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Abstract. Let R be a commutative ring with identity. We will say that an R-module
M has Nakayama property, if IM = M, where I is an ideal of R, implies that there
exists a ∈ R such that aM = 0 and a − 1 ∈ I. Nakayama’s Lemma is a well-known
result, which states that every finitely generated R-module has Nakayama property.
In this paper, we will study Nakayama property for modules. It is proved that R is a
perfect ring if and only if every R-module has Nakayama property (Theorem 4.9).

2010 Mathematics Subject Classification. 13C99, 13C13, 13E05, 13F05, 13F15.

1. Introduction. Throughout this paper all rings are commutative with identity,
and all modules are unitary. Also we consider R to be a ring, J(R) the intersection
of all maximal ideals of R and M a unitary R-module. By N ≤ M, we mean N is a
submodule of M. If N ≤ M, then (N : M) = {t ∈ R | tM ⊆ N}.

The set of maximal submodules (resp. ideals) of M (resp. R) is denoted by Max(M)
(resp. Max(R)). Also we consider

Maxx(M) = {N ≤ M | (N : M) ∈ Max(R)}.

DEFINITION. We will say that an R-module M has Nakayama property, if IM = M,

where I is an ideal of R, implies that there exists a ∈ R such that aM = 0 and a − 1 ∈ I.

Nakayama’s Lemma is a well-known result, which states that every finitely
generated R-module has Nakayama property (see [9, Theorem 2.2]).

We will try to substitute the condition finitely generated for M with
weaker or different conditions, and we will study the modules having Nakayama
property.

Recall that a module M is said to be finitely annihilated if there exists a finite
subset T of M with Ann T = Ann M. The finitely annihilated concept is believed to
be due to P. Gabriel [7]. This subject has been studied by some authors under the
name H-condition (see e.g. [10]). Evidently, every finitely generated module is finitely
annihilated. However, the converse is not correct. For example, let F be a non-zero free
module. Then for any element x of a basis of F, we have Ann F = 0 = Ann {x}. Thus
every (infinite rank) free module is finitely annihilated. Also the �-module Q is finitely
annihilated, but not finitely generated.

A ring over which every non-zero module has a maximal submodule is called
a Max ring. These rings have been characterized in [6]. Also a ring R is called
a perfect ring if R has DCC property on principal ideals (see [1, Theorem 28.4
(Bass)]).
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In this paper, we prove the following result:
[Theorem 4.5 and Theorem 4.9]. Let R be a ring.
(i) Consider the following statements:

(a) R is a Max ring;
(b) For any finitely annihilated R-module M and every m ∈ Max(R), the Rm-

module Mm has Nakayama property;
(c) For any finitely annihilated R-module M and every m ∈ Max(R) containing

Ann M, there exists N ∈ Max(M) with (N : M) = m;
(d) Every finitely annihilated R-module has Nakayama property;
(e) dim R = 0.

Then (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e).
(ii) R is a perfect ring if and only if every R-module has Nakayama property.

2. Some preliminary results. Let M be an R-module and S a multiplicatively
closed subset of R. For any N ≤ MS, we consider Nc = {x ∈ M | x/1 ∈ N}.

A proper submodule N of M is a prime submodule of M, if for each r ∈ R and
a ∈ M, the condition ra ∈ N implies that a ∈ N or rM ⊆ N. In this case, P = (N : M)
is a prime ideal of R, and we say N is a P-prime submodule of M (see e.g. [5, 3, 4, 8, 11]).

LEMMA 2.1. Let M be an R-module and S a multiplicatively closed subset of R.

(i) If N is a P-prime submodule of M with P ∩ S = ∅, then NS is a PS-prime
submodule of MS as an RS-module.

(ii) If T is a Q-prime submodule of MS as an RS-module, then Tc is a Qc-prime
submodule of M.

(iii) If L ∈ Maxx(M), then L is a prime submodule of M.

(iv) If M is a flat module and P a prime ideal of R with PM 	= M, then PM is a
P-prime submodule of M.

Proof. (i) and (ii) See [8, Proposition 1].
(iii) The proof is easy and it is left to the reader.
(iv) The assertion is given by [3, Corollary 2.6(i)] and [5, Corollary 2.9(i)]. �

The following lemma gives us some information about Max(M) and Maxx(M).

LEMMA 2.2. Let M be a non-zero R-module. Then
(i) Max(M) ⊆ Maxx(M).

(ii) Maxx(M) 	= ∅, for every faithfully flat R-module M.

(iii) Let M be a free R-module. Then Max(M) = Maxx(M), if and only if M ∼= R.

(iv) If N ∈ Maxx(M) with (N : M) = m, then Nm ∈ Maxx(Mm).
(v) If m ∈ Max(R) and L ∈ Maxx(Mm), then Lc ∈ Maxx(M) with (Lc : M) = m.

(vi) If M is a projective module, then Maxx(M) 	= ∅.

(vii) Max(M) 	= ∅ if and only if Maxx(M) 	= ∅.

Proof. (i) Suppose that N ∈ Max(M). Since M/N is a simple module, M/N ∼=
R/m, where m is a maximal ideal of R and m = Ann(M/N) = (N : M). Hence N ∈
Maxx(M).

