ON THE DECOMPOSITION OF OPERATORS WITH SEVERAL ALMOST-INVARIANT SUBSPACES

AMANOLLAH ASSADI, MOHAMAD ALI FARZANEH ${ }^{\boxtimes}$ and HAJI MOHAMMAD MOHAMMADINEJAD

(Received 3 June 2018; accepted 20 September 2018; first published online 4 January 2019)

Abstract

We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of bounded operators. We study the bounded linear operators which have a collection of almost-invariant subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a finite-rank operator.

2010 Mathematics subject classification: primary 47A15; secondary 47A55.
Keywords and phrases: subspace, almost-invariant subspace, half-space, finite-rank operator, defect.

1. Introduction

The invariant subspace problem is a famous problem in operator theory. An operator without a nontrivial invariant subspace was first found by Enflo [4]. Read constructed such an operator on l_{1} [8] and a quasinilpotent operator without a nontrivial invariant subspace [9]. The problem is still open for reflexive Banach spaces.

Androulakis et al. [1] introduced almost-invariant subspaces as a modified version of invariant subspaces. For a Banach space X and a bounded linear operator T on X, a closed subspace Y of X is called almost invariant under T if there exists a finitedimensional subspace M of X such that $T Y \subseteq Y+M$. If M is chosen with minimum dimension, M and $d_{Y, T}=\operatorname{dim} M$ are respectively called the error and defect of Y under T. It is easy to see that every finite-dimensional or finite-codimensional subspace of X is always almost invariant under every operator on X. Therefore, the study of almost-invariant subspaces is restricted to half-spaces, which are closed subspaces with both infinite dimension and infinite codimension in X. The first question raised was whether every operator on an infinite-dimensional Banach space has an almostinvariant half-space. An affirmative answer was given for reflexive Banach spaces [7] and then for compact and quasinilpotent operators [10]. Finally, Tcaciuc showed that every operator on a separable Banach space has an almost-invariant half-space with defect at most one [12].

[^0]In Section 2, we present a sufficient condition for a weak operator convergent sequence to preserve almost-invariant subspaces, improving a theorem of Popov [6]. In Section 3, we show that if a bounded operator on a Banach space admits each closed subspace as an almost-invariant subspace, then it can be decomposed into the sum of a multiple of the identity and a finite-rank operator. This has already been proven for Hilbert spaces [5].

Let Y be a closed subspace of a Banach space X and T a bounded operator on X. By Alg Y, we denote the set of all bounded operators on X which have Y as an invariant subspace. It is known that if Y is almost invariant under T, then T can be expressed in the form $S+F$ for some $S \in \operatorname{Alg} Y$ and a finite-rank operator F [1]. In the following, by putting appropriate conditions on \mathcal{L}, a collection of closed subspaces which are almost invariant under T, we achieve a decomposition of T in the form $S+F$ for some $S \in \operatorname{Alg} \mathcal{L}$ and a finite-rank operator F.

Throughout the paper, X is a complex Banach space and $\mathcal{B}(X)$ is the set of all bounded linear operators on X. The terms 'subspace' and 'operator' refer to 'closed subspace' and 'bounded linear operator', respectively.

2. Limit properties of operators with almost-invariant subspaces

Suppose that $\left(T_{\alpha}\right)_{\alpha \in I}$ is a net of bounded operators on X converging to a bounded operator T in the weak operator topology (wot), that is, for each $x^{*} \in X^{*}$ and $x \in X$, the net $\left(x^{*}\left(T_{\alpha} x\right)\right)_{\alpha \in I}$ converges to $x^{*}(T x)$. We denote this limit by wot-lim. If Y is an invariant subspace under each T_{α}, then Y will also be invariant under T. But this is not valid for almost-invariant subspaces. Indeed, it is enough to consider a sequence $\left(F_{n}\right)_{n=1}^{\infty}$ of finite-rank operators on an infinite-dimensional Hilbert space H, converging to a nonfinite-rank compact operator K. Clearly, each subspace of H is almost invariant under F_{n} for all n. Nevertheless it is not true for K, since, according to [5, Corollary 4.16], the compact operator K must be in the form $\alpha I+F$ for some nonzero scalar α and a finite-rank operator F, which is a contradiction.

The next proposition provides a sufficient condition. Before that we give two lemmas needed in the proof.

We denote by $\mathcal{F}(X)$ the set of all bounded finite-rank operators on X and by $\mathcal{F}_{n}(X)$ the set of all bounded finite-rank operators on X with rank $\leq n$. Similarly, we use $\mathcal{B}(X, Y), \mathcal{F}(X, Y)$ and $\mathcal{F}_{n}(X, Y)$ for operators between the Banach spaces X and Y.

Lemma 2.1. For Banach spaces X and $Y, \mathcal{F}_{n}(X, Y)$ is a closed subset of $\mathcal{B}(X, Y)$ in the weak operator topology.

Proof. Let $\left(T_{\alpha}\right)_{\alpha \in I}$ be a net in $\mathcal{F}_{n}(X, Y)$ converging to a bounded operator T in the weak operator topology. Suppose that rank $T \geq n+1$. We can choose vectors x_{1}, \ldots, x_{n+1} such that the collection $\left\{T x_{i}\right\}_{i=1}^{n+1} \subseteq Y$ is linearly independent. By the Hahn-Banach theorem, there exist linear functionals $y_{j}^{*} \in Y^{*}, j=1, \ldots, n+1$, with $y_{j}^{*}\left(T x_{j}\right)=1$ and $y_{j}^{*}\left(T x_{i}\right)=0$ for $i \neq j$. Now, define the operator $S \in \mathcal{F}_{n+1}(Y)$ by the formula $S y=\sum_{j=1}^{n+1} y_{j}^{*}(y) T x_{j}$. Since $T_{\alpha} x_{1}, \ldots, T_{\alpha} x_{n+1}$ converge weakly to $T x_{1}, \ldots, T x_{n+1}$, we
conclude that $\lim _{\alpha} S\left(T_{\alpha} x_{i}\right)=T x_{i}$ for $i=1, \ldots, n+1$. Also, since $T x_{1}, \ldots, T x_{n+1}$ are linearly independent, the collection $\left\{S\left(T_{\alpha} x_{i}\right)\right\}_{i=1}^{n+1}$ will eventually become linearly independent and so will the preimage $\left\{T_{\alpha} x_{i}\right\}_{i=1}^{n+1}$, which contradicts the hypothesis that $T_{\alpha} \in \mathcal{F}_{n}(X, Y)$.

