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ON A CONSTRUCTION IN BORDISM THEORY
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0. Introduction

In [2], R. Arthan and S. Bullett pose the problem of representing generators of the
complex bordism ring MU^ by manifolds which are totally normally split; i.e. whose
stable normal bundles are split into a sum of complex line bundles. This has recently
been solved by Ochanine and Schwartz [8] who use a mixture of J-theory and surgery
theory to establish several results, including the following.

Theorem 0.1. Each element of MU+ may be represented by a manifold which is totally
normally split. •

Their proof, however, is not explicitly constructive.
It is our aim here to adapt an old construction of Conner and Floyd [4] to give a

simple and direct proof of (0.1), which subsumes an explicit choice of generations for
MU+. Moreover, we attain certain further goals.

Firstly, in answer to a supplementary question of Stong [13], we show that our
manifolds have the extra property that they are also totally tangentially split.

Secondly, by considering the symplectic analogue, we exhibit for the first time precise
geometrical models for the important elements (pneMSpan-3 [9] in the symplectic
bordism ring.

Additionally, we note that these manifolds, as well as a large family of other Sp
bordism representatives, are also totally normally and tangentially split.

The key result is in Section 2, where we offer a straightforward procedure for
producing generators of MUJ^CP™) and MSpJ^HP™) over the respective coefficient
rings.

Throughout, EJ^X+) = Eif@Etf{X) stands for the unreduced £ homology module of a
space X. Also, the trivial real, complex or symplectic line bundle over X will be
respectively denoted by (R, C or H, whilst an arbitrary line bundle will be systematically
confused with its classifying map.

Special thanks are due to Bob Stong, who spotted an error in an earlier version of
this work. It is also a pleasure to acknowledge several enjoyable and influential
discussions with Andrew Baker, Shaun Bullett, Elmer Rees and Lionel Schwartz.

1. Iterated projective bundles

In this section we describe our basic inductive construction.
To begin, let B° = *, admitting the complex line bundle )30 = C.
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Now suppose given the 2n —2 dimensional smooth manifold B"'1, carrying line
bundles /30>-->&i-i- Then take B" to be the projectification CP(/?n _ t © C), with
projection n:B"^>Bn~1 and fibre CP1. Each point XeB" may be considered as a line in
/?„_!©€. Define po,...,Pa_l over B" by pulling back along n*, and choose /?„ to be the
canonical line bundle whose fibre over X consists of all points in X.

Thus B" is a projective variety, and also a smooth In dimensional manifold.
Moreover, it is diffeomorphic to the 2-sphere bundle £(/?„_!©R) via fibrewise
application of the usual identification of CPi with S2. In this guise, and for n>0, it
bounds the disc bundle D()Sn_1 ©R).

A third description, which we shall not use here, is due to Conner and Floyd [4], and
arises from forming the quotient of the cartesian product (S3)" by a suitable action of
the torus T".

We now wish to invest B" with the structure of a weakly almost complex, or U-
manifold, which is not the obvious projective one. Instead, we take the sphere bundle
version, and following Szczarba [16] note that its tangent bundle satisfies

&_! ©01).

Since T0 © IR s U, we obtain inductively

n-l \

© A ©R. (l.l)
i = O /

This provides an explicit [/-structure for the stable tangent bundle xs
n, and hence also

for the stable normal bundle vf, such that B" is totally tangentially split.
Of course, this [/-structure may be extended over the corresponding 3-disc bundle.
To study vs

n more closely, we recall the well-known splitting principle.

Proposition 1.2. Over B", there is a [/(I) bundle ft* satisfying

Proof. Using the standard inner product in fin-u choose as fibre for /?* over XeB"
the orthogonal complement A1 in /?„_!©€. •

Note that, by taking pull-backs, we have also defined /?£ over B" for k = l,...,« — 1
satisfying

Iterating, we deduce
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and substituting successively in (1.1) finally leads to

n - l \

© ( " - ' ¥ * ®RsCin("+1)©IR. (1.4)
'=i /

This formula allows us to make our first crucial observation.

Proposition 1.5. With the U-structure o/(l . l) , B" is totally normally split.

Proof. From (1.4), we have an isomorphism

v5s0(n-iW. •

Using the results of Borel and Hirzebruch [3], we can now compute the integral
cohomology ring H*(B"). Writing bo,b1,...,bneH2(B") for the respective first Chern
classes of fi0, fiu..., fin (so that bo=0), we deduce that H*(B") is free over H*(B"~1) on
generators 1, bn, and that

bn{bn-bn^) = Q.

By induction, this yields the following answer.

