Bull. Aust. Math. Soc. 109 (2024), 420–428 doi[:10.1017/S0004972723000904](http://dx.doi.org/10.1017/S0004972723000904)

SUMSETS CONTAINING A TERM OF A SEQUENC[E](#page-0-0)

MI[N](https://orcid.org/0009-0000-7929-8396) CHEN^{[®] and MIN TANG^[®]}

(Received 5 June 2023; accepted 1 August 2023; first published online 18 September 2023)

Abstract

Let $S = \{s_1, s_2, \ldots\}$ be an unbounded sequence of positive integers with s_{n+1}/s_n approaching α as $n \to \infty$ and let $\beta > \max(\alpha, 2)$. We show that for all sufficiently large positive integers *l*, if $A \subset [0, l]$ with $l \in A$, gcd $A = 1$ and $|A| \ge (2 - k/\lambda \beta)l/(\lambda + 1)$, where $\lambda = \lceil k/\beta \rceil$, then $kA \cap S \ne \emptyset$ for $2 < \beta \le 3$ and $k > 2\beta$ and $k > 2\beta$ $k \geq 2\beta/(\beta - 2)$ or for $\beta > 3$ and $k \geq 3$.

2020 *Mathematics subject classification*: primary 11B13.

Keywords and phrases: sumsets, sequences, powers of an integer.

1. Introduction

For two sets *A*, *B* of integers and $a \in \mathbb{Z}$, define

$$
A + B = \{a + b : a \in A, b \in B\},\
$$

and

$$
a-B = \{a-b : b \in B\}.
$$

For a positive integer $h \geq 2$, let

$$
hA = \{a_1 + \cdots + a_h : a_1, \ldots, a_h \in A\}.
$$

A set *A* of nonnegative integers is called *normal* if $0 \in A$ and the greatest common divisor of all elements of *A* is 1.

In 1990, Erdős and Freiman [[2\]](#page-7-0) proved a conjecture of Erdős and Freud: if a set A of integers is a subset of $[1, n]$ and $|A| > n/3$, then a power of 2 can be written as the sum of elements of *A*. In 1989, Nathanson and Sárközy [\[6\]](#page-8-0) improved this result by showing that 3504 elements of *A* is enough. Finally, Lev [\[4\]](#page-8-1) obtained the best possible result that a power of 2 is the sum of at most four elements of *A*. In 2004, Abe [\[1\]](#page-7-1) extended Lev's result to a power of *m*. In 2006, Pan [\[7\]](#page-8-2) generalised the results of Lev and Abe.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11071033, 12371003) and the Top Talents Project of Anhui Department of Education (Grant No. gxbjZD05).

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

$$
|A| > \frac{1}{l+1} \Big(\Big(2 - \frac{k}{lm} \Big) n + 2l \Big),
$$

where l = $\lceil k/m \rceil$ *. If m* \geq 3*, or m* = 2 *and k is even, then kA contains a power of m.*

Pan conjectured that Theorem [1.1](#page-1-0) still holds for *m* = 2 and *k* is odd. In 2012, Wu and Chen [\[8\]](#page-8-3) made some progress towards this conjecture.

In 2010, Kapoor [\[3\]](#page-8-4) extended Pan's result for 2*A* to general sequences. He proved the following two results.

THEOREM 1.2 [\[3,](#page-8-4) Theorem 1]. Let $\{a_1, a_2, a_3, \ldots\}$ be an unbounded sequence of *positive integers. Assume that* a_{n+1}/a_n *approaches some limit* α *as* $n \rightarrow \infty$ *, and let* β > ² *be some real number greater than* α*. Then for sufficiently large x* [≥] ⁰*, if A is a set of nonnegative integers less than or equal to x containing* 0 *and satisfying*

$$
|A| \ge \left(1 - \frac{1}{\beta}\right)x,
$$

then 2A contains an element of $\{a_n\}$.

THEOREM 1.3 [\[3,](#page-8-4) Theorem 2]. Let $\{a_1, a_2, a_3, \ldots\}$ be an unbounded sequence of *positive integers such that* $a_{n+1}/a_n \leq \beta$ *for some constant* $\beta \geq 2$ *. Then for any* $x \geq 0$ *, if A is a set of nonnegative integers less than or equal to x containing* 0 *and satisfying*

$$
|A| > \left(1 - \frac{1}{\beta}\right)x + \frac{1}{\beta} \cdot \left\lfloor \frac{a_1 - 1}{2} \right\rfloor + 1,
$$

then 2A contains an element of $\{a_n\}$.

