Bull. Aust. Math. Soc. **99** (2019), 274–283 doi:10.1017/S0004972718001363

ON THE DECOMPOSITION OF OPERATORS WITH SEVERAL ALMOST-INVARIANT SUBSPACES

AMANOLLAH ASSADI, MOHAMAD ALI FARZANEH[™] and HAJI MOHAMMAD MOHAMMADINEJAD

(Received 3 June 2018; accepted 20 September 2018; first published online 4 January 2019)

Abstract

We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of bounded operators. We study the bounded linear operators which have a collection of almost-invariant subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a finite-rank operator.

2010 *Mathematics subject classification*: primary 47A15; secondary 47A55. *Keywords and phrases*: subspace, almost-invariant subspace, half-space, finite-rank operator, defect.

1. Introduction

The invariant subspace problem is a famous problem in operator theory. An operator without a nontrivial invariant subspace was first found by Enflo [4]. Read constructed such an operator on l_1 [8] and a quasinilpotent operator without a nontrivial invariant subspace [9]. The problem is still open for reflexive Banach spaces.

Androulakis *et al.* [1] introduced almost-invariant subspaces as a modified version of invariant subspaces. For a Banach space X and a bounded linear operator T on X, a closed subspace Y of X is called *almost invariant under* T if there exists a finitedimensional subspace M of X such that $TY \subseteq Y + M$. If M is chosen with minimum dimension, M and $d_{Y,T} = \dim M$ are respectively called the *error* and *defect* of Y under T. It is easy to see that every finite-dimensional or finite-codimensional subspace of X is always almost invariant under every operator on X. Therefore, the study of almost-invariant subspaces is restricted to *half-spaces*, which are closed subspaces with both infinite dimension and infinite codimensional Banach space has an almostinvariant half-space. An affirmative answer was given for reflexive Banach spaces [7] and then for compact and quasinilpotent operators [10]. Finally, Tcaciuc showed that every operator on a separable Banach space has an almost-invariant half-space with defect at most one [12].

^{© 2019} Australian Mathematical Publishing Association Inc.

In Section 2, we present a sufficient condition for a weak operator convergent sequence to preserve almost-invariant subspaces, improving a theorem of Popov [6]. In Section 3, we show that if a bounded operator on a Banach space admits each closed subspace as an almost-invariant subspace, then it can be decomposed into the sum of a multiple of the identity and a finite-rank operator. This has already been proven for Hilbert spaces [5].

Let *Y* be a closed subspace of a Banach space *X* and *T* a bounded operator on *X*. By Alg *Y*, we denote the set of all bounded operators on *X* which have *Y* as an invariant subspace. It is known that if *Y* is almost invariant under *T*, then *T* can be expressed in the form S + F for some $S \in \text{Alg } Y$ and a finite-rank operator *F* [1]. In the following, by putting appropriate conditions on \mathcal{L} , a collection of closed subspaces which are almost invariant under *T*, we achieve a decomposition of *T* in the form S + F for some $S \in \text{Alg } \mathcal{L}$ and a finite-rank operator *F*.

Throughout the paper, X is a complex Banach space and $\mathcal{B}(X)$ is the set of all bounded linear operators on X. The terms 'subspace' and 'operator' refer to 'closed subspace' and 'bounded linear operator', respectively.

2. Limit properties of operators with almost-invariant subspaces

Suppose that $(T_{\alpha})_{\alpha \in I}$ is a net of bounded operators on *X* converging to a bounded operator *T* in the weak operator topology (wot), that is, for each $x^* \in X^*$ and $x \in X$, the net $(x^*(T_{\alpha}x))_{\alpha \in I}$ converges to $x^*(Tx)$. We denote this limit by wot-lim. If *Y* is an invariant subspace under each T_{α} , then *Y* will also be invariant under *T*. But this is not valid for almost-invariant subspaces. Indeed, it is enough to consider a sequence $(F_n)_{n=1}^{\infty}$ of finite-rank operators on an infinite-dimensional Hilbert space *H*, converging to a nonfinite-rank compact operator *K*. Clearly, each subspace of *H* is almost invariant under F_n for all *n*. Nevertheless it is not true for *K*, since, according to [5, Corollary 4.16], the compact operator *K* must be in the form $\alpha I + F$ for some nonzero scalar α and a finite-rank operator *F*, which is a contradiction.

The next proposition provides a sufficient condition. Before that we give two lemmas needed in the proof.

We denote by $\mathcal{F}(X)$ the set of all bounded finite-rank operators on *X* and by $\mathcal{F}_n(X)$ the set of all bounded finite-rank operators on *X* with rank $\leq n$. Similarly, we use $\mathcal{B}(X, Y), \mathcal{F}(X, Y)$ and $\mathcal{F}_n(X, Y)$ for operators between the Banach spaces *X* and *Y*.

LEMMA 2.1. For Banach spaces X and Y, $\mathcal{F}_n(X, Y)$ is a closed subset of $\mathcal{B}(X, Y)$ in the weak operator topology.

