, x) satisfying

VC(t, x) =E(t,x)

[
U

( ∫ τ̃

t
e−δsCsds

)]
=E(t,x+h)

[
U

( ∫ τ̃

t
e−δsCsds

)]
.
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Note that XC
τ̃

= h, and hence we have

τC − τ̃ = inf
{
u ≥ 0 : XC

u+τ̃ = 0
}= inf

{
u ≥ 0 : h + (Xu+τ̃ − Xτ̃ ) −

∫ u

τ̃

Cr dr = 0

}
≤ inf

{
u ≥ 0 : h + (

Xu+τ̃ − Xτ̃
)= 0

} =: β0,

where P
β0
(t,x+h) = P

τ 0

t,h. Here, Pτ
0

t,h denotes the law of τ 0 under Pt,h; analogously, Pβ0
(t,x+h) is the

law of β0 under Pt,x+h. Since U satisfies U(a + b) ≤ U(a) + U(b) for any a, b ≥ 0, we have

V(t, x + h) ≤ VC(t, x + h) + ε=E(t,x+h)

[
U

( ∫ τC

t
e−δsCs ds

)]
+ ε

=E(t,x+h)

[
U

( ∫ τ̃

t
e−δsCsds +

∫ τC

τ̃

e−δsCsds

)]
+ ε

≤E(t,x+h)

[
U

( ∫ τ̃

t
e−δsCsds

)]
+E(t,x+h)

[
U

( ∫ τC

τ̃

e−δsCsds

)]
+ ε

≤ VC(t, x) +E(t,x+h)

[
U

(
ξ

δ

(
e−δτ̃ − e−δτC

))]
+ ε

≤ V(t, x) +E(t,x+h)

[
U

(
ξ

δ

(
1 − e−δ(τC−τ̃ )

))]
+ ε

≤ V(t, x) +Eh

[
U

(
ξ

δ

(
1 − e−δτ 0

))]
+ ε.

Because ε was arbitrary, and by (6), we find

0 ≤ V(t, x + h) − V(t, x) ≤ −ξ
δ
ζ1h.

Consequently, V is Lipschitz-continuous in the space variable x with Lipschitz constant at most
− ξ
δ
ζ1.
• Next we consider the properties of the value function related to the time variable.
Because δ > 0, it is clear that V is strictly decreasing in t. First we show that the value

function is strictly decreasing in time. To this end let (t, x) ∈R
2+, let h> 0, and let C be

an admissible strategy which is constant and zero before time t + h, with τ its ruin time.
Since C is measurable with respect to the σ -algebra σ (Xs : s ≥ t), we can find a measur-
able function c : R+ × C(R+,R) →R such that Cs(ω) = c(s − t, (Xt+u)u≥0). Defining C̃s :=
c(s − (t + h), (Xt+h+u)u≥0, we see that the law of (Xs,Cs)s≥t under P(t,x) equals the law of
(Xs+h, C̃s+h)s≥t under P(t+h,x).

The stopping time τ̃ := inf{s ≥ t + h : XC̃
s = 0} is the corresponding ruin time:

VC(t, x) =E(t,x)

[
U

( ∫ τ

t
Cse

−δsds

)]

=E(t+h,x)

[
U

( ∫ τ̃

t+h
C̃se

−δ(s−h)ds

)]
.

Taking the supremum over all strategies yields

V(t, x) = sup
C̃

E(t+h,x)

[
U

(
eδh

∫ τ̃ C̃

t+h
C̃se

−δsds

)]
> V(t + h, x).
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Further, let (t, x) ∈R
2+, let h> 0, and let C be an admissible strategy. Then the strategy C̃ with

C̃s := Cs−h1I{s≥h} is admissible. Since U is concave, we have

V(t + h, x) ≥ VC̃(t + h, x) =E(t+h,x)

[
U

( ∫ τC+h

t+h
e−δsCs−h ds

)]

=E(t,x)

[
U

(
e−δh

∫ τC

t
e−δsCs ds

)]
≥ e−δhVC(t, x).

Building the supremum over all admissible strategies on the right side of the above inequality
and using Remark 2.1 yields

0 ≥ V(t + h, x) − V(t, x) ≥ V(t, x)(e−δh − 1) ≥ −U
(ξ
δ

)
δh;

consequently, V is Lipschitz-continuous as a function of t, with constant δU(ξ/δ). �

2.1. Heuristics

Heuristically, our approach to compare a given feedback strategy C with the unknown
optimal strategy C∗ works as follows:

1. We start with the performance function VC corresponding to some feedback strategy
Ct = c

(
t, XC

t

)
. If smooth enough, VC satisfies

VC
t +μVC

x + σ 2

2
VC

xx + c
{−VC

x + e−δt(1 − γVC)}= 0, VC(t, 0) = 0.

2. However, sometimes VC is not smooth enough or is not known explicitly. In this case
one uses a replacement H (simply any C1,2 function from R+ ×R to R with H(t, 0) = 0)
and defines the mismatch

� := Ht +μHx + σ 2

2
Hxx + c

{−Hx + e−δt(1 − γH)
}
,

where � as close to zero as possible is desirable.

3. We consider another strategy C∗ and the corresponding controlled process X∗ = XC∗
, as

well as their performance V∗ := VC∗
. Its ruin time is denoted by τ , and we obtain from

Itô’s formula, using X∗
τ = 0 and H(t, 0) ≡ 0,

0 = e−γ ∫ τt e−δuC∗
u du · H

(
τ, X∗

τ

)
= H

(
t, X∗

t

)+
∫ τ

t
e−γ ∫ s

t e−δuC∗
udu · HxdWs

+
∫ τ

t
e−γ ∫ s

t e−δuC∗
udu ·

(
Ht +μHx + σ 2

2
Hxx + C∗

s

{−Hx − γ e−δsH
})

ds

= H
(
t, X∗

t

)+
∫ τ

t
e−γ ∫ s

t e−δuC∗
udu · HxdWs

+
∫ τ

t
e−γ ∫ s

t e−δuC∗
udu ·

(
Ht +μHx + σ 2

2
Hxx + c(−Hx + e−δs(1 − γH))

)
ds
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+
∫ τ

t
e−γ ∫ s

t e−δuC∗
udu · (C∗

s − c
){−Hx + e−δs(1 − γH)

}
ds

−
∫ τ

t
e−γ ∫ s

t e−δuC∗
udu · e−δsC∗

s ds

= H
(
t, X∗

t

)+
∫ τ

t
e−γ ∫ s

t e−δuC∗
udu · HxdWs +

∫ τ

t
e−γ ∫ s

t e−δuC∗
udu ·�ds

+
∫ τ

t
e−γ ∫ s

t e−δuC∗
udu(C∗

s − c
){−Hx + e−δs(1 − γH)

}
ds

− U

( ∫ τ

t
e−δuC∗

udu

)
.

4. Taking P(t,x)-expectation (assuming the local martingale from the dWs-integral is a
martingale) and bringing the expectation of the U term on the other side yields

V∗(t, x) = H(t, x) +E(t,x)

[∫ τ

t
e−γ ∫ s

t e−δuC∗
udu ·�ds

]

+E(t,x)

[∫ τ

t
e−γ ∫ s

t e−δuC∗
udu · (C∗

s − c
){−Hx + e−δs(1 − γH)

}
ds

]
.