We extend Pan's result for kA ($k \geq 3$) to general sequences that grow like the powers of a real number greater than or equal to 2.

THEOREM 1.4. Let $\beta > 2$ be a real number and let $S = \{s_1, s_2, \ldots\}$ be an unbounded *sequence of positive integers such that* $\lim_{n\to\infty} s_{n+1}/s_n = \alpha < \beta$. Let $k \geq 3$ be a positive *integer. For large enough l, let A be a normal subset of* [0, l] *with* $l \in A$ *such that*

$$
|A| \ge \frac{1}{\lambda + 1} \left(2 - \frac{k}{\lambda \beta} \right) l,
$$

where $\lambda = \lceil k/\beta \rceil$ *. If* $2 < \beta \le 3$ *, then* $kA \cap S \neq \emptyset$ *for all* $k \ge 2\beta/(\beta - 2)$ *. If* $\beta > 3$ *, then* $kA \cap S \neq \emptyset$ *for all* $k > 3$ $kA \cap S ≠ \emptyset$ *for all* $k \geq 3$ *.*

THEOREM 1.5. Let $\beta > 2$ *be a real number and let* $S = \{s_1, s_2, ...\}$ *be an unbounded sequence of positive integers such that* $s_{n+1}/s_n \leq \beta$ *. Let* $k \geq 3$ *and l be positive integers such that*

$$
l\left(\frac{k}{\beta} - \lambda + 1\right) \ge \frac{2}{\beta} \left\lfloor \frac{s_1 - 1}{2} \right\rfloor + 1. \tag{1.1}
$$

422 M. Chen and M. Tang [3]

Let A be a normal subset of [0, *l*] *with* $l \in A$ *satisfying*

$$
|A| > \frac{2}{\lambda \beta(\lambda + 1)} \left(\left\lfloor \frac{s_1 - 1}{2} \right\rfloor + \frac{\beta}{2} \right) + \frac{1}{\lambda + 1} \left(\left(2 - \frac{k}{\lambda \beta} \right) l + 2\lambda \right),\tag{1.2}
$$

where $\lambda = \lceil k/\beta \rceil$ *. If* $2 < \beta < 3$ *, then* $kA \cap S \neq \emptyset$ *for all* $k \geq 2\beta/(\beta - 2)$ *. If* $\beta \geq 3$ *, then*
 $kA \cap S \neq \emptyset$ *for all* $k > 3$ $kA \cap S ≠ \emptyset$ *for all* $k \geq 3$ *.*

2. Lemmas

LEMMA 2.1 [\[5,](#page-8-5) Corollary 1]. *If A is a normal subset of* [0,*l*] *with* $l \in A$ *and* $\rho = \frac{(l-1)}{(|A|-2)} - 1$, then

$$
|hA| \ge \begin{cases} B_h(|A|) & \text{if } h \le \rho, \\ B_\rho(|A|) + (h - \rho)l & \text{if } h \ge \rho, \end{cases}
$$

 $where B_h(x) = \frac{1}{2}h(h+1)(x-2) + h + 1.$

LEMMA 2.2. Let $\beta \geq 2$ *be a real number. Let* $S = \{s_1, s_2, ...\}$ *be an unbounded sequence of positive integers such that* $s_{n+1}/s_n \leq \beta$ *. Let a, b be two positive integers. Suppose A and B are sets of integers satisfying* $A \subseteq [0, a]$ *,* $B \subseteq [0, b]$ *and* $0 \in A \cap B$. If

$$
|A| + |B| > 3 + \frac{2}{\beta} \left\lfloor \frac{s_1 - 1}{2} \right\rfloor + \max\left\{ a, b, \left(1 - \frac{1}{\beta} \right) (a + b) \right\},\tag{2.1}
$$

then $(A + B) \cap S \neq \emptyset$ *.*

PROOF. We may assume that $a \leq b$. If $0 \leq b < s_1$, put $x_0 = \lfloor (s_1 - 1)/2 \rfloor$. If $b < x_0$, then

$$
|A| + |B| > 2 + \frac{2}{\beta} \left\lfloor \frac{s_1 - 1}{2} \right\rfloor + \left(1 - \frac{1}{\beta}\right) (a + b)
$$

