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This paper is concerned with the preliminary localisation, orbit determination and model-based
path forecasting of space debris based on a robust procedure. In this work, an in-orbit observer
utilises only relative bearing observations iteratively. To this end, the problem is first formulated
in order to calculate the distance vector between the space debris and any orbiting observer.
Afterwards, the obtained position vector is corrected through an Extended Kalman Filter (EKF)
for shrinking the sensor and process errors and increasing robustness of the computations in the
presence of uncertainties. After preliminary positioning, the related classical orbital elements are
acquired via the predicted position and velocity vectors using a hybrid technique. Extensive sim-
ulations demonstrate the efficacy and robustness of the aforementioned method, and in particular
it is verified that the proposed scheme is capable of producing a suitable solution for prelimi-
nary localisation and orbit determination of space debris based on the presented space-based
observation, which is practical in phasing and chasing manoeuvres of any grabber space robot.
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1. INTRODUCTION. Space debris are man-made objects, which have existed in space
since the first launch of artificial satellites. This includes satellites whose operational lifes-
pan is over, components of rockets and other objects. Space debris is a major in-space
operational hazard for both current and future satellites and manned missions. There-
fore, it is rapidly becoming necessary to consider cleaning up potential orbits from any
debris. The first stage of this is to precisely detect the orbits of debris (Flury, 1995). Orbit
determination (Armellin et al., 2016; Curtis, 2013) is germane to one of the branches of
astronomy, which observes, calculates and predicts space objects’ orbits. One common
application of orbit determination is supporting Global Positioning System (GPS) satellites
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(Montenbruck et al., 2005) Andres Johan Lexell and Friedrich Gauss initiated modern orbit
determination (Sten and Aspaas, 2013). Furthermore, Gauss introduced a technique through
which six orbital elements are obtained through only three observations at three differ-
ent times (Chung, 2006). For orbit determination, using Gauss’s Method, right ascension
and declination should be specified during three different times. Moreover, local sidereal
time is also specified at the observation times. This technique is specific to short arcs; in
other words, the time difference between two observations should be shortened (Fadrique
et al., 2012). One of the other methods for Angles-only Orbit Determination is the Laplace
Method, which is a standard technique for initial orbit calculations. This method was used
for the first time for the orbit determination of a meteor named P/1846 D1. The Laplace
method is similar to the Gauss technique (Richard, 2003).

Another method for orbit determination is Gooding’s (1993) method that considered var-
ious issues, the first of which is about the best position and time for observation of space
objects. The second point pertaining to his work is utilisation of auxiliary sensory tools
with the purpose of improving the observation conditions. Moreover, the effects of sensor
type and their accuracy for initial distance determination were considered in the method.
Further methods incorporate a myriad of corrections on the Laplace and Gauss methods.
Briggs and Slowley (1959) presented a technique through which an iterative method was
introduced utilising computer technologies. Escobal (1965) has presented an approach for
angles-only orbit determination, namely the Double Iteration Method. This technique is
similar to the classical orbit determination methods; however, there are some differences
between them. For instance, Escobal’s approach is far more accurate than previous classical
methods, but compared to the previous ones, the method suffers from long computational
time. Vallado (2010) has recently considered the three basic techniques including Gauss,
Laplace and Escobal, and proposed these mentioned methods as the standard orbit determi-
nation techniques. All the Gauss, Laplace, Gooding and Escobal methods focus on angles.
The Gooding method is an extended iterative technique that is specific to earth-orbiting
satellites, where their angular data are based on several rotations around the earth. This
method is not compatible with our objectives in this work. On the other hand, Escobal’s
technique, that is Double Iteration, is suitable for long arcs.