(ii) Let m ∈ Max(R). According to [9, Theorem 7.2], for every faithfully flat module
M, we have mM 	= M. Then mM ∈ Maxx(M).

(iii) Let M = ⊕j∈JR, and m a maximal ideal of R. Consider N = mM = ⊕j∈Jm.

By part (ii), N ∈ Maxx(M). Now if |J| > 1, consider j0 ∈ J and L = ⊕j∈JIj, where
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Ij0 = m and Ij = R, for each j ∈ J \ {j0}. Then evidently N ⊂ L ⊂ M. This shows that
N 	∈ Max(M).

(iv) By Lemma 2.1(iii), N is an m-prime submodule of M. So by Lemma 2.1(ii),
Nm is an mm-prime submodule of Mm. Now since (Nm : Mm) = mm ∈ Max(Rm), we
have Nm ∈ Maxx(Mm).

(v) Note that (L : Mm) ∈ Max(Rm) = {mm}. Then Lemma 2.1(iii) implies that L
is an mm-prime submodule of Mm. So according to Lemma 2.1(ii), Lc is an m-prime
submodule of M. Thus Lc ∈ Maxx(M) and (Lc : M) = m.

(vi) Let m be a maximal ideal of R such that Mm 	= 0. Then Mm is a projective
Rm-module. According to [9, Theorem2.5], every projective module over a local ring is
a free module. Then Mm is a free Rm-module. Now by part (ii), Maxx(Mm) 	= ∅, and
so by part (v), Maxx(M) 	= ∅.

(vii) Let N ∈ Maxx(M) and suppose that (N : M) = P. Then M/PM is a non-zero
vector space over the field R/P. So M/PM has a maximal subspace L/PM. It is easy
to see that L is a maximal submodule of M as an R-module. �

We will consider JM(R) = ∩{m | m ∈ Max(R), mM 	= M}. If {m | m ∈
Max(R), mM 	= M} = ∅, then we define JM(R) = R.

Evidently, J(R) ⊆ JM(R) = ∩{(N : M) | N ∈ Maxx(M)}.
EXAMPLE 2.3. Let R be a non-local ring and suppose that m ∈ Max(R). Consider

M = R/m. Then M is cyclic and J(R) ⊂ m = JM(R). Hence, even for a cyclic module,
it is not necessary that J(R) = JM(R).

LEMMA 2.4. Let M be an R-module and I a proper ideal of R with IM = M. Then
Maxx(MS) = ∅, for S = {1 + x | x ∈ I}.

Proof. It is easy to see that ISMS = MS and IS ⊆ J(RS) ⊆ JMS (RS). On the
contrary let N ∈ Maxx(MS). From JMS (RS) ⊆ (N : MS), we have MS = ISMS ⊆
JMS (RS)MS ⊆ (N : MS)MS ⊆ N, and then (N : MS) = R, which is a contradiction.
Hence Maxx(MS) = ∅. �

LEMMA 2.5. Let M be a finitely annihilated R-module and I an ideal of R. Then the
following are equivalent:

(i) There exists a ∈ R such that aM = 0 and a − 1 ∈ I ;
(ii) Ann M 	⊆ m, for each maximal ideal m of R containing I.

Proof. (i) =⇒ (ii) Evidently, a ∈ Ann M \ m, for each maximal ideal m of R
containing I.

(ii) =⇒ (i) Suppose that T = {t1, t2, t3, . . . , tn} is a finite subset of M with
Ann T = Ann M. Consider A to be the submodule of M generated by T. According
to our assumption for each prime ideal P of R containing I, we have Ann M 	⊆
P, which implies that (Ann M)P = RP. Then RP = (Ann M)P = (0 : A)P = (0 : AP).
Hence AP = 0, for each prime ideal P of R containing I.

Now put S = {1 + x | x ∈ I}. For each maximal ideal m of RS, we have IS ⊆ m,

and so I ⊆ mc. Thus 0 = Amc ∼= (AS)mc
S

= (AS)m. Consequently AS = 0.

Then for each ti ∈ T, 1 ≤ i ≤ n, we have ti/1 = 0/1, in MS, that is, there exists
si ∈ S with siti = 0. Thus s1s2s3 · · · sn ∈ Ann T = Ann M. So s1s2s3 · · · sn is the desired
element of R. �

3. Nakayama property. Clearly, M has Nakayama property if and only if IM =
M for an ideal I of R implies that Ann M + I = R. So the zero module has Nakayama
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property, because Ann M = R. Also if I = R, then evidently Ann M + I = R. Hence
for studying the Nakayama property, we assume that M is a non-zero module and I is
a proper ideal of R.

LEMMA 3.1. Let M be an R-module. Consider the following statements:
(i) For each maximal ideal m of R, the Rm-module Mm has Nakayama property;

(ii) M has Nakayama property;
(iii) If I is an ideal of R with IM = M and S = {1 + x | x ∈ I}, then MS = 0.

Then (ii) =⇒ (iii), and if M is finitely annihilated, then (i) =⇒ (ii) ⇐⇒ (iii).

