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The generation of the large scale magnetic field in a thin disk galactic dynamo 
is investigated. The linear or so called kinematic theory describing the initial stages 
of the field generation is known. For the subsequent stages one needs to consider a 
nonlinear model of the disk dynamo. The use of asymptotic methods is a fruitful 
way for investigating this. We shall consider steady states of the large scale magnetic 
fields. Let us add nonlinearity taking the helicity function as 

a(z,B) = a0(z)[l-g(z)B2] (!) 

where ao(-z) is the helicity distribution of the linear model and g(z) is a slowly 
changing function of ζ (see Kvasz et al. 1992). Following Vainstein and Ruzmaikin 
1972 we derive the differential equation for the azimuthal component Β of the 
magnetic field. 

d3 
-j^B-Da(z,B)B = Q (2) 

where D is the dynamo number with the opposite sign. The boundary conditions 
for (2) in the case of the disk of the half-thickness 1 surrounded by vacuum are: 

B(1) = 0, = T z m = °• ( 3 ' 4 ' 5 ) 

Assuming the dynamo number D to be large and using asymptotic methods we 
search the solution of the boundary problem (2-5) in the form: 

Β = Μ*)Γ1/2 + φο(*) + D9x(x) + .... (6) 

Here the first term is a regular solution, the other terms correspond to the boundary 
layer. Here χ = (ζ — 1)DK is a new fast variable, η and κ are constants. The 
boundary layer is introduced to fulfill the boundary conditions (3-4) at the point 
2 = 1. The only regular solution cannot fulfill them. The characteristic thickness 
of the boundary layer is 1 / DK . Substituting (6) into (2-5) gives us κ = 1/3 and 
η = 2/3. To calculate the boundary layer we introduce a new function Φ(χ) = 
—[g(l)]l^2Φo(x) and a new variable t = —[ct(l)]1/3^ (7). Thus, we obtain an 
initial value problem for the nonlinear differential equation: 
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d 3 

-j—ψ = ψ 3 — 3Φ2 + 2Ψ , 
dtà 

Φ(0) = 1, ^ - * ( 0 ) = 0, »(οο) = 0. dt2 

(8) 

(9,10,11) 

The main difficulty here is an infinity in the boundary condition (11). We change 
it to cf\t j dt = ρ at the point t = 0 and solve further an initial value problem for 
the several values of the parameter p. Depending on the values of ρ we obtain 6 
qualitatively different cases of behaviour of the solution (see figure below the text). 
The cases 1-3 can be completely explained by linearization of (8) near to the point 
Φ = 1. They never fulfill the condition (11) and are thus not of interests. The cases 
4-6 can be explained by linearization of (8) near to the point Φ == 0. The linearized 
solution has the form 

Ψ(0 = Ci eXlt + eÀa'(C2 sin ω t + C3 cos ω t), 
where Λχ = 21/3, λ2 = -2~ 2 / 3 , ω = —2~2/331/2, Ci, C2 and C3 are constants. 
The unique case fulfilling condition (11) is 5. The value of the parameter po is 
-0.684 781644 265 300 ± 3 10- 1 5. This high precision is very important. If a lower 
precision of e.g. 6 digits is used, only one oscillation can be seen and it is not 
possible to study the phenomenon qualitatively. The increase of precision extends 
the interval of the oscillations but nevertheless the numerical solution goes further 
to + or - oo. The frequency of oscillation and degree of relaxation of the numerical 
solution completely correspond to λ2 and ω. Thus, one can numerically calculate 
the boundary layer of the nonlinear dynamo problem as exactly as is necessary. 
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