PROOF. Let $(T_{\alpha})_{\alpha \in I}$ be a net in $\mathcal{F}_n(X, Y)$ converging to a bounded operator T in the weak operator topology. Suppose that rank $T \ge n + 1$. We can choose vectors x_1, \ldots, x_{n+1} such that the collection $\{Tx_i\}_{i=1}^{n+1} \subseteq Y$ is linearly independent. By the Hahn–Banach theorem, there exist linear functionals $y_j^* \in Y^*$, $j = 1, \ldots, n + 1$, with $y_j^*(Tx_j) = 1$ and $y_j^*(Tx_i) = 0$ for $i \ne j$. Now, define the operator $S \in \mathcal{F}_{n+1}(Y)$ by the formula $Sy = \sum_{j=1}^{n+1} y_j^*(y)Tx_j$. Since $T_{\alpha}x_1, \ldots, T_{\alpha}x_{n+1}$ converge weakly to Tx_1, \ldots, Tx_{n+1} , we

conclude that $\lim_{\alpha} S(T_{\alpha}x_i) = Tx_i$ for i = 1, ..., n + 1. Also, since $Tx_1, ..., Tx_{n+1}$ are linearly independent, the collection $\{S(T_{\alpha}x_i)\}_{i=1}^{n+1}$ will eventually become linearly independent and so will the preimage $\{T_{\alpha}x_i\}_{i=1}^{n+1}$, which contradicts the hypothesis that $T_{\alpha} \in \mathcal{F}_n(X, Y)$.

The following lemma provides a connection between almost-invariant subspaces and their quotient maps.

LEMMA 2.2 [6]. Let $T \in \mathcal{B}(X)$ and Y be a subspace of X. Let $q : X \longrightarrow X/Y$ be the quotient map. Then Y is an almost-invariant subspace under T if and only if $(qT)|_Y$ is of finite rank. Moreover, dim $(qT)(Y) = d_{Y,T}$.

PROPOSITION 2.3. Suppose that $(T_{\alpha})_{\alpha \in I}$ is a net of bounded operators on X converging to a bounded operator T in the weak operator topology. Let Y be an almost-invariant subspace under every T_{α} with $d_{Y,T_{\alpha}} \leq N$. Then Y is almost invariant under T with $d_{Y,T} \leq N$.

PROOF. Let $q: X \longrightarrow X/Y$ be the quotient map. Since wot-lim_{$\alpha} T_{<math>\alpha$} = T and q is a bounded operator, wot-lim_{α}(qT_{α})|_Y = (qT)|_Y. By Lemma 2.2, each (qT_{α})|_Y is a finite-rank operator with rank $\leq N$. Now, by Lemma 2.1, rank(qT)|_Y $\leq N$ and again, by Lemma 2.2, Y is almost invariant under T with $d_{YT} \leq N$.</sub>

Let *Y* be a closed subspace of *X*. Similarly to invariant subspaces, the set of all bounded operators which have *Y* as an almost-invariant subspace is a subalgebra of $\mathcal{B}(X)$, denoted by Alg_{*a*}*Y*. Unfortunately, it is not a closed algebra; by [1, Proposition 1.3], Alg_{*a*}*Y* = Alg *Y* + $\mathcal{F}(X)$.

For $T \in \mathcal{B}(X)$, a subspace *Y* of *X* is called essentially invariant under *T* if it is invariant under *T* + *K* for some $K \in \mathcal{K}(X)$, where $\mathcal{K}(X)$ denotes the class of compact operators on *X*. By [11, Corollary 4.3], every bounded operator on a Banach space admits an essentially invariant half-space. The set of all bounded operators which have *Y* as an essentially invariant subspace is a subalgebra of $\mathcal{B}(X)$, denoted by $Alg_e Y$. Clearly, $Alg_e Y = Alg Y + \mathcal{K}(X)$.

Suppose that $(T_n)_{n=1}^{\infty}$ is a sequence of bounded operators on *X* converging to *T* in norm topology and *Y* is an almost-invariant subspace under each T_n . We can ask, does *T* admit *Y* as an essentially invariant subspace? In other words, is $\overline{Alg_a Y} \subseteq Alg_e Y$? When *Y* is a complemented subspace of *X*, the answer is affirmative. Indeed, let *P* be a projection on *X* with range *Y*. Since *Y* is an almost-invariant subspace under each T_n , it follows that $(I - P)T_nP$ is a finite-rank operator. Moreover, $(T_n - (I - P)T_nP)Y \subseteq Y$. So, $(T - (I - P)TP)Y \subseteq Y$ and (I - P)TP is a compact operator.

Now, suppose that X has the approximation property, in particular $\overline{\mathcal{F}(X)} = \mathcal{K}(X)$. Then

$$\operatorname{Alg}_e Y = \operatorname{Alg} Y + \mathcal{K}(X) = \operatorname{Alg} Y + \overline{\mathcal{F}(X)} \subseteq \overline{\operatorname{Alg} Y + \mathcal{F}(X)} = \overline{\operatorname{Alg}_a Y}.$$

If $\operatorname{Alg}_e Y$ is also a norm-closed subalgebra of $\mathcal{B}(X)$, then $\overline{\operatorname{Alg}_a Y} = \operatorname{Alg}_e Y$. This motivates and proves the next corollary.

COROLLARY 2.4. Suppose that X has the approximation property and Y is a subspace of X. Then $\overline{\text{Alg}_a Y} = \text{Alg}_e Y$ if and only if $\text{Alg}_e Y = \text{Alg } Y + \mathcal{K}(X)$ is norm-closed in $\mathcal{B}(X)$. In particular, if Y is a complemented subspace of X, then the subalgebra Alg $Y + \mathcal{K}(X)$ is a norm-closed subspace of $\mathcal{B}(X)$.