Proof. (ii) =⇒ (iii) According to our assumption there exists a ∈ R with aM = 0
and a − 1 ∈ I. Evidently, (a/1)MS = 0, and (a/1) − 1 ∈ IS. Now, since IS ⊆ m, for each
maximal ideal m of RS, (a/1) − 1 ∈ J(R). Then a/1 is a unit in RS, and so MS = 0.

Now suppose that M is finitely annihilated and assume that
T = {t1, t2, . . . , tn} is a subset of M with Ann T = Ann M.

(i) =⇒ (ii) Suppose that M does not have Nakayama property. Then according to
Lemma 2.5[(ii) =⇒ (i)] there exists a maximal ideal m containing an ideal I such that
IM = M and Ann M ⊆ m.

Consider A to be the submodule of M generated by T. Then (Ann M)m ⊆
Ann Mm ⊆ (0 : Am) = (0 : A)m = (Ann M)m, that is, Ann Mm = (Ann M)m. Since
ImMm = Mm, according to our assumption there exist a ∈ R and s ∈ (R \ m) such
that a/s ∈ Ann Mm and (a/s) − 1 ∈ Im. Then a/1 ∈ Ann Mm = (Ann M)m ⊆ mm, and
so a ∈ (mm)c = m. Also from (a − s)/s ∈ Im, we get (a − s)/1 ∈ Im ⊆ mm, and thus
a − s ∈ (mm)c = m. Consequently, s ∈ m, which is a contradiction.

(iii) =⇒ (ii) Let I be a proper ideal of R with IM = M, and put S = {1 + x |
x ∈ I}. By our assumption MS = 0. So for each ti ∈ T, 1 ≤ i ≤ n, there exists si ∈ S
with siti = 0. Then s1s2s3 · · · sn ∈ Ann T = Ann M, and thus s1s2s3 · · · sn is the desired
element of R. �

PROPOSITION 3.2. A projective R-module M has Nakayama property, if one of the
following holds:

(i) M is finitely annihilated;
(ii) Ann M is a prime ideal.

Proof. (i) Let IM = M, where I is a proper ideal of R. Put S = {1 + x | x ∈ I}.
Then MS is also a projective RS-module. If MS 	= 0, then according to Lemma 2.2(vi),
Maxx(Ms) 	= ∅, which is a contradiction by Lemma 2.4. Hence Ms = 0. Now the proof
follows from Lemma 3.1[(iii) =⇒ (ii)].

(ii) According to Lemma 2.1(iv), (Ann M)M = 0 is a prime submodule of M.

Now if 0 	= x0 ∈ M and rx0 = 0, where r ∈ R, then since the zero submodule is a
prime submodule, r ∈ Ann M. Thus Ann x0 = Ann M, that is M is finitely annihilated.
Now the proof is given by part (i). �

COROLLARY 3.3.
(i) If R is an integral domain and M is non-zero projective, then IM 	= M, for each

proper ideal I of R.

(ii) Every non-zero projective module over an integral domain is faithfully flat.

Proof. (i) By Lemma 2.1(iv), 0M = 0 is a 0-prime submodule of M. Then
Ann M = (0 : M) = 0 is a prime ideal of R. Now if for an ideal I of R, IM = M,

then by Proposition 3.2(ii), there exists a ∈ R such that aM = 0 and a − 1 ∈ I. Thus
a ∈ Ann M = 0, and so 1 ∈ I.
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(ii) By part (i), mM 	= M, for each maximal ideal m of R. So M is faithfully flat,
by [9, Theorem 7.2]. �

PROPOSITION 3.4. Let {Mi}i∈α be a family of R-modules such that Mi has Nakayama
property, for each i ∈ α. Then M = ⊕i∈αMi has Nakayama property, if one of the
following holds:

(i) {∩i∈F Ann Mi | F is a finite subset of α} has a minimal element;
(ii) {Ann Mi | i ∈ α} is a finite set. In particular, if |α| < ∞;

(iii) M is finitely annihilated;
(iv) M has DCC on the submodules of the form rM, r ∈ R.

Proof. Suppose that IM = M, where I is an ideal of R. Then ⊕i∈α(IMi) = IM =
M = ⊕i∈αMi, and so IMi = Mi, for each i ∈ α. According to our assumption Mi

has Nakayama property for each i ∈ α, then there exists ai ∈ R with aiMi = 0 and
ai − 1 ∈ I.

(i) Consider

A = {∩i∈F Ann Mi | F is a finite subset of α},
and assume that ∩i∈F0 Ann Mi is a minimal element of A.

Put a = �i∈F0 ai. Evidently, a − 1 ∈ I. Let j ∈ α. Note that ∩i∈F0 Ann Mi is a minimal
element of A, then a ∈ ∩i∈F0 Ann Mi = (∩i∈F0 Ann Mi) ∩ Ann Mj ⊆ Ann Mj. Therefore
a ∈ Ann M.

(ii) The proof is clear by part (i).
(iii) Consider S = {1 + x | x ∈ I}. According to Lemma 3.1[(ii) =⇒ (iii)], (Mi)S =

0, for each i ∈ α. Then MS ∼= ⊕i∈α(Mi)S = 0. Hence by Lemma 3.1[(iii) =⇒ (ii)], M
has Nakayama property.

