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PROPERTIES OF THE TRAJECTORIES OF SET-
VALUED INTEGRALS IN BANACH SPACES

NlKOLAOS S. PAPAGEORGIOU

Let F:T —» 2X \ {0} be a closed-valued multifunction into a separable Ba-
nach space X. We define the sets K(t) = / J F{a)ds C X and CF = {*(•) 6
C(T,X): x(t) = /0' f{a)da, t e T, f 6 Sl

F}. We prove various convergence the-
orems for those two sets using the Hausdorff metric and the Kuratowski-Mosco
convergence of sets. Then we prove a density theorem of Cp inCconvF a n d a
corresponding convexity theorem for F(). Finally we study the "differentiabil-
ity" properties of K(). Our work extends and improves earlier ones by Artstein,
Bridgland, Hermes and Papageorgiou.

1. INTRODUCTION

The purpose of this paper is to study the indefinite set-valued integral K(t) =

J*F(s)ds of a multifunction F: T = [0,6] -> 2X \ {0} and the corresponding set of

continuous functions CF = {x(-) £ C(T,X): x{t) = J* f(s)ds, t £ T, f £ S]r}, where

Sp denotes the set of integrable selectors of F(-). It is clear that the distinction between

Cp and K(t) is essentially that between a function and the value of the function at t.

The importance of those sets lies on the fact that, up to an appropriate translation,
they are the attainable set at time t of a semilinear control system (for K(t)) and the set
of trajectories of the system (for Cp )• Also the study of the properties of those two sets
can be helpful in the solution of differential equations with multivalued right hand side
(differential inclusions). Such generalised differential equations arise naturally in control
theory, where, by taking the union over all admissible controls of the corresponding
control vector field, we transform the differential equation into a differential inclusion
in which the control does not appear explicitly (deparametrisation). Furthermore, the
study of the sets K(t) and CF , complements the study of the set-valued integral (also
known in the literature as the "Aumann integral"), which is an important analytical
tool in control theory (see Aubin and Cellina [2]), in mathematical economics (see Klein
and Thompson [9]) and in statistics (see Richter [13]). Finally in this work, we also
make some contributions to the "differentiation" theory of multifunctions.
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272 N.S. Papageorgiou [2]

Earlier work on these topics was done by Hermes [7], Bridgland [3], Artstein [1]
and Papageorgiou [10]. The first three dealt with Rn-valued multifunctions, while the
fourth considered also Banach space valued multifunctions. Here we continue the work
started in [10], we improve some of the results in that paper and we also obtain new
ones.

2. PRELIMINARIES

Let (ft, X!) D e a measurable space and X a separable Banach space. Throughout
this work we will be using the following notations:

y ( c ) ( ) = {A C X: nonempty, closed, (convex)}
and

P(w)k(c){X) = {A C X: nonempty, (tu—) compact, (convex)}.

A multifunction (set-valued function) F: fi —> P/(X) is said to be measurable if it
satisfies one of the following two equivalent conditions:

(i) for every z £ X, w —» d{z,F{w)) = inf{||z — x\\ : x £ F(w)} is measur-
able;

(ii) there exist fn: ft —> X measurable functions such that
F(u) = cl{fn(u)}n>1 for all w € ft.

If (ft, 53) admits a cr-finite measure fi(-) with respect to which 53 is complete,
then (i) and (ii) above are equivalent to

(Hi) GrF = {(u,x) £ ft x X: x £ F(u)} £ £ xB(X), where B{X) is the
Borel <r-field of X (graph measurability).

Now let /i(-) be a complete c-finite measure on (ft,X))- By Sj? we will denote the
set of integrable selectors of the multifunction F(-) that is Sp = {/ £ Z 1 (X) : /(<*>) 6
F(co)fi-a..e.}. This set may be empty. Using Auman's selection theorem (see Wagner
[16]), we can show that Sp is nonempty if and only if inf{||a;|| : x £ F(u)} £ L\.

This is the case if sup{||a;|| : x £ F(u)} £ L\. Such a multifunction is said to be
integrably bounded. Using 5^. we can define a set-valued integral for F(-) by setting
/„ F(u,)dp(U) = {/n f{wW{u): f£SF}.