> 2 + $\frac{1}{\beta} (a + b) + \left(1 - \frac{1}{\beta}\right) (a + b) = 2 + a + b$,

which is a contradiction since $|A| + |B| \le a + b + 2$. Thus, $x_0 \le b < s_1$. If $a + b < s_1$, then

$$
|A| + |B| > 3 + \frac{2}{\beta} \left\lfloor \frac{s_1 - 1}{2} \right\rfloor + \left(1 - \frac{1}{\beta}\right) (a + b)
$$

\n
$$
\geq 3 + \frac{1}{\beta} (s_1 - 2) + \left(1 - \frac{1}{\beta}\right) (a + b)
$$

\n
$$
\geq 3 + \frac{1}{\beta} (a + b - 1) + \left(1 - \frac{1}{\beta}\right) (a + b)
$$

\n
$$
\geq 3 - \frac{1}{\beta} + a + b > a + b + 2,
$$

which is again impossible. Thus, $a + b \geq s_1$. Then,

$$
|A| + |B| > 3 + \frac{1}{\beta}(s_1 - 2) + \left(1 - \frac{1}{\beta}\right)(a + b)
$$

\n
$$
\geq 3 + \frac{1}{\beta}s_1 - \frac{2}{\beta} + \left(1 - \frac{1}{\beta}\right)s_1
$$

\n
$$
= 3 - \frac{2}{\beta} + s_1 \geq s_1 + 2.
$$

Since B , $s_1 - A \subseteq [0, s_1]$, we must have $s_1 \in A + B$.

Next, we consider $b \geq s_1$. Choose *r* such that $s_r \leq b < s_{r+1}$. We proceed by induction on $a + b$.

If *a* + *b* = *s*₁ + 1, then *A* ⊆ [0, 1] and *B* ⊆ [0, *s*₁]. Since *s*₁ − *A*, *B* ⊆ [0, *s*₁] and

$$
|A| + |B| > 3 + \frac{1}{\beta}(s_1 - 2) + \left(1 - \frac{1}{\beta}\right)(a + b)
$$

= 3 - \frac{3}{\beta} + s_1 + 1 > s_1 + 2,

we have $s_1 \in A + B$.

Now, assume that $a + b > s_1 + 1$ and that the lemma holds for the sets $A' \subseteq [0, a_1]$ and $B' \subseteq [0, b_1]$ with $a_1 + b_1 < a + b$. Suppose that $(A + B) \cap S = \emptyset$.

Case 1: a < *s_r*. Write $A_1 = s_r - A$. Thus, $A_1 \subseteq [s_r - a, s_r] \subseteq [0, b]$. If $|A_1| + |B| > b + 1$, then

$$
|A_1 \cap B| = |A_1| + |B| - |A_1 \cup B| \ge b + 2 - (b + 1) = 1.
$$

Thus, $s_r \in A + B$, which is impossible. Hence, $|A| + |B| = |A_1| + |B| \le b + 1$, which contradicts the hypothesis [\(2.1\)](#page-2-0).

Case 2: $a \geq s_r$ and $a + b > s_{r+1}$. Write

$$
A_1 = [0, b] \cap (s_{r+1} - A), B_1 = [s_{r+1} - a, b] \cap B,
$$

$$
A_2 = [0, s_{r+1} - b - 1] \cap A, B_2 = [0, s_{r+1} - a - 1] \cap B.
$$

Then,

$$
|B| = |B_1| + |B_2| \tag{2.2}
$$

$$
|A| = |A_2| + |[s_{r+1} - b, a] \cap A|
$$

= |A_2| + |s_{r+1} - ([s_{r+1} - b, a] \cap A)|
= |A_2| + |[s_{r+1} - a, b] \cap (s_{r+1} - A)|
= |A_1| + |A_2|. (2.3)

Since *A*₁, *B*₁ ⊆ [*s_{r+1}* − *a*, *b*] and s_{r+1} ∉ *A*₁ + *B*₁,

$$
|A_1| + |B_1| \le b - s_{r+1} + a + 1. \tag{2.4}
$$

424 M. Chen and M. Tang [5]

If $b = s_{r+1} - 1$, then $|A_2| = 1$ and $|B_2| \le s_{r+1} - a$. By [\(2.2\)](#page-3-0)–[\(2.4\)](#page-3-1),

$$
|A|+|B| \leq s_{r+1}-a+1+b-s_{r+1}+a+1=b+2,
$$

which contradicts the hypothesis [\(2.1\)](#page-2-0). Thus, $b \leq s_{r+1} - 2$.