The Laplace approach will be optimal only if the distance between the grabber satel-
lite and space debris is extremely long. Therefore, the best method for short arcs, which
is the main objective of this paper, is the Gauss approach (Marsden, 1985). In addition,
Xu et al. (2016) achieved some rendezvous by the proposed adaptive control based on the
measurements of relative position and velocity between the chaser and target spacecraft.
Gruntman (2014) researched some methods that use optical methods for detecting sub mil-
limetre and millimetre size debris in low earth orbits. In addition, some further research on
extensions of these methods has also been conducted in Armellin et al. (2016) and Kauf-
man et al. (2016) for further analysis of the uncertainties. Figure 1 exhibits the proposed
plan of robust in-orbit localisation and orbit prediction of the space debris.

2. ITERATIVE BEARING-ONLY POSITIONING OF SPACE DEBRIS. All the orbit
determination methods are based on a common basis (Townsend, 2008). If �r is position
vector of the space debris, �ρ is the distance vector between the space debris and grabber
satellite and �R is position vector of grabber satellite, it leads to:

�r = �ρ + �R = ρL̂ + �R (1)
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Figure 1. Diagram of robust in-orbit positioning, orbit determination, and path prediction.

Figure 2. Schematic view of the geometry of orbit determination for a sample space debris.

where L̂ is direction unit vector between the space debris and grabber satellite. A schematic
view of the problem’s geometry for orbit determination of space debris is displayed in
Figure 2 For calculating the position vector of the space debris, it is necessary to present
some assumptions in this paper. Since the main goal of this work is utilisation of a low-cost
orbit determination based on the observations from an orbiting robot; this work is limited
to utilising bearing-only methods. In other words, since finding the slant range between
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Figure 3. Schematic view of the grabber satellite’s position.

the space debris and grabber satellite needs expensive equipment, the Gauss technique,
which is one of the bearing-only methods, is employed in this research (Curtis, 2013).
Therefore, the azimuth and elevation angles between the observer and debris are specified.
Note that the following angles are related to three different times over a short arc. For orbit
determination using the Gauss method, the obtained azimuth and elevation angles are first
converted into right ascension and declination, which are shown in Figure 3.

For this purpose, the unit vector of the sensor coordinate system, which is mounted on
the viewer, is first obtained for transformation from sensor coordinate system to the right
ascension and declination coordinate system as follows:⎡

⎣Lhx
Lhy
Lhz

⎤
⎦ =

⎡
⎣− cos (AZ) cos (El)

sin (AZ) cos (El)
sin (El)

⎤
⎦ (2)

where Lh, AZ and EL are line of sight unit vectors between the space debris and grabber
satellite, azimuth, and elevation angles, respectively. After calculating the line of sight unit
vector, it is transformed to the right ascension and declination frame as noted below:⎡

⎣Lhx
Lhy
Lhz

⎤
⎦ =

⎡
⎣sin (φ) cos (�) − sin (�) cos (φ) cos (�)

sin (φ) sin (�) cos (�) cos (φ) sin (�)
− cos (φ) 0 sin (φ)

⎤
⎦.

⎡
⎣Lhi

Lhj
Lhk

⎤
⎦ (3)

� = cos−1(
�Rij. �X

|�Rij || �X | ) (4)

φ = cos−1

( �Rij. �R
|�Rij ||�R|

)
(5)
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where �, φ are right ascension and declination angles, respectively. Also �X and �R are
x-direction in the Earth-Centred-Inertial (ECI) frame and position vector of observer,
respectively. There are numerical non-zero values including a, b and c which are capable
of creating the following relationship:

a�r1 + b�r2 + c�r3 = 0 (6)

where �r1, �r2 and �r3 are position vector of space debris during the first, second and third
observations. If the aforementioned relationship is solved in terms of �r2, the following
relationship will be created:

�r2 = c1�r1 + c3�r3 (7)

For calculating the r1 and r3, the Lagrange coefficients, f and g are required through
which the position vector for a specified time could be expressed in terms of position and
velocity vectors during other times as noted below:

�r1 = f1�r2 + g1�v2 (8-1)