The following lemma provides a connection between almost-invariant subspaces and their quotient maps.

Lemma 2.2 [6]. Let $T \in \mathcal{B}(X)$ and Y be a subspace of X. Let $q: X \longrightarrow X / Y$ be the quotient map. Then Y is an almost-invariant subspace under T if and only if $\left.(q T)\right|_{Y}$ is of finite rank. Moreover, $\operatorname{dim}(q T)(Y)=d_{Y, T}$.

Proposition 2.3. Suppose that $\left(T_{\alpha}\right)_{\alpha \in I}$ is a net of bounded operators on X converging to a bounded operator T in the weak operator topology. Let Y be an almost-invariant subspace under every T_{α} with $d_{Y, T_{\alpha}} \leq N$. Then Y is almost invariant under T with $d_{Y, T} \leq N$.

Proof. Let $q: X \longrightarrow X / Y$ be the quotient map. Since wot- $\lim _{\alpha} T_{\alpha}=T$ and q is a bounded operator, wot- $-\left.\lim _{\alpha}\left(q T_{\alpha}\right)\right|_{Y}=\left.(q T)\right|_{Y}$. By Lemma 2.2, each $\left.\left(q T_{\alpha}\right)\right|_{Y}$ is a finiterank operator with rank $\leq N$. Now, by Lemma 2.1, $\left.\operatorname{rank}(q T)\right|_{Y} \leq N$ and again, by Lemma 2.2, Y is almost invariant under T with $d_{Y, T} \leq N$.

Let Y be a closed subspace of X. Similarly to invariant subspaces, the set of all bounded operators which have Y as an almost-invariant subspace is a subalgebra of $\mathcal{B}(X)$, denoted by $\operatorname{Alg}_{a} Y$. Unfortunately, it is not a closed algebra; by [1, Proposition 1.3], $\operatorname{Alg}_{a} Y=\operatorname{Alg} Y+\mathcal{F}(X)$.

For $T \in \mathcal{B}(X)$, a subspace Y of X is called essentially invariant under T if it is invariant under $T+K$ for some $K \in \mathcal{K}(X)$, where $\mathcal{K}(X)$ denotes the class of compact operators on X. By [11, Corollary 4.3], every bounded operator on a Banach space admits an essentially invariant half-space. The set of all bounded operators which have Y as an essentially invariant subspace is a subalgebra of $\mathcal{B}(X)$, denoted by $\operatorname{Alg}_{e} Y$. Clearly, $\operatorname{Alg}_{e} Y=\operatorname{Alg} Y+\mathcal{K}(X)$.

Suppose that $\left(T_{n}\right)_{n=1}^{\infty}$ is a sequence of bounded operators on X converging to T in norm topology and Y is an almost-invariant subspace under each T_{n}. We can ask, does T admit Y as an essentially invariant subspace? In other words, is $\overline{\operatorname{Alg}_{a} Y} \subseteq \operatorname{Alg}_{e} Y$? When Y is a complemented subspace of X, the answer is affirmative. Indeed, let P be a projection on X with range Y. Since Y is an almost-invariant subspace under each T_{n}, it follows that $(I-P) T_{n} P$ is a finite-rank operator. Moreover, $\left(T_{n}-(I-P) T_{n} P\right) Y \subseteq Y$. So, $(T-(I-P) T P) Y \subseteq Y$ and $(I-P) T P$ is a compact operator.

Now, suppose that X has the approximation property, in particular $\overline{\mathcal{F}(X)}=\mathcal{K}(X)$. Then

$$
\operatorname{Alg}_{e} Y=\operatorname{Alg} Y+\mathcal{K}(X)=\operatorname{Alg} Y+\overline{\mathcal{F}(X)} \subseteq \overline{\operatorname{Alg} Y+\mathcal{F}(X)}=\overline{\operatorname{Alg}_{a} Y}
$$

If $\operatorname{Alg}_{e} Y$ is also a norm-closed subalgebra of $\mathcal{B}(X)$, then $\overline{\operatorname{Alg}_{a} Y}=\operatorname{Alg}_{e} Y$. This motivates and proves the next corollary.

Corollary 2.4. Suppose that X has the approximation property and Y is a subspace of X. Then $\overline{\operatorname{Alg}_{a} Y}=\operatorname{Alg}_{e} Y$ if and only if $\operatorname{Alg}_{e} Y=\operatorname{Alg} Y+\mathcal{K}(X)$ is norm-closed in $\mathcal{B}(X)$. In particular, if Y is a complemented subspace of X, then the subalgebra Alg $Y+\mathcal{K}(X)$ is a norm-closed subspace of $\mathcal{B}(X)$.