On P/(X) we can define a (generalised) metric, known as the Hausdorff metric,

by setting
h(A, B) = max{sup d(a, B), sup d(b, A)}.

A bB

It is well-known that P/(X) and Pfc(X) are complete metric spaces with the
Hausdorff metric h(-, •). We say that a sequence {An}n^i C Pj[X) h-converges to

A, denoted by An -^ A, if and only if h(An,A) -> 0. On 2 X \ {0}, h(-, •) is a
pseudometric.
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Another notion of set convergence that we will need in this paper is the so-called
Kuratowski-Mosco convergence of sets (K — M convergence). Let {An}n^i C 2 X \ { 0 } .
We define

w — lim An = {x = w — lim znjt : xnjt £ Anit&cni < ri2 < . . . < n^ < . . . }

and s — lim .An. = {x = s — l imz n : xn € .An&n ^ 1}.

Here w stands for the weak topology on X and s for the strong topology on

X. We say that the An 's converge to A in the Kuratowski-Mosco sense, denoted by

An ——> .A, if and only if tu — lim .An C A C s — lim .An. Given that we always have

s — lim-An C.w — h 'mi4n, we can say that An —> A if and only if w — lim.An = A —

s — lim An.

Let A € 2X \ {0}. The support function of A is the function O~A '• X* —» R =

RU {+00} defined by o-A{x") = sup{(z*,a): a € A}, x* € X*. A set-valued function

M : 53 —» Pf(X) is said to be a multimeasure, if for all x* G Jf*.A —+ 0M(ji)(a;*) is a

signed measure. Finally if A £ 2X \ {0}, we write \A\ — sup{||a|| : a & A} (the norm

of A).

3. CONVERGENCE RESULTS

In this section we prove some convergence results for the sets K(t) and CF , that
extend the finite-dimensional ones of Bridgland [3] and the infinite-dimensional ones in
[10], where the assumptions are much stronger (the underlying state space is separable,
reflexive, while the multifunctions have compact, convex values).

So let T = [0,6] and let X be a separable Banach space.

THEOREM 3 . 1 . If Fn, F:T -» P/{X) are integrably bounded multifunctions be

such that {\Fn(-)\}n^i is uniformly integrable and Fn(t) —• F(t) a.e., then Cpn —>

CF.

PROOF: Let y ECF. Then by definition (see Section 1) we have y(t) = /„* f(s)ds,

t€T, f 6 5 } . We have:

d(y, CFn) = inf{||y - ^ I L : yn 6 CFJ.

Note that yn(t) = J* fn{s)ds,t € T fn € 5}n . We have:

Hi, - yn|| = sup I! / ' f(s)da - f fn{s)d8\ < sup / ' \\f{a) - fn{a)\\ d3

<€T||yo JO II t€TJo
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Then using Theorem 2.2 of Hiai-Umegaki [8], we get

(1)

VnlL = Vn e CFJ < inf{ / ' | | / ( , ) - fn(s)\\ da: fn € SFJ

Jo

/
o

inf{|[/(S) -z\\:zeFn(s)}ds
o

= I d(f(s), Fn(s))ds ^ f h(Fn(s), F(s))ds.
Jo Jo

=><Ky,CFn)^ I h(Fn{s), F{s))ds.
Jo

Similarly, by interchanging the roles of F(-) and Fn(-) in the above argument, we
get that for all yn 6 CFn

(2) d(yn, CF) < f h(Fn(s), F(s))ds.
Jo

From (1) and (2) above, we deduce that

h(CFn, CF) < / h(Fn(s), F(s))ds.
Jo

Note that h(Fn(s), F(s)) < \Fn(s)\ + \F{s)\ and by hypothesis {\Fn(-)\}n>1 is
uniformly integrable, while h(Fn(s), F(s)) —» 0 a.e. as n —> oo. So from the extended
dominated convergence theorem we get that JQ h(Fn(a), F(s))da —> 0 as n —> oo
=*• K^Fn) Cf) - * 0 a s n - t o o . D

REMARKS, (a) The sets Cirn, C F are not in general closed. They will be if the multi-
functions -Fn(-) and F(-) are Pu,jtc(X)-valued and integrably bounded. We will show
this for CF, the proof being the same for CFn, n ^ 1. So let {ym}m>i Q CF be such
that ym -^ y in C(T,X). Then by definition ym{t) = J*fm{s)ds, t € T, / m € S>.
From Proposition 3.1 of [11], we know that SF is w-compact in LX{X) and, by the
Eberlein-Smulian theorem, sequentially w-compact. So, by passing to a subsequence if
necessary, we may assume that fm -̂ -» / in £1(JT). So Jo fm(s)ds —> JQ f(s)ds for
all t E T = > y(t) = jlf{s)ds, t € T, f £ SF =*• y € CF => CF is closed. Also
Theorem 3.1 of [10] tells us that CF is sequentially compact in C(T, Xw).