(iv) Consider the set

C = {(�i∈F ai)M | F is a finite subset of α}.
Define the partially ordered relation (C,≤) as follows:

c1 ≤ c2 ⇐⇒ c1 ⊇ c2 (c1, c2 ∈ C).

We show that every chain D in C has an upper bound. Suppose not, and let
c1 ∈ D. Since c1 is not an upper bound of the chain D, there exists c1 	= c2 ∈ D with
c1 ≤ c2, that is c2 ⊂ c1. The same argument shows that there exists c3 ∈ D such that
c3 ⊂ c2. Now we can construct inductively a descending chain · · · ⊂ c3 ⊂ c2 ⊂ c1 of
submodules of the form {rM | r ∈ R}, which does not stop, and this is against our
assumption.

Hence every chain in C has an upper bound, and so by Zorn’s Lemma,
(C,≤) has a maximal element, i.e., C has a minimal element (�i∈F0 ai)M with the
relation ⊆ . Then for each j ∈ α, (�i∈F0 ai)Mj = (�i∈(F0∪{j})ai)Mj = 0. Thus �i∈F0 ai ∈
∩j∈αAnn Mj = Ann M, and (�i∈F0 ai) − 1 ∈ I. �

The following corollary introduces a method for making non-finitely generated
modules, which have Nakayama property.

COROLLARY 3.5. Let M be a finitely annihilated R-module. Then M′ = ⊕x∈MRx as
an R-module has Nakayama property.
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Proof. It is easy to see that the condition (i) of Proposition 3.4 is satisfied. �

EXAMPLE 3.6.
(1) Let P be the set of odd prime numbers and consider M′ = ⊕p∈P�p as a �-

module. Then IM′ = M′, where I = 2�. But M′ does not have Nakayama
property, since Ann M′ = 0. However �p has Nakayama property, for each
p ∈ P, as it is cyclic (compare with Proposition 3.4).

(2) Let M1 be an R-module and suppose M2 is an R-module with the property that
IM2 = M2 just for I = R. So if I(M1 ⊕ M2) = M1 ⊕ M2, then from IM1 ⊕
IM2 = I(M1 ⊕ M2), we get IM2 = M2, and thus I = R. This shows that the
R-module M1 ⊕ M2 has Nakayama property.

(3) By part (2), the �-modules, M′′ = Q ⊕ � and K ′′ = 0 ⊕ � have Nakayama
property, but M′′/K ′′ ∼= Q does not have Nakayama property, because
(2�)Q = Q and Ann Q = 0. Moreover this shows that the converse of
Proposition 3.4, parts (i), (ii) and (iii) are not correct.

(4) Consider M′ = ⊕p∈P�p from part (1), and suppose K ′ = 0 ⊕ (⊕3<p∈P�p).
Then M′/K ′ ∼= �3 has Nakayama property, because it is cyclic, but M′ does
not have Nakayama property.

(5) By part (2), if M2 is a non-zero faithfully flat R-module, then M1 ⊕ M2 has
Nakayama property.

4. Rings for which certain modules over them have Nakayama property. We know
that every non-zero finitely generated module has a maximal submodule. In the
following, we are looking for a similar result for modules with Nakayama property.

DEFINITION. A proper submodule N of an R-module M will be called almost maximal,
if (N : M) = (L : M), for each proper submodule L of M containing N.

In the following, some properties of almost maximal submodules are given. The
proof of the following lemma is easy and it is left to the reader.

LEMMA 4.1. Let M be an R-module.
(i) If (L : M) = 0 for each proper submodule L of M, then every proper submodule

of M is almost maximal. Particularly, if M is a divisible module over an integral
domain, then every proper submodule of M is almost maximal.

(ii) A proper submodule N of M is almost maximal, if and only if N + rM = M for
each r ∈ R \ (N : M).

(iii) A submodule N of M is almost maximal, if and only if (N : M) is a prime ideal
of R and M/N is a divisible R/(N : M)-module.

(iv) A submodule N of M is almost maximal, if and only if (N : M) is a prime ideal
of R and M/N is a secondary R-module.

(v) If N ∈ Maxx(M), then N is almost maximal. In particular, if N ∈ Max(M),
then N is almost maximal.

(vi) If N is almost maximal in M, then every proper submodule of M containing N
is also almost maximal in M.

THEOREM 4.2. Let M be a non-zero R-module.
(i) If M has Nakayama property, then M has an almost maximal submodule N.

Moreover N = (N : M)M and (N : M) is a prime ideal of R.

(ii) If R is a Noetherian ring, then M has an almost maximal submodule.
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Proof. (i) Consider the set T as follows:

T = {I | I is an ideal of R, IM 	= M}.

Evidently, 0 ∈ T , then T 	= ∅. Let {Ij | Ij ∈ T }j∈α be a chain in T . If (∪j∈αIj)M = M,

then there exists a ∈ M with aM = 0 and 1 − a ∈ ∪j∈αIj. Suppose that 1 − a ∈ Ij0 ,

where j0 ∈ α. Then M = (1 − a)M ⊆ Ij0 M, and consequently Ij0 M = M, which is a
contradiction. Hence ∪j∈αIj ∈ T . Now by Zorn’s Lemma T has a maximal element P.