Since $(A + B) \cap S = \emptyset$, we have $(A_2 + B_2) \cap S = \emptyset$. Noting that

$$
s_{r+1}-b-1+s_{r+1}-a-1<2(a+b)-a-b-2
$$

it follows from the hypothesis that if

$$
\max\left\{s_{r+1}-b-1, s_{r+1}-a-1, \left(1-\frac{1}{\beta}\right)(2s_{r+1}-a-b-2)\right\}=s_{r+1}-a-1,
$$

then

$$
|A_2| + |B_2| \le s_{r+1} - a - 1 + 3 + \frac{2}{\beta} \left[\frac{s_1 - 1}{2} \right].
$$
 (2.5)

By [\(2.2\)](#page-3-0)–[\(2.5\)](#page-4-0),

$$
|A|+|B| \le b - s_{r+1} + a + 1 + s_{r+1} - a - 1 + 3 + \frac{2}{\beta} \left\lfloor \frac{s_1 - 1}{2} \right\rfloor = b + 3 + \frac{2}{\beta} \left\lfloor \frac{s_1 - 1}{2} \right\rfloor,
$$

which contradicts [\(2.1\)](#page-2-0). If

$$
\max \left\{ s_{r+1} - b - 1, s_{r+1} - a - 1, \left(1 - \frac{1}{\beta} \right) (2s_{r+1} - a - b - 2) \right\}
$$

$$
= \left(1 - \frac{1}{\beta} \right) (2s_{r+1} - a - b - 2),
$$

then

$$
|A_2| + |B_2| \le \left(1 - \frac{1}{\beta}\right)(2s_{r+1} - a - b - 2) + 3 + \frac{2}{\beta}\left[\frac{s_1 - 1}{2}\right].\tag{2.6}
$$

By [\(2.2\)](#page-3-0)–[\(2.4\)](#page-3-1) and [\(2.6\)](#page-4-1),

$$
|A| + |B| \le b - s_{r+1} + a + 1 + \left(1 - \frac{1}{\beta}\right)(2s_{r+1} - a - b - 2) + 3 + \frac{2}{\beta}\left\lfloor\frac{s_1 - 1}{2}\right\rfloor
$$

$$
= s_{r+1} - \frac{2}{\beta}s_{r+1} + \frac{1}{\beta}(a+b) + \frac{2}{\beta} + 2 + \frac{2}{\beta}\left\lfloor\frac{s_1 - 1}{2}\right\rfloor
$$

$$
\le a + b - \frac{2}{\beta}(a+b) + \frac{1}{\beta}(a+b) + \frac{2}{\beta} + 2 + \frac{2}{\beta}\left\lfloor\frac{s_1 - 1}{2}\right\rfloor
$$

$$
= \left(1 - \frac{1}{\beta}\right)(a+b) + \frac{2}{\beta} + 2 + \frac{2}{\beta}\left\lfloor\frac{s_1 - 1}{2}\right\rfloor
$$

$$
\le \left(1 - \frac{1}{\beta}\right)(a+b) + 3 + \frac{2}{\beta}\left\lfloor\frac{a_1 - 1}{2}\right\rfloor,
$$

which again contradicts (2.1) .

Case 3: $a \geq s_r$ and $a + b \leq s_{r+1}$. Write

$$
A_1 = [0, s_r] \cap A, B_1 = [0, s_r] \cap B,
$$

$$
A_2 = (s_r, a] \cap A, B_2 = (s_r, b] \cap B.
$$

Since $(A + B) ∩ S = ∅$, it follows that $(A_1 + B_1) ∩ S = ∅$ and so $|s_r - A_1| + |B_1| ≤ s_r + 1$. Thus,

$$
|A| + |B| \le a + b - 2s_r + s_r + 1 = a + b - s_r + 1.
$$

However, by [\(2.1\)](#page-2-0),

$$
|A| + |B| > 2 + \left(1 - \frac{1}{\beta}\right)(a + b)
$$

= $a + b - \frac{1}{\beta}(a + b) + 2$
 $\ge a + b - \frac{1}{\beta}s_{r+1} + 2$
 $\ge a + b - s_r + 2,$

which is a contradiction. Hence, we have $(A + B) \cap S \neq \emptyset$.