We denote by $\text{Lat}_a T$ the set of all almost-invariant subspaces under T. According to [1, Proposition 1.3], $\text{Lat}_a T = \bigcup_{F \in \mathcal{F}(X)} \text{Lat}(T + F)$. Similarly to invariant subspaces, $\text{Lat}_a T$ is a complete lattice. Indeed, if Y_1 and $Y_2 \in \text{Lat}_a T$, then there exist finite-dimensional subspaces M_1 and M_2 such that $TY_1 \subseteq Y_1 + M_1$ and $TY_2 \subseteq Y_2 + M_2$. So, $T(Y_1 + Y_2) \subseteq Y_1 + Y_2 + M_1 + M_2$ and, since $M_1 + M_2$ is of finite dimension,

$$T(cl(Y_1 + Y_2)) \subseteq cl(Y_1 + Y_2) + M_1 + M_2.$$

Therefore, $cl(Y_1 + Y_2) \in Lat_a T$. Also, by [2, Proposition 2.2], there exist finitecodimensional subspaces N_1 and N_2 such that $T(Y_1 \cap N_1) \subseteq Y_1$ and $T(Y_2 \cap N_2) \subseteq Y_2$. Hence,

$$T(Y_1 \cap Y_2 \cap N_1 \cap N_2) \subseteq T(Y_1 \cap N_1) \cap T(Y_2 \cap N_2) \subseteq Y_1 \cap Y_2.$$

Since $N_1 \cap N_2$ is still of finite codimension, this shows that $Y_1 \cap Y_2 \in \text{Lat}_a T$.

For a subspace *Y* of *X*, we denote by $\Lambda_a^n Y$ the set of all bounded operators which have *Y* as an almost-invariant subspace with defect $\leq n$. Clearly, $\Lambda_a^n Y = \operatorname{Alg} Y + \mathcal{F}_n(X)$. By Proposition 2.3, $\Lambda_a^n Y$ is a closed subset of $\mathcal{B}(X)$ in the weak operator topology. If \mathcal{L} is a collection of subspaces of *X*, we can similarly define $\operatorname{Alg}_a \mathcal{L}$ and $\Lambda_a^n \mathcal{L}$. Clearly, $\operatorname{Alg}_a \mathcal{L} = \bigcap_{Y \in \mathcal{L}} \operatorname{Alg}_a Y$ and $\Lambda_a^n \mathcal{L} = \bigcap_{Y \in \mathcal{L}} \Lambda_a^n Y$.

Popov stated the following theorem and gave a rather lengthy and technical proof.

THEOREM 2.5 [6]. Let \mathcal{A} be a norm-closed subspace of $\mathcal{B}(X)$. Suppose that Y is a subspace of X that is almost invariant under \mathcal{A} . Then sup $\{d_{Y,S} : S \in \mathcal{A}\} < \infty$.

We extend this theorem and give a much shorter proof.

THEOREM 2.6. Let \mathcal{L} be a finite collection of subspaces of X. Let C be a norm-closed convex subset of $\mathcal{B}(X)$ such that $C \subseteq \operatorname{Alg}_a \mathcal{L}$. Then there exists an integer $n \ge 0$ such that $C \subseteq \Lambda_a^n \mathcal{L}$.

PROOF. Set $C_k = C \cap \Lambda_a^k \mathcal{L}$. By Proposition 2.3, C_k is a closed subset of *C* for all *k*. Also, since \mathcal{L} is a finite collection, $C = \bigcup_{k=1}^{\infty} C_k$. Considering *C* as a complete metric space, by the Baire category theorem, there exists an integer k > 0 such that the interior of C_k in *C* is nonempty. Choose an operator T_0 in the interior of C_k in *C*. Since $C - T_0 = \{T - T_0 : T \in C\}$ is still convex and $0 \in C - T_0$, we have $t(T - T_0) \in C - T_0$ for $0 \le t \le 1$ and $T \in C$. Now, fix an operator $T \in C$ and consider the continuous map $f : [0, 1] \longrightarrow C - T_0$ given by $f(t) = t(T - T_0)$. Since $C_k - T_0$ contains an open ball in the metric space $C - T_0$ of positive radius at 0, there is a real number s > 0 such that

$$S(T - T_0) = f(s) \in C_k - T_0 \subseteq \Lambda_a^k \mathcal{L} + \Lambda_a^k \mathcal{L} \subseteq \Lambda_a^{2k} \mathcal{L}.$$

Therefore,

$$T \in \Lambda_a^{2k} \mathcal{L} + T_0 \subseteq \Lambda_a^{3k} \mathcal{L}$$

and setting n = 3k completes the proof.

The finiteness of \mathcal{L} in the previous theorem is necessary. Indeed, if \mathcal{L} includes a chain $Y_1 \subsetneq Y_2 \subsetneq Y_3 \subsetneq \cdots$ of finite-dimensional subspaces of an infinite-dimensional Banach space X, then $\mathcal{B}(X) = \operatorname{Alg}_a \mathcal{L}$. However, there is no integer $n \ge 1$ such that $\mathcal{B}(X) \subseteq \Lambda_a^n \mathcal{L}$.