We denote by $\operatorname{Lat}_{a} T$ the set of all almost-invariant subspaces under T. According to [1, Proposition 1.3], $\operatorname{Lat}_{a} T=\bigcup_{F \in \mathcal{F}(X)} \operatorname{Lat}(T+F)$. Similarly to invariant subspaces, $\operatorname{Lat}_{a} T$ is a complete lattice. Indeed, if Y_{1} and $Y_{2} \in \operatorname{Lat}_{a} T$, then there exist finitedimensional subspaces M_{1} and M_{2} such that $T Y_{1} \subseteq Y_{1}+M_{1}$ and $T Y_{2} \subseteq Y_{2}+M_{2}$. So, $T\left(Y_{1}+Y_{2}\right) \subseteq Y_{1}+Y_{2}+M_{1}+M_{2}$ and, since $M_{1}+M_{2}$ is of finite dimension,

$$
T\left(\operatorname{cl}\left(Y_{1}+Y_{2}\right)\right) \subseteq \operatorname{cl}\left(Y_{1}+Y_{2}\right)+M_{1}+M_{2} .
$$

Therefore, $\operatorname{cl}\left(Y_{1}+Y_{2}\right) \in \operatorname{Lat}_{a} T$. Also, by [2, Proposition 2.2], there exist finitecodimensional subspaces N_{1} and N_{2} such that $T\left(Y_{1} \cap N_{1}\right) \subseteq Y_{1}$ and $T\left(Y_{2} \cap N_{2}\right) \subseteq Y_{2}$. Hence,

$$
T\left(Y_{1} \cap Y_{2} \cap N_{1} \cap N_{2}\right) \subseteq T\left(Y_{1} \cap N_{1}\right) \cap T\left(Y_{2} \cap N_{2}\right) \subseteq Y_{1} \cap Y_{2}
$$

Since $N_{1} \cap N_{2}$ is still of finite codimension, this shows that $Y_{1} \cap Y_{2} \in \operatorname{Lat}_{a} T$.
For a subspace Y of X, we denote by $\Lambda_{a}^{n} Y$ the set of all bounded operators which have Y as an almost-invariant subspace with defect $\leq n$. Clearly, $\Lambda_{a}^{n} Y=\operatorname{Alg} Y+\mathcal{F}_{n}(X)$. By Proposition 2.3, $\Lambda_{a}^{n} Y$ is a closed subset of $\mathcal{B}(X)$ in the weak operator topology. If \mathcal{L} is a collection of subspaces of X, we can similarly define $\operatorname{Alg}_{a} \mathcal{L}$ and $\Lambda_{a}^{n} \mathcal{L}$. Clearly, $\operatorname{Alg}_{a} \mathcal{L}=\bigcap_{Y \in \mathcal{L}} \operatorname{Alg}_{a} Y$ and $\Lambda_{a}^{n} \mathcal{L}=\bigcap_{Y \in \mathcal{L}} \Lambda_{a}^{n} Y$.

Popov stated the following theorem and gave a rather lengthy and technical proof.
Theorem 2.5 [6]. Let \mathcal{A} be a norm-closed subspace of $\mathcal{B}(X)$. Suppose that Y is a subspace of X that is almost invariant under \mathcal{A}. Then $\sup \left\{d_{Y, S}: S \in \mathcal{A}\right\}<\infty$.

We extend this theorem and give a much shorter proof.
Theorem 2.6. Let \mathcal{L} be a finite collection of subspaces of X. Let \mathcal{C} be a norm-closed convex subset of $\mathcal{B}(X)$ such that $C \subseteq \operatorname{Alg}_{a} \mathcal{L}$. Then there exists an integer $n \geq 0$ such that $C \subseteq \Lambda_{a}^{n} \mathcal{L}$.
Proof. Set $C_{k}=C \cap \Lambda_{a}^{k} \mathcal{L}$. By Proposition 2.3, C_{k} is a closed subset of C for all k. Also, since \mathcal{L} is a finite collection, $C=\bigcup_{k=1}^{\infty} C_{k}$. Considering C as a complete metric space, by the Baire category theorem, there exists an integer $k>0$ such that the interior of C_{k} in C is nonempty. Choose an operator T_{0} in the interior of C_{k} in C. Since $\mathcal{C}-T_{0}=\left\{T-T_{0}: T \in C\right\}$ is still convex and $0 \in C-T_{0}$, we have $t\left(T-T_{0}\right) \in C-T_{0}$ for $0 \leq t \leq 1$ and $T \in C$. Now, fix an operator $T \in C$ and consider the continuous map $f:[0,1] \longrightarrow C-T_{0}$ given by $f(t)=t\left(T-T_{0}\right)$. Since $C_{k}-T_{0}$ contains an open ball in the metric space $C-T_{0}$ of positive radius at 0 , there is a real number $s>0$ such that

$$
s\left(T-T_{0}\right)=f(s) \in C_{k}-T_{0} \subseteq \Lambda_{a}^{k} \mathcal{L}+\Lambda_{a}^{k} \mathcal{L} \subseteq \Lambda_{a}^{2 k} \mathcal{L}
$$

Therefore,

$$
T \in \Lambda_{a}^{2 k} \mathcal{L}+T_{0} \subseteq \Lambda_{a}^{3 k} \mathcal{L}
$$

and setting $n=3 k$ completes the proof.

The finiteness of \mathcal{L} in the previous theorem is necessary. Indeed, if \mathcal{L} includes a chain $Y_{1} \subsetneq Y_{2} \subsetneq Y_{3} \subsetneq \cdots$ of finite-dimensional subspaces of an infinite-dimensional Banach space X, then $\mathcal{B}(X)=\operatorname{Alg}_{a} \mathcal{L}$. However, there is no integer $n \geq 1$ such that $\mathcal{B}(X) \subseteq \Lambda_{a}^{n} \mathcal{L}$.

For two different subspaces Y and Z of X, there exists a rank-one operator T on X such that Y is invariant under T, but Z is not. In particular, $\operatorname{Alg} Y \neq \operatorname{Alg} Z$. Now, we obtain a similar result for almost-invariant subspaces.

For the subspaces Y_{1} and Y_{2}, we say that Y_{1} is almost equivalent to Y_{2} if there exist finite-dimensional subspaces M_{1} and M_{2} such that $Y_{1}+M_{1}=Y_{2}+M_{2}$.

Proposition 2.7. For a subspace Y and a half-space Z of X, which are not almost equivalent, there exists an operator $T \in \overline{\mathcal{F}(X)}$ such that Y is almost invariant under T, but Z is not. In particular, if both Y and Z are half-spaces, then $\operatorname{Alg}_{a} Z \nsubseteq \operatorname{Alg}_{a} Y$ and $\operatorname{Alg}_{a} Y \nsubseteq \operatorname{Alg}_{a} Z$.