5. Up to here, this is all standard. The performance function V∗ is expressed in terms
of a new function H plus two error terms which could have negative sign. Several
other stochastic control problems can lead to similar equations. The first error term
corresponds to the usage of a function other than the performance function of our ini-
tial feedback control C. The second error term corresponds to the suboptimality of the
feedback control C compared to the control C∗, measured relatively by the function H.

6. Now we need to control the error terms despite the appearance of the unknown optimal
control. The first error term is simply bounded by∣∣∣∣E(t,x)

[∫ τ

t
e−γ ∫ s

t e−δuC∗
udu�ds

] ∣∣∣∣≤E(t,x)

[∫ τ

t
|�(s, X∗

s

)|ds

]
,

where one has to deal with the unknown process X∗ but its control has disappeared. This
is the point where occupation bounds as in the appendix yield explicit upper bounds.

7. The appearance of C∗ in the second error term can be suppressed by maximising the
integrand over all possible values of C∗. Since C = C∗ is a possible value, this maximum
is positive and we obtain

E(t,x)

[∫ τ

t
exp

(
−γ

∫ s

t
e−δuC∗

udu

)(
C∗

s − c
)(−Hx + e−δs(1 − γH)

)
ds

]

≤E(t,x)

[∫ τ

t
sup

y∈[0,ξ ]

(
(y − c)

(−Hx + e−δs(1 − γH)
))

ds

]
.

8. Putting these together we obtain

V∗(t, x) ≤ H(t, x) +E(t,x)

[∫ τ

t
|�(s, X∗

s

)|ds

]

+E(t,x)

[∫ τ

t
sup

y∈[0,ξ ]

(
(y − c)

(−Hx
(
s, X∗

s

)+ e−δs(1 − γH
(
s, X∗

s

))))
ds

]
.
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9. If we have a common upper bound ϒt,x ≥ 0 for E(t,x)
[∫ τ

t |�(s, X∗
s

)|ds
]
, then we may

take the supremum over all strategies on the left-hand side and obtain

V(t, x) ≤ H(t, x) +ϒt,x

+E(t,x)

[∫ τ

t
sup

y∈[0,ξ ]

(
(y − c)

(−Hx
(
s, X∗

s

)+ e−δs(1 − γH
(
s, X∗

s

))))
ds

]
.

To obtain such a common upper bound, we will employ bounds for the expected occupa-
tion which are summarised in the appendix. Note that choosing the optimal y, depending
on (s, X∗

x ), allows us to employ these common upper bounds for the second summand
as well.

Remark 2.3. We note that if H = VC (i.e. � = 0), and if in the maximisation in Item 8 above
the maximiser is attained in C, then both error terms vanish and we find

VC ≤ V ≤ H = VC,

which implies that all of these quantities are the same. This means that if a feedback control
C is found such that its performance function VC satisfies the HJB equation

sup
y∈[0,ξ ]

(
VC

t +μVC
x + σ 2

2
VC

xx + y
(
−VC

x + e−δt(1 − γVC
)))

= 0, VC(t, 0) = 0,

then we have verified heuristically that VC = V .

3. Payout on the maximal rate

3.1. Could it be optimal to pay on the maximal rate up to ruin?

First we investigate the constant strategy ξ , i.e. the strategy under which the dividends will
be paid out at the maximal rate ξ until ruin. In this section we find exact conditions under which
this strategy is optimal. We already know from (4) that the corresponding return function is
given by

Vξ (t, x) = 1

γ
− 1

γ
e−	e−δt − e−	e−δt

∞∑
n=1

	n

γ n!e−δtneηnx.

It is obvious that Vξ is increasing and concave in x and decreasing in t. For further
considerations we will need the following remark.

Remark 3.1. Consider ηn, defined in (2), as a function of ξ .

1. Since
d

dξ
ηn = −ηn√

(ξ −μ)2 + 2δσ 2n
,

it is easy to see that ηn(ξ ) and ηn+1(ξ )n
ηn(ξ )(n+1) are increasing in ξ . Also, we have

lim
ξ→∞

ηn+1(ξ )n

ηn(ξ )(n + 1)
= 1.

We conclude that ηn+1
(n+1) >

ηn
n , as ηn, ηn+1 < 0.
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2. Further, we record that
lim
ξ→∞ ξηn(ξ ) = −δn.

3. Also, we have

d

dξ

(
δn + ξηn(ξ )

)= ηn

(
1 − ξ√

(ξ −μ)2 + 2δσ 2n

){
< 0, ξ <

μ2+2δσ 2n
2μ ,

≥ 0, ξ ≥ μ2+2δσ 2n
2μ .

Thus, at ξ = 0 the function ξ 	→ δn + ξηn(ξ ) attains the value δn> 0, at its minimum

point ξ∗ = μ2+2δσ 2n
2μ we have

δn + ξ∗ηn(ξ∗) = δn − μ2 + 2δσ 2n

2σ 2
= − μ2

2σ 2
< 0,

and, finally, by Item 2 above, for ξ → ∞ it holds that lim
ξ→0

δn + ξηn(ξ ) = 0. Thus, for

every n ∈N the function ξ 	→ 1 + ηn(ξ )ξ
δn has a unique zero at δnσ

2

2μ .

Furthermore, it is easy to check that in Vξ summation and differentiation can be inter-
changed. Differentiation with respect to x yields

Vξx (t, x) = −e−	e−δt
∞∑

n=1

	n

γ n!e−δtnηneηnx.

In order to answer the optimality question, we have to look at the function −Vξx + e−δt(1 −
γVξ

)
appearing in the crucial condition in the HJB equation (1). If this expression is positive

for all (t, x) ∈R
2+, the function Vξ becomes a candidate for the value function. For simplicity,

we multiply the expression −Vξx + e−δt(1 − γVξ
)

by eδte	e−δt
and define

ψ(t, x) := e	t

t

{
−Vξx

(
ln(t)

−δ , x

)
+ t

(
1 − γVξ

(
ln (t)

−δ , x

))}

=
∞∑

n=0

tn
	n

n!
{
ηn+1ξ

δ(n + 1)
eηn+1x + eηnx

}
. (7)

If ψ ≥ 0 on [0, 1] ×R+, then Vξ does solve the HJB equation, and as we will see, it is the
value function in that case.

Theorem 3.1. Vξ is the value function if and only if ξ ≤ δσ 2

2μ . In that case Vξ is a classical
solution to the HJB equation (1), and an optimal strategy is constant ξ .

Proof. Since σ 2

2 η
2
n = (ξ −μ)ηn + δn for all n ≥ 1, it is easy to check, using the power series

representation of Vξ , that Vξ solves the differential equation

Vξt +μVξx + σ 2

2
Vξxx + ξ

(
−Vξx + e−δt(1 − γVξ

))= 0.