For two different subspaces Y and Z of X, there exists a rank-one operator T on X such that Y is invariant under T, but Z is not. In particular, $Alg Y \neq Alg Z$. Now, we obtain a similar result for almost-invariant subspaces.

For the subspaces Y_1 and Y_2 , we say that Y_1 is almost equivalent to Y_2 if there exist finite-dimensional subspaces M_1 and M_2 such that $Y_1 + M_1 = Y_2 + M_2$.

PROPOSITION 2.7. For a subspace Y and a half-space Z of X, which are not almost equivalent, there exists an operator $T \in \overline{\mathcal{F}(X)}$ such that Y is almost invariant under T, but Z is not. In particular, if both Y and Z are half-spaces, then $\operatorname{Alg}_a Z \nsubseteq \operatorname{Alg}_a Y$ and $\operatorname{Alg}_a Y \nsubseteq \operatorname{Alg}_a Z$.

PROOF. First, we suppose that Y is not a half-space. Then $\operatorname{Alg}_a Y = \mathcal{B}(X)$ and we show that $\overline{\mathcal{F}(X)} \not\subseteq \operatorname{Alg}_a Z$.

Let Z be an almost-invariant half-space under every operator in $\overline{\mathcal{F}(X)}$. Since $\overline{\mathcal{F}(X)}$ is a norm-closed algebra, by [11, Theorem 1.1], there exists a half-space Z' which is invariant under every operator in $\overline{\mathcal{F}(X)}$. This contradicts the transitivity of $\overline{\mathcal{F}(X)}$.

Now, suppose that both Y and Z are half-spaces. Since Y and Z are not almost equivalent, we can assume, without loss of generality, that $Z \not\subseteq Y + \text{span}\{z_i\}_{i=1}^n$ for all integers n > 0 and each set of linearly independent vectors $\{z_i\}_{i=1}^n \subseteq Z$. We show that $\text{Alg}_a Z \not\subseteq \text{Alg}_a Y$ and $\text{Alg}_a Y \not\subseteq \text{Alg}_a Z$.

If $\operatorname{Alg}_a Y \subseteq \operatorname{Alg}_a Z$, then $\operatorname{Alg} Y \subseteq \operatorname{Alg}_a Z$ and, by Theorem 2.6, there is an integer k > 0 such that $\operatorname{Alg} Y \subseteq \Lambda_a^k Z$. We can choose linearly independent vectors $\{y_i\}_{i=1}^{k+1} \subseteq Y$ and linearly independent vectors $\{z_i\}_{i=1}^{k+1} \subseteq Z$ such that $\operatorname{span}_{\{z_i\}}_{i=1}^{k+1} \cap Y = \{0\}$. Since y_1, \ldots, y_{n+1} are linearly independent, there are linear functionals $\{x_i^*\}_{i=1}^{k+1}$ with $x_i^*(y_i) = 1$ and $x_i^*(y_j) = 0$ for $j \neq i$. Now, define the operator $T \in \mathcal{F}(X)$ by $Tx = \sum_{i=1}^{k+1} x_i^*(x)z_i$. It is easily seen that $TZ \subseteq Z$ and $d_{YT} \geq k+1$, which is a contradiction.

If $\operatorname{Alg}_a Z \subseteq \operatorname{Alg}_a Y$, then $\operatorname{Alg} Z \subseteq \operatorname{Alg}_a Y$ and, by Theorem 2.6, there is a k > 0 such that $\operatorname{Alg} Z \subseteq \Lambda_a^k Y$. Since Z is a half-space, we can choose linearly independent vectors $\{z_i\}_{i=1}^{k+1} \subseteq Z$ and linearly independent vectors $\{w_i\}_{i=1}^{k+1} \subseteq X$ with $\operatorname{span}\{w_i\}_{i=1}^{k+1} \cap Z = \{0\}$ and $\operatorname{span}\{z_i\}_{i=1}^{k+1} \cap Y = \{0\}$. By the Hahn–Banach theorem, there are linear functionals $\{x_i^*\}_{i=1}^{k+1}$ with $x_i^*|Y = 0$, $x_i^*(z_i) = 1$ and $x_i^*(z_j) = 0$ for $j \neq i$. If we define the operator $S \in \mathcal{F}(X)$ by $Sx = \sum_{i=1}^{k+1} x_i^*(x)w_i$, then $SY \subseteq Y$ and $d_{Z,S} \ge k+1$, which is a contradiction. \Box

3. Properties of operators having a collection of almost-invariant subspaces

If $T \in \mathcal{B}(X)$ and each subspace of X is invariant under T, then T must be a multiple of the identity. What happens if each subspace of X is almost invariant under T? In [1], it is shown that T has a nontrivial invariant subspace of finite codimension. If X is a Hilbert space, then T has the form $\alpha I + F$ for some scalar α and a finite-rank operator F [3, Corollary 4.16]. We extend this result to a Banach space X. First, we give some lemmas needed in the proof.

LEMMA 3.1. Let $T \in \mathcal{B}(X)$ and M be a finite-dimensional subspace of X such that M and M + span{x} are invariant under T for every $x \in X$. Then $T = \alpha I + F$ for some scalar α and a finite-rank operator F.