Proof. First, we suppose that Y is not a half-space. Then $\operatorname{Alg}_{a} Y=\mathcal{B}(X)$ and we show that $\overline{\mathcal{F}(X)} \nsubseteq \operatorname{Alg}_{a} Z$.

Let Z be an almost-invariant half-space under every operator in $\overline{\mathcal{F}(X)}$. Since $\overline{\mathcal{F}(X)}$ is a norm-closed algebra, by [11, Theorem 1.1], there exists a half-space Z^{\prime} which is invariant under every operator in $\overline{\mathcal{F}(X)}$. This contradicts the transitivity of $\overline{\mathcal{F}(X)}$.

Now, suppose that both Y and Z are half-spaces. Since Y and Z are not almost equivalent, we can assume, without loss of generality, that $Z \nsubseteq Y+\operatorname{span}\left\{z_{i}\right\}_{i=1}^{n}$ for all integers $n>0$ and each set of linearly independent vectors $\left\{z_{i}\right\}_{i=1}^{n} \subseteq Z$. We show that $\operatorname{Alg}_{a} Z \nsubseteq \operatorname{Alg}_{a} Y$ and $\mathrm{Alg}_{a} Y \nsubseteq \mathrm{Alg}_{a} Z$.

If $\operatorname{Alg}_{a} Y \subseteq \operatorname{Alg}_{a} Z$, then $\operatorname{Alg} Y \subseteq \operatorname{Alg}_{a} Z$ and, by Theorem 2.6, there is an integer $k>0$ such that $\operatorname{Alg} Y \subseteq \Lambda_{a}^{k} Z$. We can choose linearly independent vectors $\left\{y_{i}\right\}_{i=1}^{k+1} \subseteq Y$ and linearly independent vectors $\left\{z_{i}\right\}_{i=1}^{k+1} \subseteq Z$ such that $\operatorname{span}\left\{z_{i}\right\}_{i=1}^{k+1} \cap Y=\{0\}$. Since y_{1}, \ldots, y_{n+1} are linearly independent, there are linear functionals $\left\{x_{i}^{*}\right\}_{i=1}^{k+1}$ with $x_{i}^{*}\left(y_{i}\right)=1$ and $x_{i}^{*}\left(y_{j}\right)=0$ for $j \neq i$. Now, define the operator $T \in \mathcal{F}(X)$ by $T x=\sum_{i=1}^{k+1} x_{i}^{*}(x) z_{i}$. It is easily seen that $T Z \subseteq Z$ and $d_{Y, T} \geq k+1$, which is a contradiction.

If $\operatorname{Alg}_{a} Z \subseteq \operatorname{Alg}_{a} Y$, then $\operatorname{Alg} Z \subseteq \operatorname{Alg}_{a} Y$ and, by Theorem 2.6, there is a $k>0$ such that $\operatorname{Alg} Z \subseteq \Lambda_{a}^{k} Y$. Since Z is a half-space, we can choose linearly independent vectors $\left\{z_{i}\right\}_{i=1}^{k+1} \subseteq Z$ and linearly independent vectors $\left\{w_{i}\right\}_{i=1}^{k+1} \subseteq X$ with $\operatorname{span}\left\{w_{i}\right\}_{i=1}^{k+1} \cap Z=\{0\}$ and span $\left\{z_{i}\right\}_{i=1}^{k+1} \cap Y=\{0\}$. By the Hahn-Banach theorem, there are linear functionals $\left\{x_{i}^{*}\right\}_{i=1}^{k+1}$ with $x_{i}^{*} \mid Y=0, x_{i}^{*}\left(z_{i}\right)=1$ and $x_{i}^{*}\left(z_{j}\right)=0$ for $j \neq i$. If we define the operator $S \in$ $\mathcal{F}(X)$ by $S x=\sum_{i=1}^{k+1} x_{i}^{*}(x) w_{i}$, then $S Y \subseteq Y$ and $d_{Z, S} \geq k+1$, which is a contradiction.

3. Properties of operators having a collection of almost-invariant subspaces

If $T \in \mathcal{B}(X)$ and each subspace of X is invariant under T, then T must be a multiple of the identity. What happens if each subspace of X is almost invariant under T ? In [1], it is shown that T has a nontrivial invariant subspace of finite codimension. If X is a Hilbert space, then T has the form $\alpha I+F$ for some scalar α and a finite-rank operator F [3, Corollary 4.16]. We extend this result to a Banach space X.

First, we give some lemmas needed in the proof.
Lemma 3.1. Let $T \in \mathcal{B}(X)$ and M be a finite-dimensional subspace of X such that M and $M+\operatorname{span}\{x\}$ are invariant under T for every $x \in X$. Then $T=\alpha I+F$ for some scalar α and a finite-rank operator F.

Proof. Consider the operator $\tilde{T}: X / M \rightarrow X / M$ given by $\tilde{T}(x+M)=T x+M$. Since the subspace $M+\operatorname{span}\{x\}$ is invariant under T for all $x \in X$, every one-dimensional subspace of X / M is invariant under \tilde{T}. This implies that $\tilde{T}=\alpha I$ for some scalar α. Now, we define the operator F on X by $F x=T x-\alpha x$. It is clear that $F X \subseteq M$ and $T=\alpha I+F$.

Lemma 3.2. Suppose that $T \in \mathcal{B}(X)$ and every subspace of X is almost invariant under T. Then, for every $x \in X$, the subspace $\operatorname{cl}\left(\operatorname{span}\left\{T^{n} x\right\}_{n=0}^{\infty}\right)$ is of finite dimension.