This completes the proof of Lemma [2.2.](#page-2-1)

REMARK 2.3. If *s*¹ is odd, this lower bound can be improved to

$$
|A| + |B| > 2 + \frac{2}{\beta} \left\lfloor \frac{s_1 - 1}{2} \right\rfloor + \max \left\{ a, b, \left(1 - \frac{1}{\beta} \right) (a + b) \right\}.
$$

3. Proof of Theorem [1.5](#page-1-1)

Let $k_1 = \lfloor k/2 \rfloor$ and $k_2 = \lfloor k/2 \rfloor$. Then,

$$
k_1 A \subseteq \left[0, \left\lfloor \frac{k}{2} \right\rfloor l \right], \quad k_2 A \subseteq \left[0, \left\lceil \frac{k}{2} \right\rceil l \right].
$$

Since $\beta > 2$, if $k \ge \frac{\beta}{(\beta - 2)}$, then

$$
\left\lceil \frac{k}{2} \right\rceil \leq (\beta - 1) \left\lfloor \frac{k}{2} \right\rfloor.
$$

In particular, if $\beta \geq 3$, then

$$
k \ge 3 \ge 1 + \frac{2}{\beta - 2} = \frac{\beta}{\beta - 2}.
$$

Hence, if $2 < \beta < 3$ and $k \ge \beta/(\beta - 2)$, or $\beta \ge 3$, then $\lceil k/2 \rceil \le (\beta - 1) \lfloor k/2 \rfloor$. So,

$$
\left\lfloor \frac{k}{2} \right\rfloor \le \left\lceil \frac{k}{2} \right\rceil \le \left(1 - \frac{1}{\beta} \right) \left(\left\lceil \frac{k}{2} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor \right).
$$
 (3.1)

Since $0 \in A$,

$$
k_1A + k_2A = \left(\left\lfloor \frac{k}{2} \right\rfloor + \left\lceil \frac{k}{2} \right\rceil\right)A = kA.
$$

To show $kA \cap S \neq \emptyset$, by Lemma [2.2](#page-2-1) and [\(3.1\)](#page-6-0), it is sufficient to show that

$$
|k_1A| + |k_2A| > 3 + \frac{2}{\beta} \left\lfloor \frac{s_1 - 1}{2} \right\rfloor + \left(1 - \frac{1}{\beta}\right) k l.
$$

By [\(1.2\)](#page-2-2),

$$
(\lambda + 1)(|A| - 2) > \frac{2}{\lambda \beta} \left(\left| \frac{s_1 - 1}{2} \right| + \frac{\beta}{2} \right) + \left(2 - \frac{k}{\lambda \beta} \right) l - 2. \tag{3.2}
$$

Noting that $\lambda \geq k/\beta$,

$$
(\lambda + 1)(|A| - 2) > \left(2 - \frac{k}{\lambda \beta}\right)l - 2 \ge l - 2.
$$
 (3.3)

Write

$$
\rho = \lceil (l-1)/(|A|-2)\rceil - 1.
$$

Then by (3.3) ,

$$
\rho < \frac{l-1}{|A|-2} \le \lambda + 1. \tag{3.4}
$$

If $\beta > 2$ and $k \geq 2\beta/(\beta - 2)$, then

$$
k\left(\frac{1}{2} - \frac{1}{\beta}\right) \ge 1 > \left\lceil \frac{k}{\beta} \right\rceil - \frac{k}{\beta}
$$

and so $k/2 > \lceil k/\beta \rceil$. If $\beta \ge 3$ and $3 \le k < 2\beta$, then $\lceil k/\beta \rceil \le k/2$. If $\beta \ge 3$ and $k \ge 2\beta$, then then

$$
\lambda = \left\lceil \frac{k}{\beta} \right\rceil < \frac{k}{\beta} + 1 = \frac{k}{2} - \frac{(\beta - 2)k}{2\beta} + 1 \le \frac{k}{2}.
$$

Thus, $\lambda \le k/2$ for $\beta \ge 3$ or $2 < \beta < 3$ and $k \ge 2\beta/(\beta - 2)$. Hence, by [\(3.4\)](#page-6-2),

$$
\rho \leq \lambda \leq \left\lfloor \frac{k}{2} \right\rfloor = k_1.
$$

By Lemma [2.1,](#page-2-3)

$$
|k_i A| \ge B_{\rho}(|A|) + (k_i - \rho)l \quad \text{for } i = 1, 2. \tag{3.5}
$$

If $\lambda = \rho$, then by [\(3.2\)](#page-6-3) and [\(3.5\)](#page-6-4),

$$
|k_1A| + |k_2A| \ge \lambda(\lambda + 1)(|A| - 2) + 2\lambda + 2 + (k - 2\lambda)l
$$