PROOF. Consider the operator $\tilde{T} : X/M \to X/M$ given by $\tilde{T}(x + M) = Tx + M$. Since the subspace $M + \text{span}\{x\}$ is invariant under T for all $x \in X$, every one-dimensional subspace of X/M is invariant under \tilde{T} . This implies that $\tilde{T} = \alpha I$ for some scalar α . Now, we define the operator F on X by $Fx = Tx - \alpha x$. It is clear that $FX \subseteq M$ and $T = \alpha I + F$.

LEMMA 3.2. Suppose that $T \in \mathcal{B}(X)$ and every subspace of X is almost invariant under T. Then, for every $x \in X$, the subspace $cl(span\{T^nx\}_{n=0}^{\infty})$ is of finite dimension.

PROOF. Suppose that for some $x_1 \in X$ the subspace $cl(span\{T^nx_1\}_{n=0}^{\infty})$ is of infinite dimension. Since $span\{T^nx_1\}_{n=0}^{\infty}$ is also of infinite dimension, $T^kx_1 \notin span\{T^nx_1\}_{n=0}^{k-1}$ for all $k \ge 1$. We will construct a subspace of X that is not almost invariant under T.

Consider $x_1^* \in X^*$ such that $x_1^*(x_1) \neq 0$. Let $P_1(x) = x - (x_1^*(x)/x_1^*(x_1))x_1$ be the projection on X with kernel span $\{x_1\}$ and image ker x_1^* . Define $x_2 = P_1Tx_1$. It is easily seen that span $\{x_1, Tx_1\} = \text{span}\{x_1, x_2\}$ and $x_2 \notin \text{span}\{x_1\}$, since $Tx_1 \notin \text{span}\{x_1\}$.

We claim that for each $n \ge 1$, there exist sequences $\{x_n\}$ of vectors, $\{x_n^*\}$ of functionals and $\{P_n\}$ of projections on X such that:

- (i) $x_i^*(x_i) = 0$ if and only if $i \neq j$;
- (ii) $P_n(x) = x \sum_{k=1}^n (x_k^*(x)/x_k^*(x_k))x_k$ is the projection with kernel span $\{x_1, \dots, x_n\}$ and image $\bigcap_{i=1}^n \ker x_i^*$;
- (iii) $x_n = P_{n-1}Tx_{n-1};$

(iv)
$$\operatorname{span}\{x_1, \ldots, T^{n-1}x_1\} = \operatorname{span}\{x_1, \ldots, x_n\};$$

(v) $x_n \notin \operatorname{span}\{x_1, \ldots, x_{n-1}\}.$

Indeed, suppose that we have defined x_i , x_{i-1}^* and P_{i-1} , for $1 \le i \le n$, satisfying (i)– (v). Since $x_n \notin \text{span}\{x_1, \ldots, x_{n-1}\}$, we can choose $x_n^* \in X^*$ such that $x_n^*(x_i) = 0$ for $1 \le i \le n-1$ and $x_n^*(x_n) \ne 0$. Let $P_n(x) = x - \sum_{k=1}^n (x_k^*(x)/x_k^*(x_k))x_k$ be the projection with kernel span $\{x_1, \ldots, x_n\}$ and image $\bigcap_{i=1}^n \ker x_i^*$. Define $x_{n+1} = P_nTx_n$. There exists $y_n \in \text{span}\{x_1, \ldots, x_n\}$ such that $x_{n+1} = Tx_n + y_n$. By (iv), $x_n, y_n \in \text{span}\{x_1, \ldots, x_n\}$ and $Tx_i \in \text{span}\{x_1, \ldots, x_{i+1}\}$ for $1 \le i \le n$, so

$$T^n x_1 \in \operatorname{span}\{Tx_1, \ldots, Tx_n\} \subseteq \operatorname{span}\{x_1, \ldots, x_{n+1}\}.$$

It follows that span{ $x_1, \ldots, T^n x_1$ } = span{ x_1, \ldots, x_{n+1} }. Also, since

$$T^n x_1 \notin \operatorname{span}\{x_1, \dots, T^{n-1} x_1\} = \operatorname{span}\{x_1, \dots, x_n\}$$

and

$$T^{n}x_{1} \in \text{span}\{x_{1}, \dots, T^{n}x_{1}\} = \text{span}\{x_{1}, \dots, x_{n+1}\},\$$

we have $x_{n+1} \notin \text{span}\{x_1, \ldots, x_n\}$.

Now, set $Z = cl(span\{x_{2n-1}\}_{n=1}^{\infty})$. By assumption, there exists a finite-dimensional subspace M such that $TZ \subseteq Z + M$. So, $Tx_{2n-1} = z_n + m_n$ for some $z_n \in Z$ and $m_n \in M$. Also, since $P_{2n-1}Tx_{2n-1} = x_{2n}$, we have $Tx_{2n-1} = x_{2n} + u_n$ for some $u_n \in span\{x_1, \ldots, x_{2n-1}\}$.

Let *j* and *n* be natural numbers and j > n. Since $x_{2j}^*(x_{2n}) = x_{2j}^*(u_n) = x_{2j}^*(z_n) = 0$, we have $x_{2j}^*(m_n) = 0$. On the other hand, $x_{2n}^*(x_{2n}) \neq 0$, $x_{2n}^*(u_n) = 0$ and $x_{2n}^*(z_n) = 0$. Therefore, $x_{2n}^*(m_n) \neq 0$. We conclude that $x_{2n}^*(m_n) \neq 0$ and $x_{2j}^*(m_n) = 0$ for all *n* and j > n, contradicting dim $M < \infty$.