(b) Our result extends Theorem 3.2 of Bridgland [3]. Note that even when X - Rn,
our result is more general than that of Bridgland since we do not require the Fn 's to
be uniformly pointwise bounded. Furthermore in Bridgland [3], Fn(-) and F(-) are
convex-valued.

Let Kn{t) = f*Fn(s)ds and K[t) = /„* F(s)ds for t £ T.
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THEOREM 3 . 2 . II the hypotheses ol Theorem 3.2 hold, then for every t £ T,

•Kn(') —* K(f) a s n - t o o .

PROOF: Let et(-): C(T,X) -> X be the evaluation map at t. Then Kn(t) =
et(CFn) and K(t) = et(CF). From the properties of the Hausdorff metric we have

h(Kn(t), K(t)) < ||et|| h(CFn, C f ) ^ 0 a s n ^ o o .

D
Next we will derive similar convergence results using the K — M convergence of

sets.

THEOREM 3 . 3 . If Fn, F:T -> Pjc(X) are measurable multifunctions such that

Fn(t) C G{t) a.e. with G: T -> Pwkc{X) integrably bounded and Fn(t)
 K-^¥ F(t)

, , „ K-M „
a.e., t i ien L>Fn > OF.

PROOF: Let y £ iy — limCf,,- Then by definition (see Section 2), we can find

Vk € ^Fnk
 suca that yk •—> y in C(T, X). Hence for every ( £ T , Vk(t) -^+ y(^) in

X. For every ifc > 1 we have yk{t) = f* fk(S)ds, t 6 T, fk £ S],n . Since SJ^ C 5^

and the latter is sequentially w-compact in Ll(X), by passing to a subsequence if

necessary, we may assume that fk -—* f in Ll(X). Invoking Theorem 4.4 of [12], we

get / £ S] , . So y{t) = J* f(s)ds, t £ T, f e S]? = > y £ CF. Therefore we have:

(1) w — lim CFn C GF •

Next let y £ CF. Then j/(<) = J* f(s)ds, t £ T, / £ S^. Once again Theorem

4.4 of [12] tells us that we can find /„(•) £ Spn such that / „ —'—* f in L}(X). Hence

^ y»(0 = tifn{s)dst £ T, we have |fyB(<) - j,(*)|[ ^ /0* » /»( - ) - / ( - ) | | d* for all
t £ T = » yn -> y in C(T,X) with yn £ Cfn • Thus we get that

(2) CFC3-limCFn.

From (1) and (2) above we conclude that CFn —» CF. U

We have a corresponding convergence result for the indefinite set-valued integrals
#„(•) and K(-).

THEOREM 3 . 4 . If the hypotheses of Theorem 3.3 hold, then for every t 6 T,

Kn(t) —> K{i) as n —• co.

PROOF: Let z £ w — limKn(t). Then there exist zk £ Knk(t) such that zk -^-» z.
We have:

* * = / f k ( s ) d s , fk (E S i .
Jo
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By passing to a subsequence if necessary, we may assume that fk —> / in X:(
From Theorem 4.4 of [12], we have f eSF. Then zk = /„' fk(a)ds -^> /„* f(s)ds = z G
K(t). So we have

(1)

Next let z G #(<). Then z - et(y), y G CF. From Theorem 3.3 we know that
we can find yn G CFn such that yn —» y in C(T,A") => et(yn) = zn —» z = et(y) and
zn G -K'nC*) - So we deduce that

(2)

^>From (1) and (2) above we conclude that Kn(t) ^—> K(t) as n —> oo.

REMARK. Our result generalises Corollary 3.3 of Bridgland [3].