Proposition 1.6. (see [4, Section 42]). The ring H*(B") is given by

for all n>0. •

We observe that we can mimic all the preceding constructions and computations in
the symplectic case, beginning with Q° = * and the trivial Sp(l) bundle xo = H. We
produce a smooth An dimensional manifold Q", carrying Sp(l) bundles Xo>•••>/„• The
tangent bundle satisfies

(*,• W, (1.7)

so if and v£ admit Sp-structures such that Q" is totally tangentially split. This Sp-
structure may be extended over the corresponding 5-disc bundle.

We then define Sp(l) bundles x* o v e r 6" for /c= 1,...,«— 1 satisfying

and so acquire an isomorphism

v»£0(n-i)tf . (1.8)
i = i

So Q" is also totally normally split.
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Finally, if we write q0,qu...,qneH\Q") for the respective first symplectic Pontrjagin
classes of Xo>Xu--->Xn (so that q0 = 0), we infer the integral cohomology ring structure

(1.9)

2. Generators for MUm(CPm) and ^

In this section we utilise Section 1 to introduce a direct approach to creating
generators for the reduced bordism modules MU^(CPCO) and MSp^HP00) over the
respective coefficient rings. Such a construction does not seem to appear in the
literature, although indirect methods have been attempted [5], [7].

Using the notation of [10], we can state the following well-known definitive property.

Proposition 2.1. Ml/!|t(CP+) is a free MU^ module on generators bfo,bfl,bf2,...,
where bfo= 1, and bfne MU2n(CP'x'). Furthermore, the bfn's are uniquely specified by

where c/1eMf72(CP+) is the universal first Conner-Floyd Chern class.
Similarly, MSpJflP™) is a free MSp^ module on generators qf§,qfi,qf2,..., where

qfo=\, and qfnsMSp4.n{HPa>). Furthermore, the qfn's are uniquely specified by

where p^eMSp^HP^) is the universal first Conner-Floyd Pontrjagin class.

We can now describe our main observation.

Proposition 2.2. The singular manifolds

represent bfneMU2n(CPco) and qfneMSp^HP00) respectively.

Proof. We treat the complex case in detail, noting that jS0: *->CPco clearly represents 1.
Since B" bounds for n > 0, /?„ represents an element in the reduced bordism module, so

by (2.1) it suffices to determine its image under c/jn. This we can do by making /?„
transverse to CP™'1.

As required for induction, this yields J?n_1:B"~1^CP00, where B"'1 is identified with
the subspace of B" consisting of lines in /?„_!, and as such has (/-structure equivalent to
that given in (1.1).

The symplectic case is entirely analogous. •

3. Generators of ^

In this section we concentrate on the complex case, and manufacture our set of
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generators for MU+. Our detection criterion is the well-documented Milnor genus, e.g.
see [14].

First we consider the cartesian product B9x BT, with q,r=\,2,..., and the product U-
structure. We write fiVti,$2,k respectively for the bundles /?,-<8)C, C®/?t, and hence
bl j,b2ik respectively for their first Chern classes ft,® 1 and 1 ® bk.

Now dualise the cohomology class blq + b2 >r to obtain the codimension 2 embedding

where the normal bundles satisfy

q®p2ir)}. (3.1)

This isomorphism invests B(q, r) with a [/-structure. It may also, and distinctly, be
considered as a projective algebraic variety.

Proposition 3.2. For each q and r, B(q, r) is totally normally and tangentially split.

Proof. Combining (1.5) with (3.1) describes the chosen [/-structure by

On the other hand, using (1.3) twice, we obtain

over B(q, r), where

T= © { ( / ' f j . . , . . ; . }

J.k=l

Thus we can amalgamate (1.1) and (3.1) to describe the same [/-structure by

Cq-l r - l

as sought. •

Corollary 3.3. Any product of the form

is totally normally and tangentially split.
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We may now use the standard methods of [14] to compute the normal Milnor genus
by

=('+•) eZ,

where neH2(q+r)(B
q x Br) is the fundamental class.

This suffices to show that any element xeMU^ may be expressed as an integral linear
combination of the form

x = Ixq
m

rB(q,rr. (3.4)

In particular, for any prime p, B(p—l, 1) represents an algebra generator in MU2p-2,
since sp_1(B(p-l,l)) = p.

To prove our theorem, it remains only to establish three lemmas.

Lemma 3.5. Given two U-manifolds which are totally normally and tangentially split,
so is their connected sum.

Proof. Use the fact that U(ri) is connected for all n. •

The symplectic analogue is also true.

Lemma 3.6. The involution t:B"'1-^Bn~1 defined by t(X) = XL {see (1.2)) satisfies

£*/?„_!=)?*-! and t*pk = pk foranyk = 0,...,n-2.