PROPOSITION 3.3. Suppose that $T \in \mathcal{B}(X)$ and every subspace of X is almost invariant under T. Then $T = \alpha I + F$ for some scalar α and $F \in \mathcal{F}(X)$.

PROOF. Suppose that *T* cannot be expressed in the form $\alpha I + F$ for any scalar α and $F \in \mathcal{F}(X)$. Start with the subspace {0} of *X*. By Lemma 3.1, there is $x_1 \in X$ such that $Tx_1 \notin \text{span}\{x_1\}$. Set $M_1 = \text{span}\{x_1\}$ and choose $x_1^* \in X^*$ such that $x_1^*|M_1 = 0$ and $x_1^*(Tx_1) \neq 0$. Also, set $M'_1 = \text{cl}(\text{span}\{T^kx_1\}_{k=0}^{\infty})$, which is invariant under *T*. By Lemma 3.2, M'_1 is of finite dimension and again, by Lemma 3.1, there is $x_2 \in X$ such that $M'_1 + \text{span}\{x_2\}$ is not invariant under *T*. Since $X = \ker x_1^* \oplus \text{span}\{Tx_1\}$ and $Tx_1 \in M'_1$, we can choose x_2 in ker x_1^* .

Continuing inductively in this way, we can construct sequences $\{x_n\}$ of vectors, $\{x_n^*\}$ of functionals and $\{M_n\}$ and $\{M'_n\}$ of finite-dimensional subspaces of X such that, for n = 1, 2, ...:

(i) $x_i^*(x_j) = 0$ for all *i* and *j*;

(ii)
$$x_i^*(Tx_i) \neq 0$$
 if $i = j$, and $x_i^*(Tx_i) = 0$ if $i > j$;

- (iii) $M_n = M'_{n-1} + \text{span}\{x_n\};$
- (iv) $M'_n = M_n + cl(span\{T^k x_n\}_{k=0}^{\infty})$ and M'_n is invariant under T.

Indeed, suppose that we have defined x_i , x_i^* , M_i and M'_i , for $1 \le i \le n$, satisfying (i)–(iv). Since M'_n is of finite dimension, by Lemma 3.1, there exists $z_{n+1} \in X$ such that $M'_n + \text{span}\{z_{n+1}\}$ is not invariant under *T*. By (ii),

$$X = \bigcap_{i=1}^{n} \ker x_i^* \oplus \operatorname{span}\{Tx_1, \dots, Tx_n\}.$$

Since span{ Tx_1, \ldots, Tx_n } $\subseteq M'_n$, there exists $x_{n+1} \in \bigcap_{i=1}^n \ker x_i^*$ with $M'_n + \operatorname{span}\{x_{n+1}\} = M'_n + \operatorname{span}\{z_{n+1}\}$. This means that $M'_n + \operatorname{span}\{x_{n+1}\}$ is not invariant under T and, so, $Tx_{n+1} \notin M'_n + \operatorname{span}\{x_{n+1}\}$. Define $M_{n+1} = M'_n + \operatorname{span}\{x_{n+1}\}$ and choose $x_{n+1}^* \in X^*$ such that $x_{n+1}^* | M_{n+1} = 0$ and $x_{n+1}^* (Tx_{n+1}) \neq 0$. Then $x_{n+1}^* (x_j) = 0$, for $j = 1, \ldots, n+1$, and $x_{n+1}^* (Tx_j) = 0$, for $j = 1, \ldots, n$. Set $M'_{n+1} = M_{n+1} + \operatorname{cl}(\operatorname{span}\{T^k x_{n+1}\}_{k=0}^{\infty})$, which is invariant under T by Lemma 3.2. Also, M'_{n+1} is of finite dimension.

Now, define $Z = cl(span\{x_n\}_{n=1}^{\infty})$. By assumption, there exists a finite-dimensional subspace M such that $TZ \subseteq Z + M$. So, for each $x_n \in Z$, there exist $z_n \in Z$ and $m_n \in M$ such that $Tx_n = z_n + m_n$. Since $x_n^*(Tx_n) \neq 0$ and $x_n^*(z_n) = 0$, we have $x_n^*(m_n) \neq 0$. Also, for k > n, we have $x_k^*(Tx_n) = x_k^*(z_n) = 0$. Therefore, $x_k^*(m_n) = 0$. It follows that $x_n^*(m_n) \neq 0$ and $x_k^*(m_n) = 0$ for all n and k > n, contradicting dim $M < \infty$.

Let T be an operator on a Banach space X. It is known that if T commutes with every operator on X, then T must be a multiple of the identity. Using Proposition 3.3, we show that if X is a separable Banach space and TS - ST is a finite-rank operator, for all $S \in \mathcal{B}(X)$, then T will be of the form $\alpha I + F$, where rank $F < \infty$.

COROLLARY 3.4. Let T be an operator on a separable Banach space X and suppose that $TS - ST \in \mathcal{F}(X)$ for every $S \in \mathcal{B}(X)$. Then $T = \alpha I + F$ for some scalar α and $F \in \mathcal{F}(X)$.

PROOF. According to Proposition 2.3, it is sufficient to show that every subspace of Xis almost invariant under T.