We first assume that ξ ≤ δσ 2

2μ and show that Vξ is the value function. Note that ξ ≤ δσ 2

2μ is

equivalent to η1ξ
δ

+ 1 ≥ 0. We have ξ ≤ n δσ
2

2μ for any n ≥ 1, and Item 1 of Remark 3.1 yields,
for all n ≥ 2,

ηn
ξ

δn
+ 1>η1

ξ

δ
+ 1 ≥ 0.
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This gives immediately, for all (t, x) ∈ (0, 1] ×R+,

ψ(t, x) ≥
∞∑

n=0

tn
	n

n!
{
ηn+1ξ

δ(n + 1)
+ 1

}
eηnx ≥ 0,

which is equivalent to
−Vξx (t, x) + e−δt(1 − γVξ (t, x)

)≥ 0

for all (t, x) ∈R
2+. This means that Vξ solves the HJB equation (1) if ξ ≤ δσ 2

2μ .

Now let C be an arbitrary admissible strategy, τ its ruin time, and X̂u := XC
u . Applying Itô’s

formula yields, P(t,x)-almost surely,

e−γ ∫ τ∧s
t e−δuCuduVξ

(
τ ∧ s, X̂τ∧s

)= Vξ (t, x) + σ

∫ τ∧s

t
e−γ ∫ y

t e−δuCuduVξx dWy

+
∫ τ∧s

t
e−γ ∫ y

t e−δuCudu
{

Vξt + (μ− Cy)Vξx + σ 2

2
Vξxx − γCye−δyVξ

}
dy.

Since Vξx is bounded, the stochastic integral above is a martingale with expectation zero. For
the second integral one obtains, using the differential equation for Vξ ,∫ τ∧s

t
e−γ ∫ y

t e−δuCudu
{

Vξt + (μ− Cy)Vξx + σ 2

2
Vξxx − γCye−δyVξ

}
dy

=
∫ τ∧s

t
e−γ ∫ y

t e−δuCudu
{(

Cy − ξ
)[− Vξx + e−δy(1 − γVξ

)]− Cye−δy}dy.

Building the expectations on the both sides and letting s → ∞, by interchanging the limit and
expectation (using the bounded convergence theorem) we obtain

0 = Vξ (t, x)

+E(t,x)

[ ∫ τ

t
e−γ ∫ y

t e−δuCudu(Cy − ξ
){−Vξx + e−δy(1 − γVξ

)}
dy

]
(8)

−E(t,x)

[ ∫ τ

t
e−γ ∫ y

t e−δuCudu · Cye−δydy

]
. (9)

Since Cu ≤ ξ and −Vξx
(
y, X̂y

)+ e−δy(1 − γVξ
(
y, X̂y

))≥ 0, the expectation in (8) is non-
positive.

For (9) one has

E(t,x)

[ ∫ τ

t
e−γ ∫ y

t e−δuCudu · Cye−δydy

]
= −E(t,x)

[ ∫ τ

t
d

e−γ ∫ y
t e−δuCudu

γ

]

=E(t,x)

[
U

( ∫ τ

t
e−δuCudu

)]
= VC(t, x),

giving VC(t, x) ≤ Vξ (t, x) for all admissible strategies C. Therefore, Vξ is the value function.

Now let ξ > δσ 2

2μ , and assume for the sake of contradiction that Vξ is the value function. Then
we have ψ(0, 0) = 1 + η1ξ/δ < 0. This means in particular that the function ψ is also negative
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for some (t, x) ∈ (0, 1] ×R+. Consequently, Vξ does not solve the HJB equation (1). However,
Vξ is smooth enough and has a bounded x-derivative. Thus, classical verification results (see,
for instance, [19, Section 2.5.1]) yield that Vξ solves the HJB equation—a contradiction. �

In the following, we assume ξ > δσ 2

2μ .

3.2. The goodness of the strategy ξ

We now provide an estimate on the goodness of the constant payout strategy which relies
only on the performance of the chosen strategy ξ and on deterministic constants. Recall from
(2) and (5) that

ηn = (ξ −μ) −√
(ξ −μ)2 + 2nδσ 2

σ 2
,

θn = −μ+√
μ2 + 2nδσ 2

σ 2
, ζn = −μ−√

μ2 + 2nδσ 2

σ 2
.

We first present the main inequality of this section, then, in the subsequent remark, discuss the
finiteness of the sum.

Theorem 3.2. Let t, x ≥ 0. Then we have

V(t, x) ≤ Vξ (t, x)

+ ξe−δt
∞∑

n=0

e−δtn	n

n!
∫ ∞

0

(−ηn+1ξ

δ(n + 1)
eηn+1y − eηny

)+
fn+1(x, y)dy,

where

fn(x, y) := 2
(
eθn(x∧y) − eζn(x∧y)

)
eηn(x−y)+

σ 2
(
(θn − ηn)eyθn − (ζn − ηn)eyζn

) , y ≥ 0.

Proof. We know that the return function Vξ ∈ C1,2. Let C be an arbitrary admissible
strategy. Then, using Itô’s formula for s> t under P(t,x), we have

e−γ ∫ s∧τC

t e−δuCudu · Vξ
(

s ∧ τC, XC
s∧τC

)

= Vξ (t, x) +
∫ s∧τC

t
e−γ ∫ r

t e−δuCudu ·
{

Vξt + (μ− Cr)Vξx + σ 2

2
Vξxx − γ e−δrCrVξ

}
dr

+ σ

∫ s∧τC

t
e−γ ∫ r

t e−δuCudu · Vξx dWr.

Using the differential equation for Vξ , one obtains, as in the last proof, using the definition of
ψ from (7),

e−γ ∫ s∧τC

t e−δuCudu · Vξ
(

s ∧ τC, XC
s∧τC

)

= Vξ (t, x) +
∫ s∧τC

t
e−γ ∫ r

t e−δuCudu · (Cr − ξ ) · e−δre−	e−δr
ψ
(
e−δr, XC

r

)
dr

−
∫ s∧τC

t
e−γ ∫ r

t e−δuCudu · Cre−δrdr + σ

∫ s∧τC

t
e−γ ∫ r

t e−δuCudu · Vξx dWr.
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Building the P(t,x)-expectations, letting s → ∞, and rearranging the terms, one has

VC(t, x) = Vξ (t, x)

+E(t,x)

[ ∫ τC

t
e−γ ∫ r

t e−δuCudu · (Cr − ξ ) · e−δre−	e−δr
ψ
(
e−δr, XC

r

)
dr

]
.

Our goal is to find a C-independent estimate for the expectation on the right-hand side above,
in order to gain a bound for the difference V(t, x) − Vξ (t, x). Since e−γ ∫ r

t e−δuCudu ≤ 1, e−	e−δr

≤ 1, and −(Cr − ξ ) ≤ ξ , we have

E(t,x)

[ ∫ τC

t
e−γ ∫ r

t e−δuCudu · (Cr − ξ ) · e−δre−	e−δr
ψ
(
e−δr, XC

r

)
dr

]

≤ −ξE(t,x)

[ ∫ τC

t
e−γ ∫ r

t e−δuCudu · e−δre−	e−δr
ψ
(
e−δr, XC

r

)
1I{ψ

(
e−δr,XC

r

)
<0}dr

]

≤ −ξE(t,x)

[ ∫ τC

t
e−δrψ

(
e−δr, XC

r

)
1I{ψ

(
e−δr,XC

r

)
<0}dr

]
.