Proof. Suppose that for some $x_{1} \in X$ the subspace $\operatorname{cl}\left(\operatorname{span}\left\{T^{n} x_{1}\right\}_{n=0}^{\infty}\right)$ is of infinite dimension. Since $\operatorname{span}\left\{T^{n} x_{1}\right\}_{n=0}^{\infty}$ is also of infinite dimension, $T^{k} x_{1} \notin \operatorname{span}\left\{T^{n} x_{1}\right\}_{n=0}^{k-1}$ for all $k \geq 1$. We will construct a subspace of X that is not almost invariant under T.

Consider $x_{1}^{*} \in X^{*}$ such that $x_{1}^{*}\left(x_{1}\right) \neq 0$. Let $P_{1}(x)=x-\left(x_{1}^{*}(x) / x_{1}^{*}\left(x_{1}\right)\right) x_{1}$ be the projection on X with kernel $\operatorname{span}\left\{x_{1}\right\}$ and image $\operatorname{ker} x_{1}^{*}$. Define $x_{2}=P_{1} T x_{1}$. It is easily seen that $\operatorname{span}\left\{x_{1}, T x_{1}\right\}=\operatorname{span}\left\{x_{1}, x_{2}\right\}$ and $x_{2} \notin \operatorname{span}\left\{x_{1}\right\}$, since $T x_{1} \notin \operatorname{span}\left\{x_{1}\right\}$.

We claim that for each $n \geq 1$, there exist sequences $\left\{x_{n}\right\}$ of vectors, $\left\{x_{n}^{*}\right\}$ of functionals and $\left\{P_{n}\right\}$ of projections on X such that:
(i) $\quad x_{i}^{*}\left(x_{j}\right)=0$ if and only if $i \neq j$;
(ii) $\quad P_{n}(x)=x-\sum_{k=1}^{n}\left(x_{k}^{*}(x) / x_{k}^{*}\left(x_{k}\right)\right) x_{k}$ is the projection with kernel $\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ and image $\bigcap_{i=1}^{n} \operatorname{ker} x_{i}^{*}$;
(iii) $x_{n}=P_{n-1} T x_{n-1}$;
(iv) $\operatorname{span}\left\{x_{1}, \ldots, T^{n-1} x_{1}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$;
(v) $\quad x_{n} \notin \operatorname{span}\left\{x_{1}, \ldots, x_{n-1}\right\}$.

Indeed, suppose that we have defined x_{i}, x_{i-1}^{*} and P_{i-1}, for $1 \leq i \leq n$, satisfying (i)(v). Since $x_{n} \notin \operatorname{span}\left\{x_{1}, \ldots, x_{n-1}\right\}$, we can choose $x_{n}^{*} \in X^{*}$ such that $x_{n}^{*}\left(x_{i}\right)=0$ for $1 \leq i \leq n-1$ and $x_{n}^{*}\left(x_{n}\right) \neq 0$. Let $P_{n}(x)=x-\sum_{k=1}^{n}\left(x_{k}^{*}(x) / x_{k}^{*}\left(x_{k}\right)\right) x_{k}$ be the projection with kernel span $\left\{x_{1}, \ldots, x_{n}\right\}$ and image $\bigcap_{i=1}^{n} \operatorname{ker} x_{i}^{*}$. Define $x_{n+1}=P_{n} T x_{n}$. There exists $y_{n} \in \operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ such that $x_{n+1}=T x_{n}+y_{n}$. By (iv), $x_{n}, y_{n} \in \operatorname{span}\left\{x_{1}, \ldots, T^{n-1} x_{1}\right\}$ and so $x_{n+1} \in \operatorname{span}\left\{x_{1}, \ldots, T^{n} x_{1}\right\}$. On the other hand, $T^{n-1} x_{1} \in \operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ and $T x_{i} \in \operatorname{span}\left\{x_{1}, \ldots, x_{i+1}\right\}$ for $1 \leq i \leq n$, so

$$
T^{n} x_{1} \in \operatorname{span}\left\{T x_{1}, \ldots, T x_{n}\right\} \subseteq \operatorname{span}\left\{x_{1}, \ldots, x_{n+1}\right\}
$$

It follows that $\operatorname{span}\left\{x_{1}, \ldots, T^{n} x_{1}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{n+1}\right\}$. Also, since

$$
T^{n} x_{1} \notin \operatorname{span}\left\{x_{1}, \ldots, T^{n-1} x_{1}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}
$$

and

$$
T^{n} x_{1} \in \operatorname{span}\left\{x_{1}, \ldots, T^{n} x_{1}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{n+1}\right\},
$$

we have $x_{n+1} \notin \operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$.

Now, set $Z=\operatorname{cl}\left(\operatorname{span}\left\{x_{2 n-1}\right\}_{n=1}^{\infty}\right)$. By assumption, there exists a finite-dimensional subspace M such that $T Z \subseteq Z+M$. So, $T x_{2 n-1}=z_{n}+m_{n}$ for some $z_{n} \in Z$ and $m_{n} \in M$. Also, since $P_{2 n-1} T x_{2 n-1}=x_{2 n}$, we have $T x_{2 n-1}=x_{2 n}+u_{n}$ for some $u_{n} \in$ $\operatorname{span}\left\{x_{1}, \ldots, x_{2 n-1}\right\}$.

Let j and n be natural numbers and $j>n$. Since $x_{2 j}^{*}\left(x_{2 n}\right)=x_{2 j}^{*}\left(u_{n}\right)=x_{2 j}^{*}\left(z_{n}\right)=0$, we have $x_{2 j}^{*}\left(m_{n}\right)=0$. On the other hand, $x_{2 n}^{*}\left(x_{2 n}\right) \neq 0, x_{2 n}^{*}\left(u_{n}\right)=0$ and $x_{2 n}^{*}\left(z_{n}\right)=0$. Therefore, $x_{2 n}^{*}\left(m_{n}\right) \neq 0$. We conclude that $x_{2 n}^{*}\left(m_{n}\right) \neq 0$ and $x_{2 j}^{*}\left(m_{n}\right)=0$ for all n and $j>n$, contradicting $\operatorname{dim} M<\infty$.