�r3 = f3�r2 + g3�v2 (8-2)

f1 = 1 − (t1 − t2)2

2
h2 (8-3)

f3 = 1 − (t3 − t2)2

2
h2 (8-4)

g1 = (t1 − t2) − (t1 − t2)3

6
h2 (8-5)

g3 = (t3 − t2) − (t3 − t2)3

6
h2 (8-6)

where �v2 is the velocity vector of space debris during the second observation. Therefore, �r1
and �r3 are calculated in terms of �r2. In addition, h2 is angular momentum of space debris
during the second observation and μ is the earth gravitational parameter. By combination
the equations (Curtis, 2013), we have:

c2ρ2L̂2 + c1ρ1L̂1 + c3ρ3L̂3 = −c1�rsite1 − c3�rsite3 − c2�rsite2 ≡ M (9-1)⎡
⎣L1x L2x L3x

L1y L2y L3y
L1z L2z L3z

⎤
⎦.

⎡
⎣c1ρ1

c2ρ2
c3ρ3

⎤
⎦ = M = [L]

⎡
⎣c1ρ1

c2ρ2
c3ρ3

⎤
⎦ (9-2)

where c1 and c3 are functions of |�r2|, t1, t2 and t3. Moreover, L̂1, L̂2 and L̂3 are direction unit
vectors between the debris and observer during the first, second and third observations. By
inversing, the unit vectors of the line of sight matrix are:⎡

⎣c1ρ1
c2ρ2
c3ρ3

⎤
⎦ = [L]−1 M (10-1)

[L]−1 ≡ [A] =

⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ (10-2)
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Afterwards, in terms of new variables the following relations are revealed:

c1 ≈ τ1

τ2

[
1 +

(
τ 2

2 − τ 2
1

)
6

h2

]
= A1 + B1h2 (11-1)

c3 ≈ τ3

τ2

[
1 +

(
τ 2

2 − τ 2
3

)
6

h2

]
= A3 + B3h2 (11-2)

�AT =
[
A1 −1 A3

]
(11-3)

�BT =
[
B1 0 B3

]
(11-4)

For obtaining ρ1, ρ2 and ρ3 the following relations are exploited:

ρ2 = A∗
2 + B∗

2h2 (12-1)

ρ1 =
A∗

1 + B∗
1h2

c1
(12-2)

ρ3 =
A∗

3 + B∗
3h2

c3
(12-3)

A∗
2 = a21 �A. �X + a22 �A. �Y + a23 �A. �Z (12-4)

B∗
2 = a21 �B. �X + a22 �B. �Y + a23 �B. �Z (12-5)

A∗
1 = −(a11 �A. �X + a12 �A. �Y + a13 �A. �Z) (12-6)

B∗
1 = −(a11 �B. �X + a12 �B. �Y + a13 �B. �Z) (12-7)

A∗
3 = −(a31 �A. �X + a32 �A. �Y + a33 �A. �Z) (12-8)

B∗
3 = −(a31 �B. �X + a32 �B. �Y + a33 �B. �Z) (12-9)

Moreover, position vectors of the observer during three observations are expressed as noted
below:

[X
... Y

... Z]T =

⎡
⎣�rsite1x �rsite2x �rsite3x

�rsite1y �rsite2y �rsite3y
�rsite1z �rsite2z �rsite3z

⎤
⎦ (13)

where �X , �Y and �Z are three directions in the ECI frame. Finally, for computation of the
position vector of space debris during the second observation, the following equation is
solved:

r8
2 − r6

2

[
r2

site2 + A∗2
2 + 2

(
L̂2. �rsite2

)
A∗

2

]
− r3

2

[
2A∗

2B∗
2μ + 2

(
L̂2. �rsite2

)
B∗

2μ
]