Now, inserting the power series representation of ψ from (7), one gets

− ξE(t,x)

[ ∫ τC

t
e−δrψ

(
e−δr, XC

r

)
1I{ψ

(
e−δr,XC

r

)
<0}dr

]

≤ ξ
∞∑

n=0

e−δt(n+1)	
n

n! E(t,x)

[ ∫ τC

t
e−δ(r−t)(n+1)

(−ηn+1ξ

δ(n + 1)
eηn+1XC

r − eηnXC
r

)+
dr

]

≤ ξe−δt
∞∑

n=0

e−δtn	n

n!
∫ ∞

0

(−ηn+1ξ

δ(n + 1)
eyηn+1 − eηny

)+
fn+1(x, y)dy,

where the last inequality follows from Theorem A.1. �
Remark 3.2. One might wonder whether the infinite sum appearing on the right-hand side of
Theorem 3.2 is finite. In order to see its finiteness we try to find an upper bound of the form
An for the integral. To this end we split the integral into two parts: the part from 0 to x and the
remaining part. Since θn → ∞ while ηn, ζn → −∞ for n → ∞, we have for 0 ≤ y ≤ x that

fn(x, y) := 2
(
1 − e(ζn−θn)y

)
eηn(x−y)

σ 2
(
(θn − ηn) − (ζn − ηn)e(ζn−θn)y

)
≤ K1

1

θn − ηn

≤ K1

for some suitable constant K1 > 0 (not depending on n and y). For 0 ≤ x ≤ y we find

fn(x, y) := 2
(
eθn(x−y) − eζnx−θny

)
σ 2

(
(θn − ηn) − (ζn − ηn)ey(ζn−θn)

)
≤ K2eθn(x−y)
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for some suitable constant K1 > 0 (not depending on n and y). The bracket appearing inside
the integral before fn+1 is bounded by some constant K3 > 0. We find that

∫ ∞

0

(−ηn+1ξ

δ(n + 1)
eηn+1y − eηny

)+
fn+1(x, y)dy ≤ xK1K3 + K2K3

θn
≤ K4

for some suitable constant K4 > 0. Hence, the sum is bounded by

exp
(
	e−δt)K4.

4. The goodness of constant barrier strategies

Shreve et al. [20] and Asmussen and Taksar [5] considered the problem of dividend max-
imisation for a surplus described by a Brownian motion with drift. The optimal strategy there
turned out to be a barrier strategy with a constant barrier.

Let q ∈R+ and let C be given by Cs = ξ1I{XC
s >q}; i.e., C is a barrier strategy with a con-

stant barrier q and ruin time τC = inf{s ≥ 0 : XC
s = 0}. By the Markov property of XC, the

corresponding return function satisfies

VC(t, x) = 1

γ
− 1

γ
Ex

[
e−γ ∫ t+τC

t e−δsCsds
]

.

Note that for every a> 0 we have

Ex

[
ea

∫ t+τC

t e−δsCsds
]

≤ ea
∫∞

t e−δsξds = e
aξ
δ

e−δt
<∞.

This means the moment generating function of
∫ t+τC

t e−δsCs ds is infinitely often differentiable

and all moments of
∫ t+τC

t e−δsCsds exist.
Aiming to find the performance function of a barrier strategy with a constant barrier q,

we use the classical ansatz of calculating the performance ‘above the barrier’ and ‘below the
barrier’ and putting these two solutions together via the smooth fit at the barrier (in our case a
C(1,1) fit). We define

Mn(q) := Eq

[(
	− γ

∫ τC

0
e−δsCsds

)n]
> 0.

Since a barrier strategy depends on the surplus, but not on the time, we pretend to start at
time 0, accounting for a different starting time t> 0 by shifting the corresponding stopping
times by t. Starting at x> q, one pays at the maximal rate ξ up to τ q,ξ and then follows the
barrier strategy with the starting value q. Starting at x< q, one does not pay dividends until
τ q,0, i.e. until the surplus hits the level q or ruins. If the level q will be hit before ruin, then
one follows the barrier strategy starting at q. This means in particular that after the level q is
hit, the strategy will be exactly the same regardless of whether one starts at x> q or at x< q.
We will use this fact to enforce a smooth fit (C(1,1) fit) at the barrier. A C(1,2) fit can usually
be achieved simply by a barrier strategy, which turns out to be the optimal strategy and whose
performance function is the value function. See for instance [5] and [19] for details; further
explanations are given in Section 5.1. Figure 1 illustrates the C(1,1) fit of the return function
corresponding to the 5-barrier. The grey and black areas correspond to the ‘above the barrier’
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FIGURE 1. The return function corresponding to a 5-barrier strategy and its second derivative with respect
to x.

and ‘below the barrier’ solutions. The right panel shows that the second derivative with respect
to x of the performance function is not continuous at the barrier.

For F(t, x) := VC(t, x), x> q, and for G(t, x) := VC(t, x), x< q, it holds that

F(t, x) = 1

γ
− 1

γ
Ex

[
e
−γ ξ ∫ t+τq,ξ

t e−δsds−γ ∫ t+τC

t+τq,ξ e−δsCsds
]

= 1

γ
− 1

γ
Ex

[
exp

(
e−δt

(
−	(1 − e−δτ q,ξ )− γ

∫ τC

τ q,ξ
e−δsCsds

))]

= 1

γ
− 1

γ
e−	e−δt

Ex

[
exp

(
e−δte−δτ q,ξ

(	− γ

∫ τC−τ q,ξ

0
e−δsCs+τ q,ξ ds)

)]

= 1

γ
− 1

γ
e−	e−δt − 1

γ
e−	e−δt

∞∑
n=1

e−δtn

n! Ex
[
e−δnτ q,ξ ]

Eq

[(
	− γ

∫ τC

0
e−δsCsds

)n]

= 1

γ
− 1

γ
e−	e−δt − 1

γ
e−	e−δt

∞∑
n=1

e−δtn

n! eηn(x−q)Mn(q)

= − 1

γ

∞∑
n=1

e−δtn

n!
n∑

k=0

(
n

k

)
(−	)n−kMk(q)eηk(x−q), (10)

G(t, x) =Ex

[
F
(
t + τ q,0, q

)
; X0

τ q,0 = q
]

= − 1

γ

∞∑
n=1

e−δtn

n! · eθnx − eζnx

eθnq − eζnq

n∑
k=0

(
n

k

)
(−	)n−kMk(q) . (11)

Here, for the fourth equality, we expand the first exponential function in the expectation into
its power series and use the Markov property to see that the P0,x-law given Fτ q,ξ of τC − τ q,ξ

equals the P0,q-law of τC. Also, for the last equality for G, we insert the formula for F and use
the identities given in Borodin and Salminen [9, p. 309, Formula 3.0.5(b)]. The notation used
in G means Ex[Yt; A] =Ex[Yt1IA] for some process Y .

In order to analyse the performance function of a barrier strategy, we will expand the perfor-
mance function into integer powers of e−δt with x-dependent coefficients and truncate at some
N. This will result in an approximation for the performance function which is much easier
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to handle, but which incurs an additional truncation error. Inspecting Equations (10) and (11)
motivates the approximations

FN(t, x) =
N∑

n=1

e−δtn
n∑

k=0

An,keηk(x−q), (12)

GN(t, x) :=
N∑

n=1

Dne−δtn eθnx − eζnx

eθnq − eζnq
, (13)

for x, t ≥ 0, where η0 := 0. In order to achieve a C(1,1) fit we choose Dn :=
n∑

k=0
An,k and

An,n :=

n−1∑
k=0

(νn − ηk)An,k

ηn − νn
, νn := θneθnq − ζneζnq

eθnq − eζnq
.