We show that PM is an almost maximal submodule of M.

Let L be a proper submodule of M containing PM. Clearly, P ⊆ (PM : M) ⊆ (L :
M). So if (PM : M) 	= (L : M), then P ⊂ (L : M) and so M = (L : M)M ⊆ L ⊆ M,

which is a contradiction. Therefore PM is an almost maximal submodule of M.

Evidently, P ⊆ (PM : M). So if P 	= (PM : M), then M = (PM : M)M ⊆ PM ⊆
M, which is impossible. Hence P = (PM : M).

To prove that P is a prime ideal, let bc ∈ P, where b, c ∈ R \ P. Then from
(P + Rb)M = M and (P + Rc)M = M, we get M = (P + Rb)(P + Rc)M ⊆ PM ⊆
M, which is a contradiction.

(ii) Consider the set T as follows:

T = {(N : M) | N is a proper submodule of M}.

Suppose that (N0 : M) is a maximal element of T . Then evidently N0 is an almost
maximal submodule of M. �

Let M be an R-module and I an ideal of R with IM = M such that I ⊆ J(R). Then
obviously for each maximal ideal P of R, PM = M. Now If M is finitely generated,
then M = 0. Compare this result with the following corollary.

COROLLARY 4.3. Let M be an R-module such that PM = M for each prime ideal P
of R. If M has Nakayama property, then M = 0. In particular, if M is finitely generated,
then M = 0.

Proof. Let 0 	= M. Then Theorem 4.2(i) implies that M has an almost maximal
submodule of the form PM, where P is a prime ideal of R. Hence PM 	= M, which is
a contradiction. �

An ideal I of a ring R is called T-nilpotent in case for every sequence a1, a2, · · · ∈ I,
there is a positive integer n such that a1a2a3 · · · an = 0 (see [1, p. 314]).

A ring R is a Von Neumann regular ring, if Ra = Ra2, for each a ∈ R.

LEMMA 4.4. [6, The main theorem] A ring R is a Max ring if and only if J(R) is
T-nilpotent and R/J(R) is a Von Neumann regular ring.

THEOREM 4.5. Let R be a ring. Consider the following statements:
(a) R is a Max ring;
(b) For any finitely annihilated R-module M and every m ∈ Max(R), the Rm-module

Mm has Nakayama property;
(c) For any finitely annihilated R-module M and every m ∈ Max(R) containing

Ann M, there exists N ∈ Max(M) with (N : M) = m;
(d) Every finitely annihilated R-module has Nakayama property;
(e) dim R = 0.

Then (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e).
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Proof. (a) =⇒ (b) Let R be a Max ring. We prove the result in the following two
steps:

Step 1. For any multiplicatively closed subset S of R, the ring RS is a Max
ring.

Proof of Step 1. First note that dim R = 0. To prove that let P be an ideal of R
and m a maximal ideal of R containing P. Consider a ∈ m. By Lemma 4.4, R/J(R) is
a Von Neumann regular ring, then there exists t ∈ R with a(1 − ta) ∈ J(R). Again by
Lemma 4.4, J(R) is T-nilpotent, then a(1 − ta) is nilpotent. Let an(1 − ta)n = 0, where
n is a positive integer. Then an(1 − ta)n ∈ P and since P ⊆ m, we have 1 − ta 	∈ P, so
a ∈ P.

From dim R = 0, we get J(R) = N (R), where N (R) is the intersection of all
prime ideals of R. By [2, Corollary 3.12], (J(R))S = (N (R))S = N (RS). Also dim R = 0
implies that dim RS = 0, then N (RS) = J(RS). Therefore (J(R))S = J(RS).

According to Lemma 4.4, J(R) is T-nilpotent, then clearly J(RS) = (J(R))S

is T-nilpotent. Also R/J(R) is a Von Neumann regular ring, then RS/J(RS) =
RS/(J(R))S ∼= (R/J(R))S is a Von Neumann regular ring. Consequently by Lemma 4.4,
RS is a Max ring.

Step 2. If R is a Max ring, then every finitely annihilated R-module has Nakayama
property.

Proof of Step 2. Suppose that M is a finitely annihilated R-module and IM = M,

where I is a proper ideal of R. Consider S = {1 + x | x ∈ I}.
By Step 1, RS is also a Max ring and by Lemma 2.4, Max(MS) = ∅, hence MS = 0.

So by Lemma 3.1[(iii) =⇒ (ii)], M has Nakayama property.
Now for the proof of the result, note that by Step 1, for every m ∈ Max(R), the

ring Rm is a Max ring. Thus by Step 2, for any finitely annihilated R-module M, the
Rm-module Mm has Nakayama property.

(d) =⇒ (e) First, we prove that a non-zero divisible module M over an integral
domain R has Nakayama property if and only if R is a field.