− B∗2
2 μ2 = 0

(14)
By solving and obtaining eight possible answers, two cases occur. In the first case, if the
space debris during the observation time lies in higher orbit relative to the satellite, that is
|�r2| > |�rsite2|, the largest root is the desired solution. In the second case, if the satellite lies in
higher orbit during the observation time relative to the space debris, that is |�r2| < |�rsite2|, the
second-largest root is the solution. Therefore, the position vector of the debris is eventually
obtained as an input for the EKF for increasing the robustness and accuracy of the Gauss
Method, which is described in detail in the next Section.
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3. EKF AND ROBUST POSITIONING. In this work, the dynamics of the system are
nonlinear. Hence, both the EKF and Unscented Kalman Filter (UKF) may be used. UKF is
similar to the EKF but the linearization process is not applied in UKF. Because EKF is one
of the most widely used filters for nonlinear systems, specifically because of its speed, this
filter is employed in the current research (Giannitrapani et al., 2011). In fact, this filter con-
verts the nonlinear system into a state-dependent time varying linear system; however, this
transformation leads to some modelling errors. The significance of the Kalman filter is that
all calculations for the system’s state estimations (regardless of accuracies) are done using
proper weighting. Relative motion between the earth and satellite is a two-body problem
without any noise according to the law of universal gravitation.

3.1. Filtering and Estimation. Now, EKF is considered in detail. This filter is
undoubtedly one of the most widely used filters for Gaussian nonlinear systems over the
past few decades. By employing this filter, the system is first linearized through sampling
times and then, systems’ states are estimated for the next steps. Generally, the solving pro-
cess for EKF is divided into two parts including predicting and updating times. During the
estimation step, the measurement error covariance is first considered as follows (Wu et al.,
2013; Kaufman et al., 2016; Armellin et al., 2016):

p−
k = Fk−1p+

k−1FT
k−1 + Qk−1 (15)

where plus and minus indices are germane to the next and previous times, respectively.
State is estimated as noted below:

x̂−
k = fk−1(x̂+

k−1uk−1, 0) (16)

It should be noted that a fourth-order Runge-Kutta method has been utilised in this paper for
calculating the x̂−

k . Afterwards, the updating step is started by computation of the Kalman
gain matrix as:

kk = p−
k H T

k (Hk p−
k H T

k )−1 (17)

where kk is the gain matrix. State variables and covariance matrices during the update
process are calculated by means of observation data as follows:

x̂+
k = x̂−

k + kk
[
yk − hk

(
x̂−

k , 0
)]

(18-1)

p+
k = (I − kkH T

k )p−
k (18-2)

3.2. Range Prediction Model. A diagramatic snapshot of orbits of observer space
robot and space debris is shown in Figure 4. Here the state vector of the system is defined
as (Wu et al., 2013):

X = (rx, ry , rz, vx, vy , vz)T (19)

Equations of motion in a Keplerian Orbit, comprising perturbations based on the law of
universal gravitation are expressed as:

r̈ = − μ

r2 êr + Fp (20)
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Figure 4. Supposed orbits of the grabber satellite and space debris.

where μ is Earth gravitational parameter and Fp model uncertainties due to the perturba-
tions. Moreover, the motion state differential equation is defined as:

Ẋk =
(
ṙx, ṙy , ṙz, r̈x, r̈y , r̈z

)T
k = f (Xk, k) (21)

The second-order Taylor expansion for discrete form of the aforementioned relation-
ship is:

Xk+1 = Xk + f (Xk)h + F(Xk)f (Xk)
h2

2
+ O2

k (h) = φ (Xk) + O2
k (h) (22)

where O2
k (h) is model uncertainty (Big-O-2) which is modelled as a Gaussian white noise

with zero average and F(Xk), Jacobian of F , is defined as below:

F(Xk) =
∂f (Xk)
∂Xk

(23)

State vectors of the satellite and space debris during k-th step are respectively calculated
as follows:

ẋs,k =
(
ṙxs, ṙys, ṙzs, r̈xs, r̈ys, r̈zs

)T
k (24-1)

ẋb,k =
(
ṙxb, ṙyb, ṙzb, r̈xb, r̈yb, r̈zb

)T
k (24-2)
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Consequently, the Jacobian matrix of the state equation is derived as:

F(xd) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−
μ
(

r
3
2 − 3x2

br
1
2

)
r3 −3μxbybr− 5

2 −3μxbzb (k) r− 5
2 0 0 0

−3μxbybr− 5
2 −

μ
(

r
3
2 − 3y2

b r
1
2

)
r3 −3μzbybr− 5

2 0 0 0

−3μxbzbr− 5
2 −3μybzbr− 5

2 −
μ
(

r
3
2 − 3z2

br
1
2

)
r3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; at kthstep

(25)
where the exhibited elements are the resultant of the Jacobian operator on f . In addition, r
denotes the squared range from the debris and is defined as noted below:

r2 = r2
xb + r2

xb + r2
xb (26)

3.3. Bearing-Only Observation Model. In this work, measurement equation is con-
sidered as below:

Y =
[

AZ
EL

]
= h (Xs, Xb) + V (27)

where V resembles measurement noises. Moreover, the measured azimuth and elevation
angles through mounted sensors on the observer robot are expressed as follows:

AZ = tan−1
(

ryb − rys

rxb − rxs

)
(28)

EL =

⎛
⎝ rzb − rzs√

(rxb − rxs)
2 +
(
ryb − rys

)2
⎞
⎠ (29)

In the following, the Jacobian matrix of the measurement equation is derived as noted
below:

H =
∂h
∂Xb

; at kth step

=

⎡
⎢⎢⎢⎢⎢⎣

− ry,bs

r2
x,bs + r2

y,bs

rx,bs

r2
x,bs + r2

y,bs
0 0 0 0

− rz,bsrx,bs(
r2

x,bs + r2
y,bs

)1
2
d2

− rz,bsry,bs(
r2

x,bs + r2
y

)1
2
d2

(
r2

x,bs + r2
y,bs

)1
2

d2 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (30)
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in which rx, ry , rz are elements of the range vector along x, y, and z directions while d is
magnitude of the range vector at kthstep:

rx,bs = rxb − rxs (31-1)

ry,bs = ryb − rys (31-2)

rz,bs = rzb − rzs (31-3)

d2 = r2
x,bs + r2

y,bs + r2
z,bs (31-4)

4. SOLUTION OF LAMBERT PROBLEM AND ORBIT DEFINITION. The first
stage in cleaning space debris from an orbit is determination of the debris’ orbit through
a space/ground observer. Since the position of the space debris is specified during a
bearing-only process, the velocity vector should be calculated through some techniques
for accomplishment of the requirements of orbit determination procedure. Since the Lam-
bert approach (Curtis, 2013) is far more accurate than the Gibbs Method it is utilised in
our preliminary orbit determination process. It is indicated that the Lambert Problem has
a shorter computation time relative to the Gibbs one. In this method, orbital elements are
calculated based on only two position observations and the time difference between them.
It is supposed that the calculated position vectors during two different times are r1 and r2
and the time difference between them is indicated. Afterwards, it is determined whether the
orbit is retrograde or prograde. The angle between the two position vectors in the Lambert
Problem is calculated as follows:

α = cos−1 r1 . r2

r1r2
(32)

Some auxiliary variables are employed for the sake of simplification, one of which is
defined as:

A = sin �α

√
r1r2

1 − cos �α
(33)

Correspondingly, another auxiliary variable z is defined and obtained iteratively from
numerical methods as follows:

zi+1 = zi − F(zi)

F́(zi)
(34)

The mentioned equation is a recursive one and the calculation process is continued until
the value of z approaches its amount in the prior step. The auxiliary function of y (z) is
obtained from the following functions:

y(z) = r1 + r2 + A
zS (z) − 1√

C(z)
(35-1)

S(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
Z − sin

√
Z

√
Z

3 (z > 0)

sinh
√−Z − √−Z
√−Z

3 (z < 0)

1
6

(z = 0)

(35-2)
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C(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − cos
√

Z
√

Z
3 (z > 0)

cosh
√−Z − 1

√−Z
3 (z < 0)

1
2

(z = 0)

(35-3)

where C(z) and S (z) are called Stumpff functions, Afterwards, Lagrange coefficients and
their derivatives are obtained as noted below:

f = 1 − y
r1

(36-1)

g = A
√

y
μ

(36-2)