This leaves the choice for An,0, . . . , An,k−1 open, which we now motivate by inspecting the
dynamics equations for F, G; these should be

Gt(t, x) +μGx(t, x) + σ 2

2
Gxx(t, x) = 0,

Ft(t, x) +μFx(t, x) + σ 2

2
Fxx(t, x) = ξ

(
Fx(t, x) + e−δt(γF(t, x) − 1)

)
,

with boundary condition G(t, 0) = 0 for t, x ≥ 0.

It is easy to verify that GN(t, 0) = 0 and GN
t (t, x) +μGN

x (t, x) + σ 2

2 GN
xx(t, x) = 0. However,

since Hk(x) := eηkx solves the equation

δkHk(x) = (μ− ξ )∂xHk(x) + σ 2

2
∂2

x Hk(x),

we find that

FN
t (t, x) + (μ− ξ )FN

x (t, x) + σ 2

2
FN

xx(t, x) =
N∑

n=1

e−δtn
n−1∑
k=0

δ(k − n)An,keηk(x−q),

e−δtξ (γFN(t, x) − 1) = −e−δtξ +
N+1∑
n=2

e−δtn
n−1∑
k=0

γ ξAn−1,keηk(x−q).

We will treat the term

e−δt(N+1)ξγ

N∑
k=0

AN,keηk(x−q)

as an error term and otherwise equate the two expressions above. This allows us to define the
remaining coefficients, which are given by

An,k := γ ξAn−1,k

δ(k − n)
=
(
−γ ξ
δ

)n−k Ak,k

(n − k)! = (−	)n−k Ak,k

(n − k)! ,

An,0 :=
(
−γ ξ
δ

)n−1 ξ

δn! = (−γ )n−1ξn

δnn! = (−	)n

−γ n!
for n ≥ k ≥ 1; the last line is also valid for n = 0.
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The following lemma shows that FN solves ‘almost’ the same equation as F is thought to
solve. We see an error term which, instead of being zero, converges faster than e−δtN for time
going to infinity.

Lemma 4.1. We have

GN
t (t, x) +μGN

x (t, x) + σ 2

2
GN

xx(t, x) = 0,

FN
t (t, x) +μFN

x (t, x) + σ 2

2
FN

xx(t, x) + ξψN(e−δt, x
)= −e−δt(N+1)ξγ

N∑
k=0

AN,keηk(x−q),

for any t ≥ 0, x ≥ q, where

ψN(e−δt, x
)

:= −FN
x (t, x) + e−δt(1 − γFN(t, x)

)
.

Proof. The claim follows from inserting the definitions of GN and FN . �
We define

VN(t, x) := 1I{x≥q}FN(t, x) + 1I{x<q}GN(t, x), (14)

ψN(e−δt, x
)

:= −VN
x (t, x) + e−δt(1 − γVN(t, x)

)
for any t, x ≥ 0. We now want to compare the approximate performance function VN for the
barrier strategy with level q to the unknown value function. We proceed by first bounding ψN

in terms of a double power series in e−δt and x-dependent exponentials.

Lemma 4.2. With the preceding definitions, for x ≥ q we have

−ψN(e−δt, x
)
1I{ψN

(
e−δt,x

)
<0}

≤
N+1∑
n=1

e−δtn
(

n∑
k=0

eηk(x−q){1I{n=1,k=0} − 1I{n �=N+1}ηkAn,k − 1I{n �=1,k �=n}γAn−1,k
})+

,

and for 0 ≤ x< q we have

ψN(e−δt, x
)
1I{ψN

(
e−δt,x

)
>0} ≤

N+1∑
n=1

e−δtn(1I{n=1} − Dnh′
n(x)1I{n �=N+1}

− γDn−1hn−1(x)1I{n �=1}
)+
,

where

hn(x) := eθnx − eζnx

eθnq − eζnq
.

Proof. Inserting the definition of ψN and the definitions of FN and GN found in Equations
(12) and (13) respectively, for x ≥ q (with η0 = 0) we obtain

ψN(e−δt, x
)

=
N+1∑
n=1

e−δtn
n∑

k=1

eηk(x−q) (1I{n=1,k=0} − 1I{n �=N+1}ηkAn,k − 1I{n �=1,k �=n}γAn−1,k
)
,

https://doi.org/10.1017/apr.2023.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.6


1460 J. EISENBERG AND P. KRÜHNER

and for 0 ≤ x< q we obtain

ψN(e−δt, x
)=

N+1∑
n=1

e−δtn (1I{n=1} − Dnh′
n(x)1I{n �=N+1} − γDn−1hn−1(x)1I{n �=1}

)
.

Using the inequality
(∑N

n=1 e−δtncn

)+ ≤∑N
n=1 e−δtn(cn)+ for c ∈R

N , for x ≥ q we obtain

−ψN(e−δt, x
)
1I{ψN

(
e−δt,x

)
<0}

≤
N+1∑
n=1

e−δtn
(

n∑
k=1

eηk(x−q)
{

1I{n=1,k=0} − 1I{n �=N+1}ηkAn,k − 1I{n �=1,k �=n}γAn−1,k

})+

and for 0 ≤ x< q we obtain

ψN(e−δt, x
)
1I{ψN

(
e−δt,x

)
>0} ≤

N+1∑
n=1

e−δtn(1I{n=1} − Dnh′
n(x)1I{n �=N+1}

− γDn−1hn−1(x)1I{n �=1}
)+
,

as claimed. �
We will employ the same method as in Section 3.2 and rely on the occupation bounds from

Theorem A.1. We have in mind that VN ≈ VC ≤ V . The three error terms appearing on the
right-hand side of the following proposition are, in order, the error for behaving suboptimally
above the barrier, the error for behaving suboptimally below the barrier, and the approximation
error.

Proposition 4.1. We have

V(t, x) ≤ VN(t, x) +
N+1∑
n=1

e−δtnξ
[

(
n∑

k=0

{
1I{n=1,k=0} − 1I{n �=N+1}ηkAn,k − 1I{n �=1,k �=n}γAn−1,k

}
·
∫ ∞

q
eηk(y−q)fn(x, y) dy

)+

+
∫ q

0

(
−Dn

θneθny − ζneζny

eθnq − eζnq
+
(

1I{n=1} − γ 1I{n �=1}Dn−1
eθn−1y − eζn−1y

eθn−1q − eζn−1q

)+
· fn(x, y) dy

]

+ e−δt(N+1)ξγ

∫ ∞

0

N∑
k=0

|AN,k|eηk(y−q)fN+1(x, y) dy

for any t, x ≥ 0, where the fk are defined in Theorem 3.2.

