Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T17:58:58.932Z Has data issue: false hasContentIssue false

Amorphous Silicon Microbolometer Technology

Published online by Cambridge University Press:  17 March 2011

A. J. Syllaios
Affiliation:
Raytheon Electronic Systems Company, Dallas, TX 75266
T. R. Schimert
Affiliation:
Raytheon Electronic Systems Company, Dallas, TX 75266
R. W. Gooch
Affiliation:
Raytheon Electronic Systems Company, Dallas, TX 75266
W. L. McCardel
Affiliation:
Raytheon Electronic Systems Company, Dallas, TX 75266
B. A. Ritchey
Affiliation:
Raytheon Electronic Systems Company, Dallas, TX 75266
J. H. Tregilgas
Affiliation:
Raytheon Electronic Systems Company, Dallas, TX 75266
Get access

Abstract

Highly sensitive hydrogenated amorphous silicon (a-Si:H) microbolometer arrays have been developed that take advantage of the high temperature coefficient of resistance (TCR) of aSi:H and its relatively high optical absorption coefficient. TCR is an important design parameter and depends on material properties such as doping concentration. Ultra-thin (∼2000 Å) aSiNx:H/a-Si:H/ a-SiNx:H membranes with low thermal mass suspended over silicon readout integrated circuits are built using RF plasma enhanced chemical vapor deposition (PECVD) and surface micromachining techniques. The IR absorptance of the bolometer detectors is enhanced by using quarter-wave resonant cavity structures and thin-film metal absorber layers. To ensure high thermal isolation the microbolometer arrays are vacuum packaged using wafer level vacuum packaging. Imaging applications include a 120×160 a-Si:H bolometer pixel array IR camera operating at ambient temperature. Non-imaging applications are multi-channel detectors for gas sensing systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mütze, F., Seibel, K., Scheider, B., Hillebrand, M., Blecher, F., Lulé, T., Keller, H., Rieve, P., Wagner, M., Böhm, M., Mat. Res. Soc. Symp. Proc. 557, pp. 815820, 1999.Google Scholar
2. Böhm, M., Blecher, F., Eckhardt, A., Seibel, K., Scheider, B., Sterzel, J., Benthien, S., Keller, H., Lulé, T., Rieve, P., Sommer, M., Uffel, B. Van, Librecht, F., Lind, R. C., Humm, L., Efron, U., Roth, E., Mat. Res. Soc. Symp. Proc. 507, pp. 327338, 1998.Google Scholar
3. Caputo, D., Cesare, G. De, Nascetti, A., Palma, F., Mat. Res. Soc. Symp. Proc. 507, pp. 219223, 1998.Google Scholar
4. Liddiard, K. C., Infrared Phys. Vol. 26. No 1, pp 4349, 1986.Google Scholar
5. Hornbeck, L. J., U.S. Pat. No. 5021663, June 1991.Google Scholar
6. Keenan, W. F., U.S. Pat. No. 5367167, November 1994.Google Scholar
7. Tissot, J. L., Rothan, F., Vedel, C., Vilain, M., Yon, J., Proc. SPIE, Vol.3436, 605(1998).Google Scholar
8. Brady, J., Schimert, T., Ratcliff, D., Gooch, R., Ritchey, B., McCardel, W. L., Rachels, K., Ropson, S., Wand, M., Weinstein, M., Wynn, J., Proc. SPIE Vol. 3698, 161(1999).Google Scholar
9. Gooch, R., Schimert, T., McCardel, W., Ritchey, B., Gilmour, D., and Koziarz, W., J. Vac. Sci. Technol. A17, 2295 (1999).Google Scholar
10. Tanielian, M., Philos. Mag. B45, 435 (1982).Google Scholar
11. Street, R.A., Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, 1991, p. 228.Google Scholar
12. Schimert, T., Ratcliff, D., Gooch, R., Ritchey, B., McCardel, W. L., Brady, J., Rachels, K., Ropson, S., Wand, M., Weinstein, M., and Wynn, J., Proc. SPIE vol.3577, 96(1999).Google Scholar