ġ = 1 − y
r2

(36-3)

Eventually, velocity vectors at the two observation times are calculated as follows:

v1 =
1
g

(r2 − fr1) (37-1)

v2 =
1
g

(ġr2 − r1) (37-2)

As noted above, the six classical orbital elements are obtained from a union of the pre-
computed position and velocity vectors. It is mentioned that the Lambert Approach is far
easier than the Gibbs Method. To elucidate further, the space object in the Gibbs Method
is observed three times, whereas two observations as well as the time difference between
them are sufficient in the Lambert Approach. Note that as per our experiments, the required
solving time in the Gibbs Method is nearly five times greater than in the Lambert Problem.
After computing the position and velocity vectors, angular momentum, inclination angle,
the eccentricity vector is obtained as noted below:

h = r × v (38-1)

i = cos−1 hz

h
(38-2)

e =
1
μ

[(
v2 − μ

r

)
r − rvrv

]
(38-3)

vr =
v . r

r
(38-4)

Afterwards, right ascension, argument of perigee, and the true anomaly angle are also
attained as follows:

� = cos−1 Nx

N
(39-1)

w = cos−1 N . e
Ne

(39-2)

https://doi.org/10.1017/S0373463317000029 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000029


800 MA AMIRI ATASHGAH AND OTHERS VOL. 70

θ = cos−1 r . e
re

(39-3)

N = K̂ × h (39-4)

where K̂ is a unit vector along z. Moreover, perigee radius, apogee radius and semi-major
axis are calculated from relations exhibited in Curtis (2013).

5. MODEL-BASED ORBIT PREDICTION AND MECHANISATION. Prediction of
space debris’ orbit, during the observations, is an essential task; due to the perturbations
such as the earth anomalies like oblateness and bulge, atmospheric and geomagnetic forces
and moments, solar and galactic winds and so on. Any geocentric orbit suffers from dynam-
ical changes of orbital elements. This lack of symmetry means that the force of gravity on a
revolving object is not focused along the centre of the earth. While the gravitational field of
a plainly spherical sphere depends on the distance from its centre, oblateness causes a vari-
ation with latitude, which is called zonal variation, as well. The second zonal harmonic
(J2), is a dimensionless factor, which indicates the effects of oblateness on orbits. In the
following, the gravitational specific force (per unit mass) in an oblate globe is given by:

r̈ = − μ

r2 êr + Fp (40)

in which Fp stands for the perturbing acceleration that is due to the earth spherical defects.
This perturbing acceleration is comprised of the following noted components:

Fp = prêr + p⊥ê⊥ + phĥ (41)

where êr, ê⊥, ĥ are respectively, radial, transverse and perpendicular unit vectors attached
to the satellite. Furthermore, pr, p⊥and ph all depend on j2 that are computed from the
following relations:

pr = − μ

r2

3
2

J2

(
R
r

)2

[1 − 3sin2i sin2(ω + θ )] (42-1)

p⊥ = − μ

r2

3
2

J2

(
R
r

)2

sin2i sin[2(ω + θ )] (42-2)

ph = − μ

r2

3
2

J2

(
R
r

)2

[1 − 3sin2isin(ω + θ )] (42-3)

Prussing and Conway (1993) showed how pr, p⊥ and ph affect time rates of change for
Right Ascension and Argument of Perigee, respectively.

�̇ =
h
μ

sin(ω + θ )
sin i (1 + ecosθ )

ph (43)

ω̇ = − rcosθ
eh

pr +
(2 + ecosθ )sinθ

eh
p⊥− rsin(ω + θ )

h tan i
ph (44)

Evidently, the time variation of the Right Ascension depends merely on the component of
the instantaneous perturbing force, normal to the orbital plane, while the rate of change of
the Argument of Perigee is subject to all the perturbation components.
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5.1. Mechanisation in Inertial and Earth-Fixed Frames. To compute orbital position
and velocity (X , Y, Z, Ẋ , Ẏ, and Ż) at time t, given, a, e, i, ω, �, and T, at the first step the
mean anomaly, MA, the eccentric anomaly, EA, and the true anomaly, ν, are computed
respectively using the following relations (Chobotov, 2002):