Evidently, Ann M = 0. Suppose that M has Nakayama property. For each 0 	= r ∈
R, we have (Rr)M = M. Now since M has Nakayama property, Rr = Ann M + Rr =
R, hence R is a field. For the converse, note that in a non-zero vector space M if
IM = M for an ideal I of R, then I = R.

Now suppose R is a ring such that every finitely annihilated R-module has
Nakayama property.

Let P be a prime ideal of R and K the quotient field of R/P. One can easily see
that AnnR K = P = AnnR {1 + P}, and so K is a finitely annihilated R-module. Hence
by our assumption K has Nakayama property as an R-module. It is easy to see that K
has Nakayama property as an R/P-module and we know that K is a non-zero divisible
R/P-module, therefore R/P is a field.

(b) =⇒ (c) First, we show that every finitely annihilated Rm-module M′ has
Nakayama property, and so by part (d) =⇒ (e), dim Rm = 0.

Evidently, M′ is an R-module by considering the natural homomorphism R −→
Rm, and it is easy to see that M′ is finitely annihilated as an R-module. Thus by our
assumption (M′)m has Nakayama property as an Rm-module, and one can easily see
that M′ ∼= (M′)m as an Rm-module.

Now we show that Mm 	= 0, for any maximal ideal m of R containing Ann M.

Suppose that T = {t1, t2, t3, . . . , tn} is a finite subset of M with Ann T = Ann M.

If Mm = 0, then for each ti ∈ T, 1 ≤ i ≤ n, there exists si ∈ R \ m with siti = 0. Thus
s1s2s3 · · · sn ∈ Ann T = Ann M ⊆ m, which is a contradiction.
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By our assumption the Rm-module Mm has Nakayama property, so Theorem 4.2(i)
implies that Mm has an almost maximal submodule L, where (L : Mm) is a prime
ideal of Rm. As dim Rm = 0, L ∈ Maxx(Mm) and (L : Mm) = mm. By Lemma 2.2(v),
Lc ∈ Maxx(M) with (Lc : M) = m. Note that mM ⊆ Lc, so mM 	= M. Then M/mM
is a non-zero vector space over the field R/m. So M/mM has a maximal subspace
N/mM. Thus N is a maximal submodule of M and since m ⊆ (N : M), we have
(N : M) = m. This completes the proof.

(c) =⇒ (d) Suppose that M is a finitely annihilated R-module and IM = M,

where I is an ideal of R. According to Lemma 2.5[(ii) =⇒ (i)] it is enough to show
that Ann M 	⊆ m, for each maximal ideal m of R containing I. On the contrary, let
Ann M ⊆ m, where m is a maximal ideal of R containing I. By our assumption,
there exists a maximal submodule N of M with (N : M) = m. Since I ⊆ m, we have
M = IM ⊆ mM ⊆ N, which is a contradiction. �

EXAMPLE 4.6. Let M be a non-zero divisible R-modules, where R is an integral
domain, which is not a field. Then M does not have Nakayama property, by the
proof of Theorem 4.5[(d) =⇒ (e)]. Particularly the �-modules Q and �P∞ do not
have Nakayama property. However if M is torsion-free divisible, then M is finitely
annihilated, for example Q is finitely annihilated.

A submodule K of a module M is said to be small (or superfluous) in case for
every L ≤ M, the equality K + L = M implies that L = M. It is said that a module
M has a projective cover if there exists an epimorphism f : P −→ M such that P is a
projective module and Ker f is small in P (see [1, p. 199]).

According to [1, Theorem 28.4 (Bass)], a ring R is a perfect ring, if and only if
every R-module has a projective cover.

LEMMA 4.7. [6, Corollary on page 1136] and [1, Theorem 28.4] Let R be a ring.
Then the following are equivalent:

(i) R is a perfect ring;
(ii) R is a Max ring and R has no infinite set of orthogonal idempotents;

(iii) R/J(R) is a semi-simple ring and J(R) is T-nilpotent.

Evidently, any Artinian ring is a perfect ring, and Lemma 4.7 implies that every
perfect ring is a Max ring.

EXAMPLE 4.8.
(1) Let K be a field and {xi | i ∈ �} a set of infinite independent indeterminates,

and suppose M = 〈x1, x2, x3, . . .〉. Then for each 1 < n ∈ �, the ring R =
K [x1, x2, x3, . . .]/Mn, is a perfect ring, but it is not an Artinian ring.

(2) Let F be a field and consider R = ∏
n∈� F. Then R is a Max ring, but it is not

a perfect ring.

Proof. (1) Evidently, J(R) = M/Mn. Then (J(R))n = 0, and this shows that J(R)
is T-nilpotent. Also clearly R/J(R) ∼= K and thus R/J(R) is a semi-simple (indeed a
simple) ring. Now according to Lemma 4.7((iii)=⇒(i)), R is a perfect ring.

