ON A CHARACTERIZATION OF PLANAR GRAPHS

C.C. Chen

By introducing the concept of a polygon-extension of a planar graph, we provide a simple proof that a graph is planar if and only if every strict elegant ring in the graph is even.

1. Introduction

Throughout, we consider undirected graphs on a finite set of vertices. Following the notations used in [3], we denote the vertex set of a graph G by $V G$ and its edge set by $E G$. If G is a directed graph, C is a directed circuit of G, and a, b are distinct vertices of $V C$, then we used the notation $C(a, b)$ to mean the direct subpath of C with origin a and terminus b. If $a=b$, then $C(a, b)$ means the subpath of C with vertex set $\{\alpha\}$ and empty edge set. If P is a path in G with end vertices c, d, then we use $I P$ to denote the set $V P-\{c, d\}$. Further, let X and Y be distinct paths or circuits of a graph G with $|V X \cap V Y| \geq 2$. Then an $\bar{X} Y$-path is a maximal nondegenerate subpath P of Y for with $I P \cap V X=\varnothing$ and $E P \cap E X=\varnothing$. An $X Y$-path is a maximal subpath P of Y for which $E P \subseteq E X \cap E Y$ and $V P \subseteq V X \cap V Y$.

Let S be a collection of circuits of G. If the edges of G can be directed so that every circuit of S is a directed circuit, then we say that S is consistently orientable. The cyclic sequence of circuits $S=\left(C_{0}, C_{1}, \ldots, C_{n-1}\right)$ with $n \geq 3$ is a ring in the graph G, if
(R1) S is consistently orientable,
(R2) $E C_{i} \cap E C_{j} \neq \emptyset$ if and only if $i=j, i \equiv j+1(\bmod n)$
Received 22 April 1981.

$$
\text { or } i \equiv j-1(\bmod n),
$$

(R3) no edge of G belongs to more than two circuits of G.
We note that (R2) implies (R3) except when $n=3$.
A ring $S=\left(C_{0}, C_{1}, \ldots, C_{n-1}\right)$ with n circuits is called an
n-ring. It is called an odd ring if n is odd, an even ring if n is even, a strict ring if $\left|V C_{i} \cap V C_{j}\right| \leq 1$ whenever $E C_{i} \cap E C_{j}=\varnothing$, an elegant ring if, for each $i=0,1, \ldots, n-1$, there is a unique $\bar{c}_{i} c_{i+1}{ }^{-}$ path (or equivalently, the common vertices on C_{i} and C_{i+1} are those on the path M_{i} where $E C_{i} \cap E C_{i+1}=E M_{i}$), a perfect ring if it is elegant and $V C_{i} \cap V C_{j}=\emptyset$ whenever $E C_{i} \cap E C_{j}=\emptyset$. We note here, and throughout this paper, that all subscripts are taken as being modulo n.

Let $P(G)$ be a planar embedding of a planar graph G. For each vertex x of G, we shall denote by $N(x)$ the set of all vertices y of G adjacent to x and $E(x)$ the set of all edges of G with one end at x. Let $e_{1} ; e_{2} \in E(x)$ (say $e_{1}=\left\{x, y_{1}\right\}, e_{2}=\left\{x, y_{2}\right\}$). We say that e_{1}, e_{2} are neighbouring edges in $P(G)$ if and only if we can draw a curve C in the plane joining y_{1} and y_{2} such that C does not intersect any e in $E(x)$ except possibly at y_{1} and y_{2} and the open region in the plane bounded by C, e_{1}, e_{2} is disjoint from $N(x)$. We now construct a graph $P^{*}(G)$ whose vertices are all ordered pairs (x, e) with $x \in V G$, $e \in E(x)$ and, for any two vertices $(x, e),(y, f)$ in $V P^{*}(G)$, we draw an edge joining them if and only if one of the following holds:
(i) $x=y$ and e, f are neighbouring;
(ii) $x \neq y$ and $e=f$.

We shall call $P^{*}(G)$ the polygon extension of G with respect to the planar embedding $P(G)$. Intuitively speaking, $P^{*}(G)$ is obtained from $P(G)$ by replacing each vertex of degree n in $P(G)$ with an n-gon and joining corresponding vertices as indicated in the figure below (for $n=4$). Note that $P^{*}(G)$ is always planar and if each vertex of G has degree greater than or equal to 3 , then $P^{*}(G)$ is always a cubic graph.