M =
√

μ

a3 (t − T) (45-1)

MA = EA − e sin EA (45-2)

tan
ν

2
=
[

(1 + e)
(1 − e)

]1/2

tan
EA
2

(45-3)

Afterwards, the radius, r, the specific angular momentum, h, the position and the velocity
vectors’ components, are computed as below:

r = a(1 − e cos EA) =
p

1 + e cos ν
=

a(1 − e2)
1 + e cos ν

, h = (μa(1 − e2))1/2 (46-1)

X = r(cos � cos(ω + ν) − sin � sin(ω + ν) cos i)

Y = r(sin � sin(ω + ν) − cos � sin(ω + ν) cos i) (46-2)

Z = r(sin i sin(ω + ν))

Ẋ =
Xhe

p
sin ν − h

r
(cos � sin(ω + ν) + sin � cos(ω + ν) cos i)

Ẏ =
Yhe

p
sin ν − h

r
(sin � sin(ω + ν) − cos � cos(ω + ν) cos i) (46-3)

Ż =
Zhe

p
sin ν +

h
r

sin i cos(ω + ν)

To resolve coordinates in ECEF (Earth-Centred-Earth-Fixed) frame, the following
relation is exploited:

⎡
⎣X

Y
Z

⎤
⎦

ECEF

=

⎡
⎣cos θG sin θG 0

sin θG cos θG 0
0 0 1

⎤
⎦
⎡
⎣ Ẋ + ωEY

Ẏ − ωEX
Ẋ

⎤
⎦

ECI

(47)

where θG is the Greenwich sidereal time, and ωE is the Earth spin rate (7.2921158553x10−5

rad/sec). Furthermore, in order to reckon the space debris’ ground track, which involves the
geographic latitude and longitude, the following relations are utilised:

l = asin (Z/r) (48-1)

λ = if m > 0; acos
(

l
cos (l)

)
, else; 360 − acos

(
l

cos (l)

)
(48-2)
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Table 1. Orbital elements of observer, space debris, and determined orbit.

Parameter Observer Orbit Debris’ Initial Orbit Determined Orbit Errors

Inclination (deg) 72.00 98.30 98.37 0.07
Right ascension (deg) 270.00 202.50 202.54 0
Argument of perigee (deg) 70.00 260.00 256.53 3.47
Eccentricity 0.003 0.0006 0.00069 0.00009
Apogee radius (km) 16103.908 7106.104 7087.243 18.861
Perigee radius (km) 16007.614 7097.772 7085.065 12.707
Semi-major axis (km) 16056.009 7102.272 7092.483 9.789

Figure 5. A view of simulated orbits of space debris and the observer.

6. SIMULATION RESULTS. In the current work, we assume that the observer
observes the debris’ initial orbit from an unchanging orbit. This type of orbit is normally
achieved via the Automatic Orbit Control System (AOCS) of the observer. The debris is
also supposed to be the Switzerland CubeSat which encounters perturbations. Moreover,
initial orbital elements for observer and space debris and orbital characteristics of the space
debris obtained from the Lambert Method are presented in Table 1. By comparison with
the reference data, it is clear that the employed hybrid procedure in this paper has sufficient
accuracy during the preliminary orbit determination.

The simulated orbits of the space debris and the observer robot are shown in Figure 5.
In the next step, the variations of the space debris’ position vector obtained using EKF
are considered during the specified period. For observing the position vector variations,
three different figures are considered based on the variations along x, y, and z. A view of
simulated relative trajectory of space debris and the observer are shown in Figure 6(a),
which demonstrates the complexity of the scenario. Moreover, the history of the reference
orbit together with the estimated orbit by EKF are shown in Figure 6(b), where one might
obtain a visual insight on the intimacy between them of the results.
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(a)

(b)

Figure 6. (a) A 3D/2D view of simulated relative trajectory of space debris and the observer. (b) History of the
reference orbit and the estimated orbit by EKF.