Note that the following chain of ideals of R does not stop:

〈x1〉
Mn

⊂ 〈x1, x2〉
Mn

⊂ 〈x1, x2, x3〉
Mn

⊂ · · · ,

hence R is not Noetherian and evidently it is not Artinian.
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(2) For each a = {an}n∈� ∈ R, we have a = a2{a′
n}n∈� ∈ Ra2, where for each n ∈ �,

a′
n = a−1

n if 0 	= an, otherwise a′
n = 0. This shows that R and consequently R/J(R) is a

Von Neumann regular ring.
Now we prove that J(R) = 0. Put Ik = ∏

n∈�(1 − δnk)F. Then Ik is a maximal ideal
of R, for each k ∈ �. For proof, let J be an ideal of R with Ik ⊂ J. Then there exists x =
{xn}n∈� ∈ J such that 0 	= xk. Note that y = {(1 − δnk)(1 − xn)}n∈� ∈ Ik ⊂ J. So x + y =
{zn}n∈� ∈ J, where zk = xk and zn = 1, for each n 	= k. Thus 1 = {zn}n∈�.{z−1

n }n∈� ∈
J. Hence Ik is a maximal ideal of R, for each k ∈ �, and evidently J(R) ⊆
∩k∈�Ik = 0.

Therefore J(R) is T-nilpotent and R/J(R) is a Von Neumann regular ring and so
by Lemma 4.4, R is a Max ring.

Note that the set {ek | k ∈ �}, where ek = {δnk}n∈� is an infinite set of orthogonal
idempotents of R, so by Lemma 4.7, R is not a perfect ring. �

THEOREM 4.9. A ring R is a perfect ring if and only if every R-module has Nakayama
property.

Proof. (=⇒) Let R be a perfect ring. We prove that every R-module has Nakayama
property in the following three steps:

Step 1. Let {Mi}i∈α be a family of R-modules such that Mi has Nakayama property,
for each i ∈ α. Then ⊕i∈αMi has Nakayama property.

Proof of Step 1. Put M = ⊕i∈αMi. Suppose that IM = M, where I is an ideal of R.

Then ⊕i∈α(IMi) = IM = M = ⊕i∈αMi, and so IMi = Mi, for each i ∈ α. According
to our assumption, Mi has Nakayama property for each i ∈ α, then there exists ai ∈ R
with aiMi = 0 and ai − 1 ∈ I.

Let

B = {R(�i∈F ai) | F is a finite subset of α}.

As R has DCC on principal ideals, Zorn’s Lemma implies that B has a minimal
element. Let R(�i∈F0 ai) be a minimal element of B. Then for each j ∈ α, we have
R(�i∈F0 ai) = R(�i∈(F0∪{j})ai). Hence �i∈F0 ai ∈ Ann Mj for each j ∈ α, and so �i∈F0 ai ∈
∩j∈αAnn Mj = Ann M, and clearly (�i∈F0 ai) − 1 ∈ I.

Step 2. Every projective R-module has Nakayama property.
Proof of Step 2. Let P be a projective R-module. According to [1, Theorem 27.11],

P is isomorphic to a direct sum of cyclic submodules. Hence P has Nakayama property,
by Step 1.

Step 3. Every R-module has Nakayama property.
Proof of Step 3. Let M be an R-module. Note that R is a perfect ring, then every

R-module has a projective cover ([1, Theorem 28.4 (Bass)]). Let M ∼= P/K, where
P is a projective module and K is a small submodule of P. Suppose that I(P/K) =
P/K, where I is an ideal of R. Then K + IP = P, and since K is a small submodule
of P, IP = P. Now by Step 2, Ann P + I = R. Evidently, Ann P ⊆ Ann(P/K), thus
Ann(P/K) + I = R, which completes the assertion.

(⇐=) We prove that R is a Max ring and R has no infinite set of orthogonal
idempotents. Hence by Lemma 4.7, R is a perfect ring.

Let M be an arbitrary R-module. By Theorem 4.2(i), M has an almost
maximal submodule N and (N : M) is a prime ideal of R. By Theorem 4.5[(d)
=⇒ (e)], dim R = 0, then N ∈ Maxx(M), and consequently by Lemma 2.2(vii),
Max(M) 	= ∅.
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Now let {ei}+∞
i=1 be an infinite set of orthogonal idempotents of R. Consider I to

be the ideal of R generated by {ei}+∞
i=1 and suppose M′ = I/Re1. Since I2 = I, we have

IM′ = M′ and we know that M′ has Nakayama property, so Ann M′ + I = R.

Note that Ann M′ = ∩+∞
i=2 Ann ei. To prove that let r ∈ Ann M′. Thus rei ∈ Re1 for

each i > 1, and so there exists si ∈ R with rei = sie1. Then rei = rei.ei = sie1ei = 0. The
proof of the converse inclusion is evident.

Now from Ann M′ + I = R, and Ann M′ = ∩+∞
i=2 Ann ei, we get (∩+∞

i=2 Ann ei) +
I = R. Let s + ∑n

i=1 riei = 1, where s ∈ ∩+∞
i=2 Ann ei and n is a positive integer and

ri ∈ R for each 1 ≤ i ≤ n. Then for each j > n, we have ej = ej.1 = sej + ∑n
i=1 rieiej = 0,

which completes the proof. �
COROLLARY 4.10. Let R be a Noetherian ring. Then the following are equivalent:
(i) Every R-module has Nakayama property;

(ii) Every finitely annihilated R-module has Nakayama property;
(iii) R is an Artinian ring.