D

4. CONVEXITY THEOREMS

In this Section we present two theorems that can be useful in control theory, in
particular in connection with the "bang-bang" principle.

So we have:

THEOREM 4 . 1 . HF-.T-+ Pj{X) is a measurabie multifunction such that S]r ̂
0, then CF = CconvFj the closures taken in C(T,X).

PROOF: Let y G C^F. Then by definition y(t) = J^f{s)ds, t G T, / G S±^F.
Invoking Theorem 2 of Chuong [4], we can find g G SF such that

sup
t.t'eT

(g(s) - f(s))ds < e

{g(s)-f(s))ds < e for all t G T.

Set x(t) = J*g(s)ds, t e T . Clearly z(-) G CF. We have:
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REMARK. If F(-) is Pwk(X)-valued and integrably bounded, then from the Krein-
Smulian theorem, convF(t) G Pwkc(X) and t —> convF(t) is integrably bounded. So
from Remark (a) following Theorem 3.1, we get that C~SvF is closed in C(T,X). Our
result extends Theorem 3.3 of Bridgland [3]. Even when X = Rn our result is stronger
than that of Bridgland since we do not assume F(-) to be integrably bounded.

Theorem 4.1 above, suggests that there is a close relation between the convexity
of the values of F(-) and the closedness of Cp in C(T,X). This relation is revealed in
the next theorem.

THEOREM 4 . 2 . If F:T -> Pf(X) is a measurable multifunction such that SF ^
0 and Cp is closed in C(T,X), then F(t) is a.e. convex.

II t

PROOF: Let l-l̂  denote the weak norm on ^(X) that is \f\w — sup \\Jt
t'.teT11

(see Chuong [4]). We claim that SF is l-l^-closed. So let {/n}n>i Q SF and assume

that /„ —^ / . This means that yn —~ y, where yn(i) = f0 fn{s)ds and y{t) =

J*f(s)ds. But Cp is closed in C[T,X). So y £ Cp => f G SF. Invoking Theorem 2

of Chuong [4], we get that 5], = 5 ^ ^ ==• F(t) = convF(t) a.e. D

5. DIFFERENTIATION OF MULTIFUNCTIONS

In this Section we examine some "differentiation" properties of the multifunction
r^/j\ f * 771/ \ J j /— rn

•** I • / ^~ in •*- \ & Jfl3 . [ r J ,

Our first result extends Theorem 4.3 of Artstein [1].

THEOREM 5 . 1 . If X* is separable and F: T —> Pwkc(X) is integrably bounded,

then l/hfi+hF(s)ds K-^¥ F(t) a.e. as h -* 0.

PROOF: Let Rh(t) = l/hj*+h F(3)ds. From the Corollary to Proposition 3.1 in
[11] we have that Rh(t) £ Pwkc{X) for all t £ T.

Let x* G X* . We have:

1 fi+h

K h Jt

From the properties of the Lebesgue integral, we know that

I

h Jt

for all t G T\N(x*), \(N(x*)) = 0, where A(-) is the Lebesgue measure on T. Let
(*m}m^i be dense in X*. Set Nx = (J N(x*m), A(^ ) = 0. Also let N2 C T
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be such that \(N2) = 0 and for t G T \ N2, we have l/hfi+h \F(a)\ da -> \F{t)\.
Set N3 = JVj U N2. Then X(N3) = 0. We claim that for every t e T \ N3 and

for every x* € A"*, we have <TRh(t)(x*) —> o-f(t)(a;*) as /i —> 0. To this end let

{xl}k>i C { x ^ } m > 1 be such that xk -U x* . Also let / . n - » 0 and set i?n(t) - fifcn(t).

We have for < £ T \ iV3 and Jfc ̂  1

n

Furthermore because of the strong continuity of the support function, we have for
t£T\Ns

By diagonalisation, we get

Hence for < G T \ N3 , we have:

But
( e r \ J
we have

t+hnl/hnjt
t+hn \F(a)\ds and \F{a)\da}n>1 is convergent for

So there exists M{t) > 0 such that |-Rn(t)| < M(t) for all n > 1. Hence

On —> oo.

Therefore for all a;* £ X* and all t £ T \ iV3 we have:

Invoking Proposition 4.1 of [12], we get

(1) w - :UmRh{t) C F(t) a.e..