The variations of the space debris’ position vector along the x-axis are illustrated in
Figure 7(a). As exposed, these variations due to different harmonies in the orbits of space
debris and the observer are sinusoidal. Moreover, the distance between two peaks indicates
the complete orbit cycle. The variations of the elements of space debris’ position vector,
along y-and-z-axes, are displayed in Figures 7(b), and 7(c), respectively. Also, the vari-
ations of the space debris’ velocity components, along x, y and z-axes, are exhibited in
Figures 8(a), 8(b), and 8(c), in turn. The error components of the space debris’ position
vector are portrayed in Figures 9(a), 9(b), and 9(c), respectively. The error components of
the space debris’ velocity vector, along x, y and z-axes, are demonstrated in Figure 10(a),
10(b), and 10(c). As per the outcomes, error rates in the space debris’ position and veloc-
ity vectors after the specified time increase a shallow slope because of the application of
EKF. In other words, this issue demonstrates the efficacy of EKF, which is applied in this
research. It is stated that these slight errors are created due to the uncertainties as well as
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Figure 7. (a) Variations of the space debris’ position vector along x-axis, (b) y-axis, and (c) z-axis.
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Figure 8. (a) Variations of the space debris’ velocity vector along x-axis, (b) y-axis, and (c) z-axis.
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Figure 9. (a) Error variations of space debris’ position vector along x-axis, (b) y-axis, and (c) z-axis.
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Figure 10. (a) Error variations of space debris’ velocity vector along x-axis, (b) y-axis, and (c) z-axis.
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Figure 11. Estimated (a) Angular momentum, (b) Eccentricity (c) Right ascension, (d) Inclination, (e) True anomaly, and (f) Argument of perigee of the space debris’ orbit.
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Figure 12. Predicted time history of the space debris orbit, (a) 3D position (b) Right Ascension, (c) Angular
Momentum, (d) Argument of Perigee, and (e) Eccentricity.

produced errors because of the high simulation time. Note that after a specific time, errors
will increase, and this issue indicates that it is necessary to utilise other auxiliary methods
or integration of them for a precise orbit determination.

The determined orbital elements, including angular momentum, eccentricity, right
ascension and inclination, true anomaly and argument of perigee are portrayed in
Figures 11(a) to 11(f), respectively. The results of model-based prediction of space debris’
orbit are demonstrated in Figures 12(a), 12(b), and 12(c). At the end, for better under-
standing of the orbital characteristics and the effects of perturbations, the ground track of
the space debris and the observer are depicted in Figure 13. It is indicated that, due to
considering a 98◦ for inclination angle and high sensitivity of the perturbations on it, the
simulation scenario experiences the uppermost possible anomalies in the orbit of the space
debris.
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Figure 13. Ground track of space debris.

7. CONCLUSION. The main objective of this paper has been preliminary positioning,
orbit determination, and model-based trajectory prediction of space debris, based on a
robust procedure using iterative bearing-only in-orbit observations. In the first place, the
problem was formulated with the purpose of calculating the distance vector between the
space debris and an observer satellite. In addition, the assumption employed in this work
was that the orbit of the observer was specified right from the beginning. Afterwards, the
obtained position vector of the debris, by Gauss method, was corrected through EKF to
diminish the errors. The Lambert Method was applied in this work for calculating the
velocity vectors, and eventually, orbital elements of the space debris were obtained via
acquired position and velocity vectors of the space debris. For future practical applications,
a model-based method was exploited for prediction of the position and orbital characteris-
tics of the debris. The efficacy and robustness of the presented method were demonstrated
by running desired simulations over a practical mission. Particularly, it was verified that the
suggested scheme was capable of producing a suitable solution for preliminary localisation
and orbit determination of space debris based on the presented space-based observations,
which was practical in preliminary rendezvous manoeuvres such as phasing and chasing
exercises of any debris grabber space-machine.
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