Proposition 3.3. Suppose that $T \in \mathcal{B}(X)$ and every subspace of X is almost invariant under T. Then $T=\alpha I+F$ for some scalar α and $F \in \mathcal{F}(X)$.

Proof. Suppose that T cannot be expressed in the form $\alpha I+F$ for any scalar α and $F \in \mathcal{F}(X)$. Start with the subspace $\{0\}$ of X. By Lemma 3.1, there is $x_{1} \in X$ such that $T x_{1} \notin \operatorname{span}\left\{x_{1}\right\}$. Set $M_{1}=\operatorname{span}\left\{x_{1}\right\}$ and choose $x_{1}^{*} \in X^{*}$ such that $x_{1}^{*} \mid M_{1}=0$ and $x_{1}^{*}\left(T x_{1}\right) \neq 0$. Also, set $M_{1}^{\prime}=\operatorname{cl}\left(\operatorname{span}\left\{T^{k} x_{1}\right\}_{k=0}^{\infty}\right)$, which is invariant under T. By Lemma 3.2, M_{1}^{\prime} is of finite dimension and again, by Lemma 3.1, there is $x_{2} \in X$ such that $M_{1}^{\prime}+\operatorname{span}\left\{x_{2}\right\}$ is not invariant under T. Since $X=\operatorname{ker} x_{1}^{*} \oplus \operatorname{span}\left\{T x_{1}\right\}$ and $T x_{1} \in M_{1}^{\prime}$, we can choose x_{2} in $\operatorname{ker} x_{1}^{*}$.

Continuing inductively in this way, we can construct sequences $\left\{x_{n}\right\}$ of vectors, $\left\{x_{n}^{*}\right\}$ of functionals and $\left\{M_{n}\right\}$ and $\left\{M_{n}^{\prime}\right\}$ of finite-dimensional subspaces of X such that, for $n=1,2, \ldots$:
(i) $\quad x_{i}^{*}\left(x_{j}\right)=0$ for all i and j;
(ii) $x_{i}^{*}\left(T x_{j}\right) \neq 0$ if $i=j$, and $x_{i}^{*}\left(T x_{j}\right)=0$ if $i>j$;
(iii) $M_{n}=M_{n-1}^{\prime}+\operatorname{span}\left\{x_{n}\right\}$;
(iv) $\quad M_{n}^{\prime}=M_{n}+\operatorname{cl}\left(\operatorname{span}\left\{T^{k} x_{n}\right\}_{k=0}^{\infty}\right)$ and M_{n}^{\prime} is invariant under T.

Indeed, suppose that we have defined x_{i}, x_{i}^{*}, M_{i} and M_{i}^{\prime}, for $1 \leq i \leq n$, satisfying (i)(iv). Since M_{n}^{\prime} is of finite dimension, by Lemma 3.1, there exists $z_{n+1} \in X$ such that $M_{n}^{\prime}+\operatorname{span}\left\{z_{n+1}\right\}$ is not invariant under T. By (ii),

$$
X=\bigcap_{i=1}^{n} \operatorname{ker} x_{i}^{*} \oplus \operatorname{span}\left\{T x_{1}, \ldots, T x_{n}\right\}
$$

Since $\operatorname{span}\left\{T x_{1}, \ldots, T x_{n}\right\} \subseteq M_{n}^{\prime}$, there exists $x_{n+1} \in \bigcap_{i=1}^{n} \operatorname{ker} x_{i}^{*}$ with $M_{n}^{\prime}+\operatorname{span}\left\{x_{n+1}\right\}=$ $M_{n}^{\prime}+\operatorname{span}\left\{z_{n+1}\right\}$. This means that $M_{n}^{\prime}+\operatorname{span}\left\{x_{n+1}\right\}$ is not invariant under T and, so, $T x_{n+1} \notin M_{n}^{\prime}+\operatorname{span}\left\{x_{n+1}\right\}$. Define $M_{n+1}=M_{n}^{\prime}+\operatorname{span}\left\{x_{n+1}\right\}$ and choose $x_{n+1}^{*} \in X^{*}$ such that $x_{n+1}^{*} \mid M_{n+1}=0$ and $x_{n+1}^{*}\left(T x_{n+1}\right) \neq 0$. Then $x_{n+1}^{*}\left(x_{j}\right)=0$, for $j=1, \ldots, n+1$, and $x_{n+1}^{*}\left(T x_{j}\right)=0$, for $j=1, \ldots, n$. Set $M_{n+1}^{\prime}=M_{n+1}+\operatorname{cl}\left(\operatorname{span}\left\{T^{k} x_{n+1}\right\}_{k=0}^{\infty}\right)$, which is invariant under T by Lemma 3.2. Also, M_{n+1}^{\prime} is of finite dimension.

Now, define $Z=\operatorname{cl}\left(\operatorname{span}\left\{x_{n}\right\}_{n=1}^{\infty}\right)$. By assumption, there exists a finite-dimensional subspace M such that $T Z \subseteq Z+M$. So, for each $x_{n} \in Z$, there exist $z_{n} \in Z$ and $m_{n} \in M$ such that $T x_{n}=z_{n}+m_{n}$. Since $x_{n}^{*}\left(T x_{n}\right) \neq 0$ and $x_{n}^{*}\left(z_{n}\right)=0$, we have $x_{n}^{*}\left(m_{n}\right) \neq 0$. Also, for $k>n$, we have $x_{k}^{*}\left(T x_{n}\right)=x_{k}^{*}\left(z_{n}\right)=0$. Therefore, $x_{k}^{*}\left(m_{n}\right)=0$. It follows that $x_{n}^{*}\left(m_{n}\right) \neq 0$ and $x_{k}^{*}\left(m_{n}\right)=0$ for all n and $k>n$, contradicting $\operatorname{dim} M<\infty$.