Let Y be an arbitrary closed subspace of X. Since both X and X/Y are separable, by [3, Proposition 3.1], there exists a bounded linear operator Φ from X/Y to X that is one-to-one. Also, if $q: X \longrightarrow X/Y$ is the quotient map, then $S = \Phi q$ will be a bounded operator on X such that $Y = \ker S$. By assumption, there exists $F \in \mathcal{F}(X)$ such that ST - TS = F. So, $ST(\ker S) \subseteq FX$ and then $T(\ker S) \subseteq S^{-1}(FX)$. Since $FX \cap SX$ is of finite dimension, there exists a finite-dimensional subspace M such that $FX \cap SX = SM$. Now,

$$S^{-1}(FX) = S^{-1}(FX \cap SX) = S^{-1}(SM) = M + \ker S.$$

Therefore, $T(\ker S) \subseteq M + \ker S$ and $Y = \ker S$ is almost invariant under T.

Let \mathcal{L} be a collection of closed subspaces of a Banach space X. It is clear that Alg $\mathcal{L} + \mathcal{F}(X) \subseteq \text{Alg}_{a} Y$. Now, we can ask, under which conditions on \mathcal{L} will we have $\operatorname{Alg}_{a}\mathcal{L} = \operatorname{Alg}\mathcal{L} + \mathcal{F}(X)?$

For a single subspace $\mathcal{L} = \{Y\}$, we have $\operatorname{Alg}_a Y = \operatorname{Alg} Y + \mathcal{F}(X)$. In view of Proposition 3.3, if \mathcal{L} is the set of all subspaces of X, then $\operatorname{Alg}_a \mathcal{L} = \operatorname{Alg} \mathcal{L} + \mathcal{F}(X)$. However, this is not true in general. It is enough to consider \mathcal{L} as the collection of all finite-dimensional subspaces of X. In the next two propositions, we examine some conditions under which the conclusion does hold.

PROPOSITION 3.5. If $\mathcal{L} = \{Y_1, \dots, Y_n\}$ is a finite collection of subspaces of X such that $X = Y_1 \oplus \cdots \oplus Y_n$, then $\operatorname{Alg}_a \mathcal{L} = \operatorname{Alg} \mathcal{L} + \mathcal{F}(X)$.

PROOF. Since X is a direct sum of subspaces Y_1, \ldots, Y_n , there exist bounded projections P_1, \ldots, P_n such that $P_i X = Y_i$ and ker $P_i = \sum_{k=1, k \neq i}^n Y_k$ for $1 \le i \le n$. Also, $P_i P_j = 0$ whenever $i \neq j$ and $\sum_{i=1}^{n} P_i = I$.

Let $T \in Alg_a \mathcal{L}$. Since each Y_i is almost invariant under T, there exists a finitedimensional subspace M_i such that $TY_i \subseteq Y_i + M_i = P_iX + M_i$. For $i \neq j$,

$$P_jTP_iX = P_jTY_i \subseteq P_j(Y_i + M_i) \subseteq P_jM_i.$$

Therefore, the operator $P_i T P_i$ is of finite rank whenever $i \neq j$. On the other hand,

$$P_{k}\left(T - \sum_{i,j=1,j\neq i}^{n} P_{j}TP_{i}\right) = P_{k}T - P_{k}T\sum_{i=1,i\neq k}^{n} P_{i} = P_{k}T - P_{k}T(I - P_{k}) = P_{k}TP_{k}$$
$$= TP_{k} - (I - P_{k})TP_{k} = TP_{k} - \left(\sum_{i=1,i\neq k}^{n} P_{i}\right)TP_{k}$$
$$= \left(T - \sum_{i,j=1,j\neq i}^{n} P_{j}TP_{i}\right)P_{k}$$

for k = 1, ..., n.

This shows that $T - \sum_{i=1, i \neq i}^{n} P_i T P_i \in Alg \mathcal{L}$ and, since

$$T = \left(T - \sum_{i,j=1,j\neq i}^{n} P_j T P_i\right) + \sum_{i,j=1,j\neq i}^{n} P_j T P_i,$$

the proof is complete.

REMARK 3.6. For an operator *T* and an almost-invariant subspace *Y*, there exists a finite-dimensional subspace *M* with $TY \subseteq Y + M$ and $Y \cap M = \{0\}$. We can find a projection *P* on *X* with range *M* and kernel containing *Y* such that $(T - PT)Y \subseteq Y$.

Indeed, if $q: X \longrightarrow X/Y$ for the quotient map, then q(M) is a finite-dimensional subspace of X/Y. There is a subspace $L' \subseteq X/Y$ such that $L' \oplus q(M) = X/Y$. Since $Y \cap M = \{0\}$, by setting $L = q^{-1}(L')$, we have $M \oplus L = X$ and $L \supseteq Y$. Now, if we consider the projection on X with kernel L and range M, then $(T - PT)Y \subseteq Y$.

PROPOSITION 3.7. Let $\mathcal{L} = \{Y_1, \ldots, Y_n\}$ be a finite collection of subspaces of X with $Y_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_n$. Then $\operatorname{Alg}_a \mathcal{L} = \operatorname{Alg} \mathcal{L} + \mathcal{F}(X)$.