The purpose of this paper is to make use of the concept of polygon extensions of planar graphs to provide a simple proof of the following nice characterization of planar graphs due to Holton and Little [3].

MAIN THEOREM. A graph G is planar if and only if every strict elegant ring in G is even.

REMARK. Throughout this paper, whenever S denotes a ring in a graph G, we assume without loss of generality that each edge of G is also an edge of a circuit C_{i} of S, since we are concerned only with the subgraph of G which is the union of all circuits of S.

2. Basic lemmas

The following results will be useful in the sequel.
LEMMA 1 ([1], Kuratowski's Theorem). G is planar if and only if no subgraph of G is homeomorphic to K_{5} or $K_{3,3}$.

LEMMA 2 ([2]). There exists an odd strict elegant ring in K_{5} and in $K_{3,3}$.

Let C be a circuit in the plane. We shall write $I(C)$ to mean the open region in the plane bounded by $C, \overline{I(C)}$ to mean the closed region bounded by C, and $O(C)$ to mean the region consisting of all points not in $\overline{I(C)}$.

LEMMA 3. Let $S=\left(C_{0}, C_{1}, \ldots, C_{n-1}\right)$ be a strict elegant ring in a planar graph G and $P(G)$ a planar embedding of G. Then, for each i, either $I\left(C_{i}\right) \cap V P(G)=\emptyset$ or $O\left(C_{i}\right) \cap V P(G)=\emptyset$.

Proof. Without loss of generality, we need only to consider the case $i=0$. Since S is elegant, either $I\left(C_{0}\right) \cap V C_{1}=\varnothing$ or
$O\left(C_{0}\right) \cap V C_{1}=\emptyset \quad$ (say the former).
CLAIM. $I\left(C_{0}\right) \cap V C_{2}=\varnothing$.
Indeed, let $e=\{a, b\}$ be a common edge of C_{1} and C_{2}. Since S is strict, either $a \notin V C_{0}$ or $b \notin V C_{0}$ (say the former). Hence, we must have $a \in O\left(C_{0}\right) \cap V C_{2}$. Suppose to the contrary that $I\left(C_{0}\right) \cap V C_{2} \neq \emptyset$, say $c \in I\left(C_{0}\right) \cap V C_{2}$. Then $C_{2}(c, a) \cap V C_{0} \neq \emptyset$ and $C_{2}(a, c) \cap V C_{0} \neq \varnothing$. This however contradicts the fact that S is strict and elegant. Thus, we must have $I\left(C_{0}\right) \cap V C_{2}=\varnothing$, as claimed.

By exactly the same argument as that for the above claim, we have $I\left(C_{0}\right) \cap V C_{i}=\emptyset$ for all $i=1,2, \ldots, n-1$. Therefore $I\left(C_{0}\right) \cap V P(G)=\varnothing$, completing the proof.

LEMMA 4. Let $S=\left(C_{0}, c_{1}, \ldots, C_{n-1}\right)$ be a strict elegant ring in a planar graph G and $P(G)$ be a planar embedding of G. Then, for each i, all adjacent edges in C_{i} are also neighbouring edges in $P(G)$.

Proof. Let $e_{1}=\left\{a, b_{1}\right\}, e_{2}=\left\{a, b_{2}\right\}$ be two adjacent edges of C_{i}. By Lemma 3, either $I\left(C_{i}\right) \cap V P(G)=\varnothing$ or $O\left(C_{i}\right) \cap V P(G)=\varnothing$. In the first case, we let C be any curve lying entirely within $I\left(C_{i}\right)$ except for the two ends b_{1}, b_{2} of C; where in the second case, we let C be any curve lying entirely within $O\left(C_{i}\right)$ except for the two ends b_{1}, b_{2} of C. Then the open region in the plane bounded by c, e_{1}, e_{2} is disjoint from $N(a)$. Thus, by definition, e_{1} and e_{2} are neighbouring edges, as required.

LEMMA 5 ([3]). Let $S=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ be a perfect ring in a planar graph G. Then S is even.