Let T be an operator on a Banach space X. It is known that if T commutes with every operator on X, then T must be a multiple of the identity. Using Proposition 3.3, we show that if X is a separable Banach space and $T S-S T$ is a finite-rank operator, for all $S \in \mathcal{B}(X)$, then T will be of the form $\alpha I+F$, where $\operatorname{rank} F<\infty$.

Corollary 3.4. Let T be an operator on a separable Banach space X and suppose that $T S-S T \in \mathcal{F}(X)$ for every $S \in \mathcal{B}(X)$. Then $T=\alpha I+F$ for some scalar α and $F \in \mathcal{F}(X)$.

Proof. According to Proposition 2.3, it is sufficient to show that every subspace of X is almost invariant under T.

Let Y be an arbitrary closed subspace of X. Since both X and X / Y are separable, by [3, Proposition 3.1], there exists a bounded linear operator Φ from X / Y to X that is one-to-one. Also, if $q: X \longrightarrow X / Y$ is the quotient map, then $S=\Phi q$ will be a bounded operator on X such that $Y=\operatorname{ker} S$. By assumption, there exists $F \in \mathcal{F}(X)$ such that $S T-T S=F$. So, $S T(\operatorname{ker} S) \subseteq F X$ and then $T(\operatorname{ker} S) \subseteq S^{-1}(F X)$. Since $F X \cap S X$ is of finite dimension, there exists a finite-dimensional subspace M such that $F X \cap S X=S M$. Now,

$$
S^{-1}(F X)=S^{-1}(F X \cap S X)=S^{-1}(S M)=M+\operatorname{ker} S
$$

Therefore, $T(\operatorname{ker} S) \subseteq M+\operatorname{ker} S$ and $Y=\operatorname{ker} S$ is almost invariant under T.
Let \mathcal{L} be a collection of closed subspaces of a Banach space X. It is clear that $\operatorname{Alg} \mathcal{L}+\mathcal{F}(X) \subseteq \operatorname{Alg}_{a} Y$. Now, we can ask, under which conditions on \mathcal{L} will we have $\operatorname{Alg}_{a} \mathcal{L}=\operatorname{Alg} \mathcal{L}+\mathcal{F}(X)$?

For a single subspace $\mathcal{L}=\{Y\}$, we have $\operatorname{Alg}_{a} Y=\operatorname{Alg} Y+\mathcal{F}(X)$. In view of Proposition 3.3, if \mathcal{L} is the set of all subspaces of X, then $\operatorname{Alg}_{a} \mathcal{L}=\operatorname{Alg} \mathcal{L}+\mathcal{F}(X)$. However, this is not true in general. It is enough to consider \mathcal{L} as the collection of all finite-dimensional subspaces of X. In the next two propositions, we examine some conditions under which the conclusion does hold.

Proposition 3.5. If $\mathcal{L}=\left\{Y_{1}, \ldots, Y_{n}\right\}$ is a finite collection of subspaces of X such that $X=Y_{1} \oplus \cdots \oplus Y_{n}$, then $\operatorname{Alg}_{a} \mathcal{L}=\operatorname{Alg} \mathcal{L}+\mathcal{F}(X)$.

Proof. Since X is a direct sum of subspaces Y_{1}, \ldots, Y_{n}, there exist bounded projections P_{1}, \ldots, P_{n} such that $P_{i} X=Y_{i}$ and $\operatorname{ker} P_{i}=\sum_{k=1, k \neq i}^{n} Y_{k}$ for $1 \leq i \leq n$. Also, $P_{i} P_{j}=0$ whenever $i \neq j$ and $\sum_{i=1}^{n} P_{i}=I$.

Let $T \in \operatorname{Alg}_{a} \mathcal{L}$. Since each Y_{i} is almost invariant under T, there exists a finitedimensional subspace M_{i} such that $T Y_{i} \subseteq Y_{i}+M_{i}=P_{i} X+M_{i}$. For $i \neq j$,

$$
P_{j} T P_{i} X=P_{j} T Y_{i} \subseteq P_{j}\left(Y_{i}+M_{i}\right) \subseteq P_{j} M_{i} .
$$

Therefore, the operator $P_{j} T P_{i}$ is of finite rank whenever $i \neq j$. On the other hand,

$$
\begin{aligned}
P_{k}\left(T-\sum_{i, j=1, j \neq i}^{n} P_{j} T P_{i}\right) & =P_{k} T-P_{k} T \sum_{i=1, i \neq k}^{n} P_{i}=P_{k} T-P_{k} T\left(I-P_{k}\right)=P_{k} T P_{k} \\
& =T P_{k}-\left(I-P_{k}\right) T P_{k}=T P_{k}-\left(\sum_{i=1, i \neq k}^{n} P_{i}\right) T P_{k} \\
& =\left(T-\sum_{i, j=1, j \neq i}^{n} P_{j} T P_{i}\right) P_{k}
\end{aligned}
$$

for $k=1, \ldots, n$.
This shows that $T-\sum_{j=1, j \neq i}^{n} P_{j} T P_{i} \in \operatorname{Alg} \mathcal{L}$ and, since

$$
T=\left(T-\sum_{i, j=1, j \neq i}^{n} P_{j} T P_{i}\right)+\sum_{i, j=1, j \neq i}^{n} P_{j} T P_{i},
$$

the proof is complete.
Remark 3.6. For an operator T and an almost-invariant subspace Y, there exists a finite-dimensional subspace M with $T Y \subseteq Y+M$ and $Y \cap M=\{0\}$. We can find a projection P on X with range M and kernel containing Y such that $(T-P T) Y \subseteq Y$.

Indeed, if $q: X \longrightarrow X / Y$ for the quotient map, then $q(M)$ is a finite-dimensional subspace of X / Y. There is a subspace $L^{\prime} \subseteq X / Y$ such that $L^{\prime} \oplus q(M)=X / Y$. Since $Y \cap M=\{0\}$, by setting $L=q^{-1}\left(L^{\prime}\right)$, we have $M \oplus L=X$ and $L \supseteq Y$. Now, if we consider the projection on X with kernel L and range M, then $(T-P T) Y \subseteq Y$.
Proposition 3.7. Let $\mathcal{L}=\left\{Y_{1}, \ldots, Y_{n}\right\}$ be a finite collection of subspaces of X with $Y_{1} \supseteq Y_{2} \supseteq \cdots \supseteq Y_{n}$. Then $\operatorname{Alg}_{a} \mathcal{L}=\operatorname{Alg} \mathcal{L}+\mathcal{F}(X)$.