Proof. (ii) =⇒ (iii) dim R = 0, by Theorem 4.5[(d) =⇒ (e)].
(iii) =⇒ (i) The proof follows from Theorem 4.9. �

Note. If M is an R-module such that Ann M is a maximal ideal, then M has
Nakayama property. For the proof, note that M has Nakayama property as an R-
module if and only if M has Nakayama property as an R/Ann M-module. Thus by
Corollary 4.10, M has Nakayama property. �

Let K be a proper submodule an R-module M. Example 3.6(3),(4) shows that
the Nakayama property for M does not imply the Nakayama property for M/K, and
conversely.

COROLLARY 4.11. Let K be a proper submodule an R-module M.

(i) If M/K has Nakayama property, then M has an almost maximal submodule
containing K.

(ii) If M has Nakayama property, then M has an almost maximal submodule of the
form PM, where P is a prime ideal of R containing (K : M).

Proof. (i) By Theorem 4.2(i), there exists an almost maximal submodule N/K of
M/K,where N is a submodule of M containing K. One can easily see that N is an
almost maximal submodule of M.

(ii) Consider the set T as follows:

T = {I | I is an ideal of R, IM 	= M, (K : M) ⊆ I}.
Note that (K : M) ∈ T . Now follow the proof of Theorem 4.2(i). �

Recall that a non-zero module M is called sum-irreducible, in case L + K 	= M,

for each proper submodules L, K of M (see [9, p. 44]).

THEOREM 4.12. Let M be an Artinian module. Then the following are equivalent:
(i) M is a finitely generated module;

(ii) M is finitely annihilated;
(iii) R/Ann M is an Artinian ring;
(iv) Every submodule of M is finitely annihilated;
(v) Every submodule of M has Nakayama property.
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Proof. (i) =⇒ (ii) The proof is obvious.
(ii) =⇒ (iii) Suppose that T = {t1, t2, t3, . . . , tn} is a finite subset of M with

Ann T = Ann M. Then the module M′ = Rt1 + Rt2 + · · · + Rtn is a finitely generated
Artinian R-module. Hence R/Ann M′ = R/Ann M is an Artinian ring.

(iii) =⇒ (iv) Note that every module M over an Artinian ring R is finitely
annihilated. To prove that, consider

A = {Ann T | T is a finite subset of M}.

Suppose that Ann T0 is a minimal element of A. If Ann M 	= Ann T0, then let
r ∈ Ann T0 \ Ann M. So there exists m ∈ M such that rm 	= 0. Now since r ∈ Ann T0 \
Ann(T0 ∪ {m}), we get Ann(T0 ∪ {m}) ⊂ Ann T0, which is a contradiction.

Now let N be an arbitrary submodule of M. Since R/Ann M is an Artinian
ring, N is finitely annihilated as an R/Ann M-module and consequently as an
R-module.

(iv) =⇒ (v) Let N be a submodule of M. According to the proof of (ii) =⇒
(iii), R/Ann N is an Artinian ring, and every Artinian ring is a perfect ring, so by
Theorem4.9, N has Nakayama property as an R/Ann N-module. Consequently, N has
Nakayama property as an R-module.

(v) =⇒ (i) Suppose that M is not finitely generated. Consider the set T as follows:

T = {N ≤ M | N is not finitely generated}.

Let N1 be a minimal element of T . Then N1 is a sum-irreducible module. To see the
proof, let L, K be proper submodules of N1 with L + K = N1. So L and K are finitely
generated, which implies that N1 is finitely generated.

According to our assumption N1 has Nakayama property, then by Theorem 4.2(i),
N1 has an almost maximal submodule N0. We show that (N0 : N1) is a maximal
submodule of R. Let J be an ideal of R with (N0 : N1) ⊂ J. Consider r ∈ J \ (N0 : N1).
Since N0 is almost maximal, N0 + rN1 = N1. Note that N1 is sum-irreducible, then
rN1 = N1, that is IN1 = N1, where I = Rr. By our assumption N1 has Nakayama
property, then there exists a ∈ Ann N1 such that a − 1 ∈ I = Rr. Now a ∈ (N0 : N1) ⊂ J
and 1 − a ∈ I = Rr ⊆ J, and so 1 ∈ J.

Since N1 is sum-irreducible, it is easy to see that the vector space N1/N0 over the
field R/(N0 : N1) is also sum-irreducible. Therefore rankR/(N0:N1) N1/N0 = 1, that is,
N1/N0 as an R/Ann(N1/N0)-module and evidently as an R-module is finitely generated.
Also N0 is finitely generated, since N0 is a proper submodule of N1. Consequently N1

is finitely generated, which is a contradiction. �

COROLLARY 4.13. Every Artinian module over an Artinian ring is a Noetherian
module.

Proof. The proof is evident, by Theorem 4.12(iii) and (i). �

EXAMPLE 4.14. The �-module �P∞ is an Artinian module and every proper
submodule of �P∞ is cyclic. Then obviously every proper submodule of �P∞

has Nakayama property. However, �P∞ does not have Nakayama property , by
Example 4.6.
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