Proof. Observe that VN is analytic outside the barrier q and C(1,∞) on R+ ×R+, and the
second space derivative is a bounded function. Thus, we can apply the change-of-variables
formula; see [17].
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Choose an arbitrary strategy C̄ and denote its ruin time by τ . Following the heuristics from
Section 2.1 up to Step 4 with H = VN for the strategy C̄ yields

VC̄(t, x) = VN(t, x) +E(t,x)

[ ∫ τ

t
e−γ ∫ r

t e−δuC̄udu
(

C̄r − ξ1I{
XC̄

r >q
})ψN(e−δr, XC̄

r

)
dr

]

− ξγE(t,x)

[ ∫ τ

t
e−γ ∫ r

t e−δuC̄udue−δr(N+1)1I{
XC̄

r >q
} N∑

k=0

AN,keηk

(
XC

r −q
)

dr

]

≤ VN(t, x) + ξγE(t,x)

[ ∫ τ

t
e−δr(N+1)1I{

XC̄
r >q

} N∑
k=0

|AN,k|eηk

(
XC

r −q
)

dr

]

+E(t,x)

[ ∫ τ

t

(
−ξ1I{

XC̄
r >q,ψN

(
e−δr,XC̄

r

)
<0
} + ξ1I{

XC̄
r <q,ψN

(
e−δr,XC̄

r

)
>0
})ψN(e−δr, XC̄

r

)
dr

]
,

where we used that 0 ≤ C̄r ≤ ξ . Applying Lemma 4.2 to the last summand, pulling out the sum,
and applying Theorem A.1 yields

VC̄(t, x) ≤ VN(t, x)

+
N+1∑
n=1

e−δtnξ
[(

n∑
k=0

{
1I{n=1,k=0} − 1I{n �=N+1}ηkAn,k − 1I{n �=1,k �=n}γAn−1,k

}

×
∫ ∞

q
eηk(y−q)fn(x, y)dy

)+

+
∫ q

0

(
1I{n=1} − Dnh′

n(y)1I{n �=N+1} − γDn−1hn−1(y)1I{n �=1}
)+

fn(x, y)dy

]

+ e−δt(N+1)ξγ

∫ ∞

q

N∑
k=0

|AN,k|eηk(y−q)fN+1(x, y)dy,

where

hn(y) := eθny − eζny

eθnq − eζnq
.

Since C̄ was an arbitrary strategy and the right-hand side does not depend on C̄, the claim
follows. �

Now we quantify the notion VN ≈ VC. Here, we see a single error term which corresponds
to the approximation error (third summand) in Proposition 4.1.

Lemma 4.3. Let t, x ≥ 0. Then we have

|VN(t, x) − VC(t, x)| ≤ e−δt(N+1)ξγ

∫ ∞

q

N∑
k=0

|AN,k|eηk(y−q)fN+1(x, y)dy.
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Proof. By following the lines of the proof of Proposition 4.1 with the specific strategy
C̄t = Ct = ξ1I{XC

t >q} until estimates are used, we obtain

VC(t, x) = VN(t, x) +E(t,x)

[ ∫ τ

t
e−γ ∫ r

t e−δuCudu
(

Cr − ξ1I{
XC

r >q
})ψN(r, XC

r

)
dr

]

− ξγE(t,x)

[ ∫ τ

t
e−γ ∫ r

t e−δuCudue−δr(N+1)1I{
XC

r >q
} N∑

k=0

AN,keηk

(
XC

r −q
)
dr

]

= VN(t, x)

− ξγE(t,x)

[ ∫ τ

t
e−γ ∫ r

t e−δuCudue−δr(N+1)1I{
XC

r >q
} N∑

k=0

AN,keηk

(
XC

r −q
)
dr

]
.

Hence, we find

|VC(t, x) − VN(t, x)| ≤ ξγE(t,x)

[ ∫ τ

t
e−δr(N+1)1I{

XC
r >q

} N∑
k=0

|AN,k|eηk

(
XC

r −q
)
dr

]

= ξγ e−δt(N+1)
∫
R

1I{
XC

r >q
} N∑

k=0

|AN,k|eηk(yr−q)fN+1(x, y)dy

by Theorem A.1. �

5. Examples

Here, we consider two examples. The first one illustrates how the value function and the
optimal strategy can be calculated using a straightforward approach under various unproven
assumptions. In fact, we will assume (without proof) that the value function is smooth enough,
that the optimal strategy is of barrier type, and that the barrier, the value function above the
barrier, and the value function below the barrier have suitable power series representations. In
[15] it has been observed that similar power series—if they exist—have very large coefficients
for certain parameter choices. This could mean that the power series do not converge or that
insufficient computing power is available.

In the second subsection, we will illustrate the new approach and calculate the distance
from the performance function of a constant barrier strategy to the value function. The key
advantages of this approach are that we do not rely on properties of the value function, nor do
we need to know what it looks like. From a practical perspective, if the value function cannot
be found, one should simply choose any strategy with an easy-to-calculate return function.
Then it is good to know how large the error to the optimal strategy is.

5.1. The straightforward approach

In this example we let μ= 0.15, δ= 0.05, γ = 0.2, and σ = 1. We attempt to find the value
function numerically. However, we do not know whether the assumptions which we will make
do actually hold true for any possible parameters—or even for the parameters we chose.
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We conjecture and assume that the optimal strategy is of a barrier type where the barrier is
given by a time-dependent curve, say α; the value function V(t, x) is assumed to be a C1,2(R2+)
function, and we define

h(t, x) := V(t, x), t ≥ 0, x ∈ [α(t),∞),

g(t, x) := V(t, x), t ≥ 0, x ∈ [0, α(t)].

This means we assume that h solves the HJB equation (1) on R+ × [α(t),∞) and that g solves
(1) on R+ × [0, α(t)]. In particular, the functions h and g satisfy

ht + (μ− ξ )hx + σ 2

2
hxx + ξe−δt(1 − γ h

)= 0, lim
x→∞ h(t, x) = U

(
ξe−δt

δ

)
,

gt +μgx + σ 2

2
gxx = 0, g(t, 0) ≡ 0.

Similarly to the derivations of the functions F and G in Section 4, we assume that

h(t, x) := 1

γ
− 1

γ
e−	e−δt + e−	e−δt

∞∑
n=1

Jne−δtneηnx,

g(t, x) :=
∞∑

n=1

Lne−δtn(eθnx − eζnx),
α(t) :=

∞∑
n=0

an

n! e−δtn

for some coefficients. Note that we do not investigate the question of whether the functions h,
g, and α have power series representations. We define further auxiliary coefficients bk,n, pk,n,
and qk,n:

eηnα(t) =:
∞∑

k=0

bk,n

k! e−δtk, eθnα(t) =:
∞∑

k=0

pk,n

k! e−δtk, eζnα(t) =:
∞∑

k=0

qk,n

k! e−δtk.

Since we assume that the value function is twice continuously differentiable with respect to x,
we have, using smooth fit,

h(t, α(t)) = g(t, α(t)), gx(t, α(t)) = hx(t, α(t)), gxx(t, α(t)) = hxx(t, α(t)). (15)

Note that (15) yields ht(t, α(t)) = gt(t, α(t)). Therefore, we can conclude that hx(t, α(t)) =
e−δt(1 − γ h(t, α(t))). Alternatively to (15), one can consider at (t, α(t)) the equations

−hx + e−δt(1 − γ h) = 0, −gx + e−δt(1 − γ g) = 0, h = g. (16)

Thus, we can find the coefficients an, Jn, and Ln from the three equations (16).
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First, we calculate the coefficients of the power series resulting from the functions eηnα(t),
eθnα(t), eζnα(t). This is done using the general Leibniz rule:

bk+1,n = ηn

k∑
j=0

(
k

j

)
ak−j+1bj,n, b0,n = eηnα(0),

pk+1,n = θn

k∑
j=0

(
k

j

)
ak−j+1pj,n, p0,n = eθnα(0),

qk+1,n = ζn

k∑
j=0

(
k

j

)
ak−j+1qj,n, q0,n = eζnα(0).