Next let z £ X and let / ^ : T —» X be measurable functions such that F(t) =

d{fk(t)}k>i. We have

- "^ r ^ fk{s)ds
hn Jt
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We know that there exists a Lebesgue null set Nk where k > 1 such that for
t e T \ Nk we have

CO.— / fk(s)ds -» fk(t) as n
/in Jt

Set AT4 = |J JV*. Then A(JV4) = 0 and for t 6 T \ iV4 we have

nn Jt

Hence we have:

]imd(z, Rn(t)) < \\z - / t ( t) | | a.e. for all Jfc

d(z, F(t)) a.e. .

From Theorem 2.1 of Tsukada [15], we get that for all t G T \ A 4̂, we have

(2) F(t) C s-IjmRnit) a.e. .

Combining (1) and (2) above we conclude that

*+*

REMARK. When dimX < co, from Corollary 3A of Salinetti and Wets [14], we deduce
that

1 ft+h h
•£- / F{s)ds - i» p{t) a.e. .
nn Jt

In [6] DeBlasi introduced a derivative for multifunctions, which is useful in the
perturbation theory of ordinary differential equations. By this definition [6, Definition
2.5] a multifunction F: T -> 2X \{0} with bounded values is differentiable at t0 £ T, if
there exists a map Do • T —» P/C(X) which is upper semicontinuous and homogeneous
and a 6 > 0 such that

h{F(t + h), F(t) + D0(h)) = 0(h), when \\h\\ < 6.

An interesting consequence of Theorem 5.1 is the following result:
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THEOREM 5 . 2 . If d imX < oo and F:T -* Pf{X) is integrably bounded then

K(-) is DeBlasi differentiable at almost allteT.

PROOF: We have:

\ h), K{t)

1 ( ft+h \
=-h[ K(t) + / F{s)ds, K{t) + hconvF{t)h \ Jt J

<A( — / F(s)ds, convF(t) I —> 0 a.e. (see the remark following Theorem 5.1).
\hjt J

So K(-) is almost everywhere DeBlasi differentiable. D

We will conclude this paper, with a theorem that tells us when a multifunction
can be expressed as the indefinite set-valued integral of an integrable one. Our result
extends Theorem 4.1 of Artstein [1].

THEOREM 5 . 3 . If X and X* both have the Radon-Nikodym property and
K: T —* Tfc(X) is a measurable multifunction such that

(a) K(t)CWePwkc{X) for allte T,

(b) |o-(a;*) - <r(x*)\ < ||z*|| (<j>(t') - <j>{t))O < < < t' < 6 and <j>: T -> R is an
increasing absolutely continuous function, and

(c) for every t', t 6 T, t < t', x* —» <TK(t'){x*) — ffK(t){x*) JS sublinear,

then there exists F;T—* Pwkc{X) integrably bounded such that K(t) =

J*F(s)ds,teT.

PROOF: Let m(s*)(-) and /*(•) be the bounded variation measures on (T, B(T)J

(B(T) being the Lebesgue o--field of T), corresponding to functions <TK^(X*) and

<f>(-) respectively. By considering instead W = conv(W U (—W)) 6 Pwkc{X), we may

assume without any loss of generality that W is absolutely convex. Because of hy-

pothesis (a) we have |m(a:*)(j4)| ^ 2o--w(x*) for all A £ B(T). Since, by hypothesis

(c), x* —» m(x*)(A) is sublinear, the above inequaltiy tells us that x* —* m(x*)(A) is

m(X" , X)-continuous (here m(X*, X) denotes the Mackey topology for the dual pair

(X*,X)). So there exists M(A) e Pwkc{X) such that m(x*)(A) = <rM(A)(x*) =>
M(-) is a multimeasure with values in Pwkc(X). Furthermore, note that because of

hypothesis (b), we have

and since by hypothesis <f>(-) is absolutely continuous, fi < < A and so M « A. Thus
we can apply Theorem 3 of Coste [5], to get F: Cl —> Pwkc(X) integrably bounded such
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that M{A) = JA F(s)ds for all A 6 B{T). Since <rKW{x*) = <rM(A)(x*) for A = [0, t],

we conclude that it(i) = /„* F{s)ds, i G T. D
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