PROOF. Given $T \in \operatorname{Alg}_a \mathcal{L}$, let M_1 be a finite-dimensional subspace of X such that $Y_1 \cap M_1 = \{0\}$ and $TY_1 \subseteq Y_1 + M_1$. By Remark 3.6, there exists a projection P_1 on X with range M_1 and kernel containing Y_1 such that Y_1 is invariant under $T - P_1T$. Set $S_1 = T - P_1T$. Since P_1T is of finite rank, Y_2 is almost invariant under S_1 and, by [6, Lemma 2.1], we can choose a finite-dimensional subspace M_2 such that $M_2 \subseteq S_1Y_2 \subseteq S_1Y_1 \subseteq Y_1, Y_2 \cap M_2 = \{0\}$ and $S_1Y_2 \subseteq Y_2 + M_2$. Consider a projection P_2 on Y_1 with range M_2 and kernel containing Y_2 . Since P_2 is of finite rank, it can be extended to a bounded linear operator \tilde{P}_2 on all of X with the same range as P_2 . It is easily seen that Y_1 and Y_2 are invariant under the operator $S_1 - \tilde{P}_2S_1$.

Continuing this process, we obtain operators $\{S_i, P_i, \tilde{P}_i\}_{i=1}^n$ and finite-dimensional subspaces $\{M_i\}_{i=1}^n$ of X such that, for i = 1, ..., n:

(i) $S_{i-1}Y_i \subseteq Y_i + M_i, Y_i \cap M_i = \{0\}$ and $M_i \subseteq S_{i-1}Y_i \subseteq S_{i-1}Y_{i-1} \subseteq Y_{i-1}$ for i = 2, ..., n;

- (ii) P_i is a projection on Y_{i-1} with range M_i and kernel including Y_i ;
- (iii) \tilde{P}_i is an extension of P_i on X with the same range as P_i ;
- (iv) $S_i = S_{i-1} \tilde{P}_i S_{i-1}$, $S_0 = T$ and $\tilde{P}_1 = P_1$;
- (v) the subspaces Y_1, \ldots, Y_i are invariant under S_i .

So,

$$T = S_n + \tilde{P}_n S_{n-1} + \tilde{P}_{n-1} S_{n-2} + \dots + \tilde{P}_2 S_1 + P_1 T$$

and finally $S_n \in \text{Alg } \mathcal{L}$ and $\tilde{P}_n S_{n-1} + \tilde{P}_{n-1} S_{n-2} + \dots + \tilde{P}_2 S_1 + P_1 T \in \mathcal{F}(X)$.

References

- G. Androulakis, A. I. Popov, A. Tcaciuc and V. G. Troitsky, 'Almost invariant half-spaces of operators on Banach spaces', *Integral Equations Operator Theory* 65 (2009), 473–484.
- [2] A. Assadi, M. A. Farzaneh and H. M. Mohammadinejad, 'Invariant subspaces close to almost invariant subspaces for bounded linear operators', *Aust. J. Math. Anal. Appl.* 15(2) (2018), Article ID 4, 9 pages.
- [3] R. W. Cross, M. I. Ostrovskii and V. V. Shechik, 'Operator ranges in Banach spaces I', *Math. Nachr.* 173 (1995), 91–114.
- [4] P. Enflo, 'On the invariant subspace problem for Banach spaces', Acta Math. 158(34) (1987), 213–313.
- [5] L. W. Marcoux, A. I. Popov and H. Radjavi, 'On almost-invariant subspaces and approximate commutation', J. Funct. Anal. 264(4) (2013), 1088–1111.
- [6] A. I. Popov, 'Almost invariant half-spaces of algebras of operators', *Integral Equations Operator Theory* 67(2) (2010), 247–256.
- [7] A. I. Popov and A. Tcaciuc, 'Every operator has almost-invariant subspaces', J. Funct. Anal. 265(2) (2013), 257–265.
- [8] C. J. Read, 'A solution to the invariant subspace problem on the space l_1 ', *Bull. Lond. Math. Soc.* **17**(4) (1985), 305–317.
- C. J. Read, 'Quasinilpotent operators and the invariant subspace problem', J. Lond. Math. Soc. (2) 56(3) (1997), 595–606.
- [10] G. Sirotkin and B. Wallis, 'The structure of almost-invariant half-spaces for some operators', J. Funct. Anal. 267 (2014), 2298–2312.
- [11] G. Sirotkin and B. Wallis, 'Almost-invariant and essentially-invariant halfspaces', *Linear Algebra Appl.* 507 (2016), 399–413.
- [12] A. Tcaciuc, 'The almost-invariant subspace problem for rank one perturbations', *Duke Math. J.*, to appear, arXiv:1707.07836 [math.FA].

AMANOLLAH ASSADI, Department of Mathematical and Statistical Sciences, University of Birjand, PO Box 97175/615, Birjand, Iran e-mail: assadi-aman@birjand.ac.ir

MOHAMAD ALI FARZANEH,

Department of Mathematical and Statistical Sciences, University of Birjand, PO Box 97175/615, Birjand, Iran e-mail: farzaneh@birjand.ac.ir

HAJI MOHAMMAD MOHAMMADINEJAD,

Department of Mathematical and Statistical Sciences, University of Birjand, PO Box 97175/615, Birjand, Iran e-mail: hmohammadin@birjand.ac.ir

[10]

283