Now, in order to calculate the coefficients in the power series representation of h(t, α(t)) and
g(t, α(t)) and their derivatives, we define auxiliary coefficients for m ∈ {1, 2}:

Xm,j :=
j∑

n=1

Jnη
m−1
n

bj−n,n

(j − n)! , Zm,k :=
k∑

j=1

	k−j

(k − j)!Xm,j,

Wm,k,j := Lj
(
θm−1

j pk,j − ζm−1
j qk,j

)
, Ym,k :=

k∑
n=1

Wm,k−n,n

(k − n)! .

Then we can write the functions g and h along with their derivatives as power series:

g(t, α(t)) =
∞∑

k=1

e−δtkY1,k, h(t, α(t)) =
∞∑

k=1

e−δtkZ1,k − 1

γ

∞∑
k=1

(−	)k e−δtk

k! ,

gx(t, α(t)) =
∞∑

k=1

e−δtkY2,k, hx(t, α(t)) =
∞∑

k=1

e−δtkZ2,k.

Equating coefficients yields

a0 =
log

(
η1−ζ1
η1−θ1

· ζ1
θ1

)
θ1 − ζ1

, L1 = 1

θ1eθ1a0 − ζ1eζ1a0
, J1 = e−η1a0

η1
,

and for k ≥ 2,

X2,k = −γX1,k−1, Y2,k = −γY1,k−1, Y1,k = Z1,k − (−	)k

γ k! . (17)

Note that the equations in (17) specify Lk, Jk, and ak−1 at the kth step. The coefficients given
above have a recursive structure. Because of this fact, the method presented turns out to be very
time- and memory-consuming. Numerical calculations show that the above procedure yields
well-defined power series for relative small values of ξ (see Figure 2). However, for big ξ
the coefficients explode, which makes the calculations unstable and imprecise, especially for t
close to zero.

In Figure 3 we see the functions h (black) and g (grey) meeting at the barrier α(t) in the
left panel. The right panel illustrates the crucial functions −hx + e−δt(1 − γ h) (black) and
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FIGURE 2. The optimal strategies for different values of ξ . The dashed line corresponds to the Asmussen–
Taksar strategy [5] (unrestricted dividend case).

FIGURE 3. Left, the functions h(t, x) (black) and g(t, x) (grey); right, the functions −hx + e−δt(1 − γ h)
(black), −gx + e−δt(1 − γ g) (grey), and 0 (white), for ξ = 1.

−gx + e−δt(1 − γ g) (grey), along with the zero-plane (white). One sees that the zero-plane
cuts −hx + e−δt(1 − γ h) and −gx + e−δt(1 − γ g) exactly along the curve α.

Note that the numerical procedure used here works well only for small values of ξ . Because
of the recursive structure of the coefficients, the bigger ξ values cause the coefficients to
explode and enforce an early truncation of the power series representations.

It should be noted here once again that the obtained functions h and g do not represent the
value function. And the optimal strategy cannot yet be claimed to be of a barrier type with the
barrier given by α; first, one has to prove a verification theorem.

5.2. The distance to the value function

We use the same parameters as in the previous section, i.e. μ= 0.15, δ = 0.05, γ = 0.2,
and σ = 1. We illustrate the error bound given by Proposition 4.1 for N = 20 summands and
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four different values of ξ , namely 0.15, 0.17, 0.32, and 1. We will compare the unknown value
function to the performance of the barrier strategy with barrier at

q =
(

log (−ζ1) + log (ζ1 + η1) − log (θ1) − log (θ1 − η1)

θ1 − ζ1

)+
; (18)

i.e. we employ the strategy Cs = ξ1I{XC
s ≥q}. Recall the definition of η1, θ1, and ζ1 from (2)

and (5).

Mathematica code for the calculation of the coefficients Jn, Ln, and an.
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FIGURE 4. The difference of the value function and an approximation of the performance function cor-
responding to a constant barrier strategy at t = 0: V(0, x) − VN (0, x) for ξ = 1 with VN given in (14) and
the barrier q given in (18).

The barrier strategy with the barrier q has been shown to be optimal if no utility function
is applied; see [19, p. 97]. In the case of ξ = 0.15 one finds q = 0, i.e. we pay out at maximal
rate all the time, which is optimal by Proposition 3.1. Therefore, this case is left with only an
approximation error. For the other values of ξ , it is non-optimal to follow a barrier strategy, and
hence we do have a substantial error which cannot disappear in the limit. The corresponding
panels in Figure 5 show this error, as for N = 20 summands the approximation error is already
several magnitudes smaller than the error incurred by following a suboptimal strategy.

Figure 4 illustrates for ξ = 1 the difference between the value function V(x) and the approx-
imation VN , given in (14), of the performance function corresponding to the barrier strategy
with the barrier q given in (18) at t = 0. Note that the difference V(0, x) − VN(0, x) consists of
three subfunctions:

V(0, x) − VN(0, x) =

⎧⎪⎨
⎪⎩

F(0, x) − FN(0, x), x ≥ q, grey line in Figure 4,

F(0, x) − GN(0, x), x ∈ [α(0), q], dashed line in Figure 4,

G(0, x) − GN(0, x), x ∈ [0, α[0]], solid black line in Figure 4.

It is clear that for any fixed x the maximal difference V(t, x) − VN(t, x) is attained at t = 0, as
the curve α is increasing and converges to q for t → ∞. Thus, the difference q − α(t) attains
its maximum at t = 0, leading to a bigger difference between the performance functions.

Appendix

In this appendix we provide deterministic upper bounds for the expected discounted occu-
pation of a process whose drift is not precisely known. This allows us to derive an upper bound
for the expect discounted and cumulated positive functional of the process. These bounds are
summarised in Theorem A.1.

Let a, b ∈R with a ≤ b, I := [a, b], σ > 0, δ ≥ 0, W a standard Brownian motion, and
consider the process

dXt = Ctdt + σdWt
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FIGURE 5. The plots show numerical evaluations of the error bounds given in Proposition 4.1 for the
barrier strategy with parameters ξ = 0.15, ξ = 0.17, ξ = 0.32, and ξ = 1 respectively, as indicated at the
side of each panel. The error bound is shown at time t = 0, where it is largest, across several values of x.

where C is some I-valued progressively measurable process. We recall that we denote by Px

a measure with Px[X0 = x]. The local time of X at level y and time t is denoted by Ly
t , and

τ := inf{t ≥ 0 : Xt = 0}. Furthermore, for x, y ≥ 0 we define

α := a + √
a2 + 2δσ 2

σ 2
, β+ :=

√
b2 + 2δσ 2 − b

σ 2
, β− := −√

b2 + 2δσ 2 − b

σ 2
,

f (x, y) := 2
(
eβ+(x∧y) − eβ−(x∧y)

)
e−α(x−y)+

σ 2
(
(β+ + α)eyβ+ − (β− + α)eyβ−

) .