Proof. Essentially, t*j3n_1=j9*_1 by definition. The other equations follow since the
diagram

\

commutes. •

Corollary 3.7. The singular manifold

P*:B"^CPa>

represents -bfneMU2n(CPco), for n>0.

Proof. We appeal to (2.1) again, noting first that /}? clearly represents —bfv

Now suppose that n > l . As in (2.2) we apply cf^r\ to the element represented by /?*.
Once more, a simple transversality argument shows that we obtain /?*_1:B""1—tCP™,
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where B"~l is identified by the involution t with the subspace of B" consisting of lines in
A.-i.

Hence

SO

("®A by (1.1)

@ by (3.5).
; = o

Thus

n-3

i = 0

as sought, and our induction is done. •

As before, the symplectic analogue also holds.

Lemma 3.8. For each q and r, we can represent the bordism class — B(q, r) by a
manifold A(q, r) which is totally normally and tangentially split.

Proof. By (3.7), we can construct A(q, r) by dualising c^/??tq®p2,r)
 m H2(Bq x Br),

where

Ci(0?.,®02.r) = *i . , - i -&i . , + &2., by (1.2).

Following (3.2), this yields

A(q,r) >B"xBr

whose [/-structure is given by

0=1

and

where

q ® t j
j,k=l

These results may now be combined.

https://doi.org/10.1017/S0013091500017855 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017855


420 NIGEL RAY

Theorem 3.9. Any element of MU^. may be represented by a connected V-manifold
which is totally normally and tangentially split.

Proof. Let the element of MU'„ be x, and expand it as in (3.4).
For each positive integer x™r, the corresponding term x™rB(q, r)m is suitably

represented by utilising (3.3) and (3.5). On the other hand, if x™r is negative we use (3.8)
and (3.5). Final appeal to (3.5) then allows us to bring all terms together. •

4. Representing 0's in

In this section we turn our attention to some implications of the Sp version of (2.2).
First we recall some results of [9].
Let n denote the real Hopf line bundle over S1, and £ its symplectic counterpart over

HP00 (or any HP"). Thus n®Rl; is also an Sp(l) bundle over S1 xHPx, and as such it
has a first Conner-Floyd Pontrjagin class

But

MSp*{Sl x HP?) s MSp*[£pfu

so there is an expansion of the form

P/ifo®R0 = p / i+I fc0 .P/" i , (4-1)

where 0neMSp4n_3, n= l ,2 , . . . . In fact 9t is the generator of MSpt = Z/2, represented
by S1 with the twisted framing, and 62m + i = 0 for m>0.

In contrast, the elements 62m, suitably relabelled <(>m, are non-zero and indecomposable
elements of order 2 in MSp^. By all accounts, (see [6], [17]), they play a fundamental
role in MSp^, whose overall structure remains, of course, a mystery.

We now show how to give precise representatives for the elements 4>n using Section 2.
This has been attempted before in [1] and [11], but with success only modulo certain
decomposables.

Note first from (4.1) that

where geMSP^S1) is the dual generator to h, and represented by the identity on
S1. But employing (2.2) with H > 0 , g®qf2n is represented by t:R8n+1-^HP2n,
where R8n+1=S1 x Q2n and t classifies r\®RX2n. So (f>n arises from making t transverse to
HP2"'1.

Proposition 4.2. The element <pn may be represented on R8"'3 by an Sp structure
which is totally normally and tangentially split.
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Proof. The transversality described above yields

R8«-3 = Sl xQ 2 "" 1 -Us 1 x g 22n

where j embeds Q2""1 in Q2" as the subspace of quaternionic lines in xln-i- The
corresponding normal Sp structure on S1 x Q2"'1 is provided by the isomorphism

j,8.+i. (4.3)

Moreover, v(y) = 1<8>RX2n-i by construction, whilst from (1.8)

2 n - l

0 (2n-k)xt).
k=i J

Thus

0

and RSn 3 is totally normally split.
Similarly, recalling (1.7) and the fact that 2r\ s U2 gives

2 n - l

0 Xi

completing the proof. •

In fact a simply-connected representative for (f>n may also be given by these methods,
by choosing a suitable Sp structure on the S5 bundle S(x2 n-2©^2) o v e r Q2"1-

In conclusion, we remark that the procedures introduced in this paper appear to have
a wider applicability to MSp^. Most of the constructions of Sp manifolds given in [12]
and [15] can be adapted to give results which are totally normally and tangentially
split. This suggests that the infinite product /\oaHPai may have MSp as a wedge
summand, thus mimicking the complex case.
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