Proof. Given $T \in \operatorname{Alg}_{a} \mathcal{L}$, let M_{1} be a finite-dimensional subspace of X such that $Y_{1} \cap M_{1}=\{0\}$ and $T Y_{1} \subseteq Y_{1}+M_{1}$. By Remark 3.6, there exists a projection P_{1} on X with range M_{1} and kernel containing Y_{1} such that Y_{1} is invariant under $T-P_{1} T$. Set $S_{1}=T-P_{1} T$. Since $P_{1} T$ is of finite rank, Y_{2} is almost invariant under S_{1} and, by [6, Lemma 2.1], we can choose a finite-dimensional subspace M_{2} such that $M_{2} \subseteq S_{1} Y_{2} \subseteq S_{1} Y_{1} \subseteq Y_{1}, Y_{2} \cap M_{2}=\{0\}$ and $S_{1} Y_{2} \subseteq Y_{2}+M_{2}$. Consider a projection P_{2} on Y_{1} with range M_{2} and kernel containing Y_{2}. Since P_{2} is of finite rank, it can be extended to a bounded linear operator \tilde{P}_{2} on all of X with the same range as P_{2}. It is easily seen that Y_{1} and Y_{2} are invariant under the operator $S_{1}-\tilde{P}_{2} S_{1}$.

Continuing this process, we obtain operators $\left\{S_{i}, P_{i}, \tilde{P}_{i}\right\}_{i=1}^{n}$ and finite-dimensional subspaces $\left\{M_{i}\right\}_{i=1}^{n}$ of X such that, for $i=1, \ldots, n$:
(i) $\quad S_{i-1} Y_{i} \subseteq Y_{i}+M_{i}, Y_{i} \cap M_{i}=\{0\}$ and $M_{i} \subseteq S_{i-1} Y_{i} \subseteq S_{i-1} Y_{i-1} \subseteq Y_{i-1}$ for $i=2, \ldots, n$;
(ii) $\quad P_{i}$ is a projection on Y_{i-1} with range M_{i} and kernel including Y_{i};
(iii) \tilde{P}_{i} is an extension of P_{i} on X with the same range as P_{i};
(iv) $S_{i}=S_{i-1}-\tilde{P}_{i} S_{i-1}, S_{0}=T$ and $\tilde{P}_{1}=P_{1}$;
(v) the subspaces Y_{1}, \ldots, Y_{i} are invariant under S_{i}.

So,

$$
T=S_{n}+\tilde{P}_{n} S_{n-1}+\tilde{P}_{n-1} S_{n-2}+\cdots+\tilde{P}_{2} S_{1}+P_{1} T
$$

and finally $S_{n} \in \operatorname{Alg} \mathcal{L}$ and $\tilde{P}_{n} S_{n-1}+\tilde{P}_{n-1} S_{n-2}+\cdots+\tilde{P}_{2} S_{1}+P_{1} T \in \mathcal{F}(X)$.

References

[1] G. Androulakis, A. I. Popov, A. Tcaciuc and V. G. Troitsky, 'Almost invariant half-spaces of operators on Banach spaces', Integral Equations Operator Theory 65 (2009), 473-484.
[2] A. Assadi, M. A. Farzaneh and H. M. Mohammadinejad, 'Invariant subspaces close to almost invariant subspaces for bounded linear operators', Aust. J. Math. Anal. Appl. 15(2) (2018), Article ID 4, 9 pages.
[3] R. W. Cross, M. I. Ostrovskii and V. V. Shechik, 'Operator ranges in Banach spaces I', Math. Nachr. 173 (1995), 91-114.
[4] P. Enflo, 'On the invariant subspace problem for Banach spaces', Acta Math. 158(34) (1987), 213-313.
[5] L. W. Marcoux, A. I. Popov and H. Radjavi, 'On almost-invariant subspaces and approximate commutation', J. Funct. Anal. 264(4) (2013), 1088-1111.
[6] A. I. Popov, 'Almost invariant half-spaces of algebras of operators', Integral Equations Operator Theory 67(2) (2010), 247-256.
[7] A. I. Popov and A. Tcaciuc, 'Every operator has almost-invariant subspaces', J. Funct. Anal. 265(2) (2013), 257-265.
[8] C. J. Read, 'A solution to the invariant subspace problem on the space l_{1} ', Bull. Lond. Math. Soc. 17(4) (1985), 305-317.
[9] C. J. Read, 'Quasinilpotent operators and the invariant subspace problem', J. Lond. Math. Soc. (2) 56(3) (1997), 595-606.
[10] G. Sirotkin and B. Wallis, 'The structure of almost-invariant half-spaces for some operators', J. Funct. Anal. 267 (2014), 2298-2312.
[11] G. Sirotkin and B. Wallis, 'Almost-invariant and essentially-invariant halfspaces', Linear Algebra Appl. 507 (2016), 399-413.
[12] A. Tcaciuc, 'The almost-invariant subspace problem for rank one perturbations', Duke Math. J., to appear, arXiv:1707.07836 [math.FA].

AMANOLLAH ASSADI, Department of Mathematical and Statistical Sciences, University of Birjand, PO Box 97175/615, Birjand, Iran
e-mail: assadi-aman@birjand.ac.ir

MOHAMAD ALI FARZANEH,

 Department of Mathematical and Statistical Sciences, University of Birjand, PO Box 97175/615, Birjand, Iran e-mail: farzaneh@birjand.ac.ir
[^0]: (C) 2019 Australian Mathematical Publishing Association Inc.