Theorem A.1. We have Ex
[∫ τ

0 e−δsdLy
s
]≤ σ 2f (x, y). In particular, for any measurable func-

tion ψ : R+ →R+ we have

Ex

[∫ τ

0
e−δsψ(Xs)ds

]
≤
∫ ∞

0
ψ(y)f (x, y)dy.

The proof is given at the end of this section.
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Lemma A.1. The function f is absolutely continuous in its first variable, with derivative

fx(x, y) :=
⎧⎨
⎩

2
(
β+exβ+−β−exβ− )

σ 2((β++α)eyβ+−(β−+α)eyβ−) , x ≤ y,

2
(−αeyβ++αeyβ− )e−α(x−y)

σ 2((β++α)eyβ+−(β−+α)eyβ−) , x> y.

For any y ≥ 0, the function fx(·, y) is of finite variation, and

dfx(x, y) = − 2

σ 2
δy(dx) +

(
2δ

σ 2
f (x, y) − 2(b1I{x<y} + a1I{x>y})

σ 2
fx(x, y)

)
dx,

where δy denotes the Dirac measure in y. Moreover, if we denote by fxx(x, y) the second
derivative of f with respect to the first variable for x �= y, then we get

sup
u∈[a,b]

(
σ 2

2
fxx(x, y) + ufx(x, y) − δf (x, y)

)
= 0, x �= y.

Proof. Obtaining the derivative and the associated measure is straightforward. If δ = 0, then
the statement of the lemma is trivial. This is due to the fact that β+ = 0, β− = − 2b

σ 2 , α= 2a
σ 2 .

The function f in this case satisfies fx(x, y)> 0 if x< y and fx(x, y)< 0 if x> y.
Now, assume that δ > 0. We have α, β+ > 0>β−, which immediately yields fx(x, y)> 0

for x< y and fx(x, y)< 0 for x> y. The last equality follows. �
Lemma A.2. Let y ≥ 0 and assume that Ct = a1I{Xt>y} + b1I{Xt≤y}. Then

Ex

[ ∫ τ

0
e−δsdLy

s

]
= σ 2f (x, y).

Proof. The Itô–Tanaka formula together with the occupation time formula yields

f (Xt∧τ , y) = f (x, y) +
∫ t

0
σ fx(Xs∧τ , y)dWs − 1

σ 2
Ly

t∧τ

+
∫ t

0
Csfx(Xs∧τ , y) + σ 2

2
fxx(Xs∧τ , y)ds

= f (x, y) +
∫ t

0
σ fx(Xs∧τ , y)dWs − 1

σ 2
Ly

t∧τ + δ

∫ t

0
f (Xs∧τ , y)ds.

Using the product formula yields

e−δtf (Xt∧τ , y) = f (x, y) +
∫ t

0
σe−δsfx(Xs∧τ , y)dWs − 1

σ 2

∫ t∧τ

0
e−δsdLy

s .

Since fx(·, y) is bounded we see that the second summand is a martingale. If δ > 0, then we
find that

lim
t→∞ Ex[e−δtf (Xt∧τ , y)] = 0.

If δ = 0 and a ≤ 0, then τ <∞ P-almost surely, and the boundedness of f yields

lim
t→∞ Ex[f (Xt∧τ , y)] = 0.
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If δ = 0 and a> 0, then lim
t→∞ Xt∧τ takes values in {0,∞} and lim

x→∞ f (x, y) = 0; thus the

boundedness of f again yields
lim

t→∞ Ex[f (Xt∧τ , y)] = 0.

Thus, we find by monotone convergence that

0 = f (x, y) − 1

σ 2
lim

t→∞ Ex

[∫ t∧τ

0
e−δsdLy

s

]
= f (x, y) − 1

σ 2
Ex

[∫ τ

0
e−δsdLy

s

]
.

�

The next lemma is a simple variation of the occupation times formula.

Lemma A.3. Let g : R+ →R+ be continuous, let τ be a random time, and let ψ : R→R+ be
Borel measurable. Then ∫ τ

0
g(s)ψ(Xs)σ

2ds =
∫
R

ψ(y)Zydy,

where Zy := ∫ τ
0 g(s)dLy

s .

Proof. If the claim is proved for bounded stopping times, then an arbitrary stopping time
τ can be approximated by bounded stopping times via τ = limN→∞ min{N, τ } and monotone
convergence yields the claim. For the remainder of the proof we assume that τ is a bounded
stopping time. Additionally, we start with bounded and Lebesgue-integrable ψ . Once the claim
is proved for bounded and Lebesgue-integrable ψ , it follows for the remaining ψ by monotone
convergence.

Let ε > 0. Since g is continuous it is uniformly continuous on [0, τ ]. Hence, there is δ > 0
such that |g(x) − g(y)|< ε for any x, y ∈ [0, τ ] with |x − y|< δ. For an integer N > τ/δ we
find, with

FN :=
N∑

k=1

∫ k τN

(k−1) τN

(g(s) − g((k − 1)τ/N)) ψ(Xs)σ
2ds,

that

∫ τ

0
g(s)ψ(Xs)σ

2ds =
N∑

k=1

∫ k τN

(k−1) τN

g((k − 1)τ/N)ψ(Xs)σ
2ds

+
N∑

k=1

∫ k τN

(k−1) τN

(g(s) − g((k − 1)τ/N)) ψ(Xs)σ
2ds

=
∫
R

ψ(y)
N∑

k=1

g((k − 1)τ/N)(Ly
k τN

− Ly
(k−1) τN

)dy + FN,

where we use [18, Corollary VI.1.6] for the second equality. We have |FN | ≤ ε ∫ τ0 ψ(Xs)σ 2ds
by the choice of δ, and

N∑
k=1

g((k − 1)τ/N)(Ly
k τN

− Ly
(k−1) τN

) →
∫ τ

0
g(s)dLy

s, N → ∞.

It holds that ∣∣∣∣∣
N∑

k=1

g((k − 1)τ/N)(Ly
k τN

− Ly
(k−1) τN

)

∣∣∣∣∣≤ sup
a∈[0,τ ]

g(a) · Ly
τ ,
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and hence, Lebesgue’s dominated convergence result yields

∫
R

ψ(y)
N∑

k=1

g((k − 1)τ/N)(Ly
k τN

− Ly
(k−1) τN

)dy →
∫
R

ψ(y)Zydy

as required. �
Proof of Theorem A.1. Fix y ≥ 0. For any progressively measurable process η with values

in I we define

Yηt := X0 +
∫ t

0
ηsds + σWt and V(x) := sup

η
Ex

[∫ τ

0
e−δsdLy,η

s

]
,

where τη := inf{t ≥ 0 : Yηt = 0} and L·,η denotes a continuous version of the local time of Yη.
Clearly, we have

Ex

[∫ τ

0
e−δsdLy,η

s

]
≤ V(x).

Moreover, the previous two lemmas yield that Yη
∗

with

η∗
t = a1I{Yη∗t >y} + b1I{Yη∗t ≤y}

is the optimally controlled process, and we get V(x) = σ 2f (x, y). (The process η∗ exists
because the corresponding stochastic differential equation admits pathwise uniqueness; see
[18, Theorem IX.3.5].) This proves the inequality for the local time. The additional inequality
follows now from Lemma A.3. �
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