> $\lambda \left(\frac{2}{\lambda\beta} \left(\left| \frac{s_1 - 1}{2} \right| + \frac{\beta}{2} \right) + \left(2 - \frac{k}{\lambda\beta} \right)l - 2 \right) + 2\lambda + 2 + (k - 2\lambda)l$
= $3 + \frac{2}{\beta} \left(\frac{s_1 - 1}{2} \right) + \left(1 - \frac{1}{\beta} \right)kl.$

Now suppose that $\rho \le \lambda - 1$. Then, $0 \le \rho \le \lceil k/\beta \rceil - 1$. Hence, by [\(1.1\)](#page-1-2),

$$
|k_1A| + |k_2A| \ge \rho(\rho + 1)(|A| - 2) + 2\rho + 2 + (k - 2\rho)l
$$

\n
$$
\ge \rho(l - 1) + 2\rho + 2 + (k - 2\rho)l
$$

\n
$$
= kl - \rho(l - 1) + 2
$$

\n
$$
> kl - \left(\frac{k}{\beta} + \left\lceil \frac{k}{\beta} \right\rceil - \frac{k}{\beta} - 1\right)l + 2
$$

\n
$$
= kl - \frac{k}{\beta}l + \left(\frac{k}{\beta} - \left\lceil \frac{k}{\beta} \right\rceil + 1\right)l + 2
$$

\n
$$
\ge \left(1 - \frac{1}{\beta}\right)kl + 3 + \frac{2}{\beta}\left\lfloor \frac{s_1 - 1}{2} \right\rfloor.
$$

This completes the proof of Theorem [1.5.](#page-1-1)

4. Proof of Theorem [1.4](#page-1-3)

Let β^- be some constant satisfying $\alpha < \beta^- < \beta$, and assume that

$$
\frac{s_{n+1}}{s_n} \le \beta^- \quad \text{for all } n \ge 1. \tag{4.1}
$$

Then for any *l* so large that

$$
\frac{1}{\lambda+1}\left(2-\frac{k}{\lambda\beta}\right)l \ge \frac{1}{\lambda+1}\left(\left(2-\frac{k}{\lambda\beta}\right)l+2\lambda\right)+\frac{2}{\lambda(\lambda+1)\beta}\left(\left\lfloor\frac{s_1-1}{2}\right\rfloor+\frac{\beta}{2}\right),
$$

we see that Theorem [1.5,](#page-1-1) using the constant β^- , gives the conclusion of Theorem [1.4.](#page-1-3) If (4.1) does not hold for all $n > 1$, then as s $\beta_1/\beta_2 \leq \beta^-$ for sufficiently large n , a simple [\(4.1\)](#page-7-2) does not hold for all $n \ge 1$, then as $s_{n+1}/s_n \le \beta^-$ for sufficiently large *n*, a simple relabelling of the terms of the sequence, omitting finitely many terms at the beginning, would suffice.

This completes the proof of Theorem [1.4.](#page-1-3)

Acknowledgment

The authors would like to thank the referee for helpful comments and valuable suggestions.

References

- [1] T. Abe, 'Sumsets containing powers of an integer', *Combinatorica* 24 (2004), 1–4.
- [2] P. Erdős and G. Freiman, 'On two additive problems', *J. Number Theory* 34 (1990), 1–12.

428 M. Chen and M. Tang [9]

- [3] V. Kapoor, 'Set whose sumset avoids a thin sequence', *J. Number Theory* 130 (2010), 534–538.
- [4] V. F. Lev, 'Representing powers of 2 by a sum of four integers', *Combinatorica* 16 (1996), 413–416.
- [5] V. F. Lev, 'Structure theorem for multiple addition and the Frobenius problem', *J. Number Theory* 58 (1996), 79–78.
- [6] M. B. Nathanson and A. Sárközy, 'Sumsets containing long arithmetic progressions and powers of 2', *Acta Arith.* 54 (1989), 147–154.
- [7] H. Pan, 'Note on integer powers in sumsets', *J. Number Theory* 117 (2006), 216–221.
- [8] X. Wu and Y. Q. Chen, 'Note on powers of 2 in sumsets', *Appl. Math. Lett.* 25 (2012), 932–936.

MIN CHEN, School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, PR China e-mail: 2395409935@qq.com

MIN TANG, School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, PR China e-mail: tmzzz2000@163.com