Proof. Here as in [3], for each i, we shall denote the origin of the unique $\bar{C}_{i} C_{i+1}$-path by v_{i} and the terminus by u_{i}. We shall also denote the path $C_{i}\left(u_{i}, v_{i}\right)$ by P_{i}. Note that P_{i} is a $C_{i} C_{i+1}$-path. Suppose to the contrary that S is not even. Then we have the following
two cases to consider.
CASE 1. $n=3$.
In this case, let e_{1} be the edge of P_{0} incident on v_{0}, let e_{2} be the other edge of C_{0} incident on v_{0} and let e_{3} be the other edge of C_{1} incident on v_{0}. Thus $e_{1} \notin E C_{2}$, and e_{2}, e_{3} cannot both belong to $E C_{2}$. Thus if $v_{0} \in V C_{2}$ then the degenerate path with vertex set $\left\{v_{0}\right\}$ is either a $C_{0} C_{2}-$ path or a $C_{1} C_{2}$-path. Since there must be a nondegenerate such path, the elegance of S is contradicted. Thus $v_{0} \not V C_{2}$ and similarly $u_{0} \vDash V C_{2}$. It is now immediate that $C_{0} \cup C_{1} \cup C_{2}$ is a subdivision of $K_{3,3}$, a contradiction to the planarity of G.

CASE 2. $n \geq 5$.
In this case, the graph

$$
\begin{array}{r}
\bigcup_{k=0}^{n-2}\left[c_{k+1}\left(v_{k}, u_{k+1}\right) \cup c_{k+1}\left(v_{k+1}, u_{k}\right)\right] \cup c_{0}\left(v_{n-1}, u_{0}\right) \\
\qquad c_{0}\left(v_{0}, u_{n-1}\right) \cup P_{0} \cup P_{1} \cup P_{2}
\end{array}
$$

is a subdivision of $K_{3,3}$, again a contradiction to the planarity of G. The proof of Lemma 5 is therefore complete.

3. The proof

If a graph G is non-planar, by Lemma l, it contains a subgraph homeomorphic to K_{5} or $K_{3,3}$. Hence, by Lemma 2, G contains an odd strict elegant ring.

Conversely, assume that G is planar. Let $S=\left(C_{0}, C_{1}, \ldots, C_{n-1}\right)$ be any strict elegant ring in G. We need only to prove that S is even. First, let $P(G)$ be a planar embedding of G and $P^{*}(G)$ the polygonextension of G with respect to $P(G)$. For each i and each x in $V C_{i}$, we denote by x^{*} the $\operatorname{set}\{(x, e),(x, f)\}$ where e, f are the two edges of C_{i} incident on x. Let $C_{i}^{*}=U\left(x^{*} \mid x \in V C_{i}\right)$. Then, by Lemma 4, C_{i}^{*} forms a circuit in $P^{*}(G)$. Let $S^{*}=\left(C_{0}^{*}, C_{1}^{*}, \ldots, C_{n-1}^{*}\right)$.

Evidently, S^{*} is a ring in $P^{*}(G)$. The elegance of S^{*} follows immediately from that of S. We shall show that S^{*} is a perfect ring. Indeed, let C_{i}^{*}, C_{j}^{*} be any two circuits in S^{*} with $E C_{i}^{*} \cap E C_{j}^{*}=\emptyset$. Then $E C_{i} \cap E C_{j}=\varnothing$. If $V C_{i} \cap V C_{j}=\varnothing$, then it follows from our constructions that $V C_{i}^{*} \cap V C_{j}^{*}=\emptyset$. On the other hand, if $V C_{i} \cap V C_{j}$ is not empty, then, by the strictness of S, it must be a singleton. Let $V C_{i} \cap V C_{j}=\{x\}$. Now if $V C_{i}^{*} \cap V C_{j}^{*} \neq \emptyset$, let $(y, e) \in V C_{i}^{*} \cap V C_{j}^{*}$. Then, $y \in V C_{i} \cap V C_{j}$ and so $y=x$. Also $e \in E(x) \cap E C_{i} \cap E C_{j} \subseteq E C_{i} \cap E C_{j}=\emptyset$, a contradiction. Thus in any case, we must have $V C_{i}^{*} \cap V C_{j}^{*}=\emptyset$, showing the S^{*} is a perfect ring. Since $P^{*}(G)$ is planar, by Lemma 5, S^{*} is even (that is, n is even). Hence S is even, as required.

References

[1] Casimir Kuratowski, "Sur le problème des courbes gauches en topologie", Fund. Math. 15 (1930), 271-283.
[2] Charles H.C. Little, "A conjecture about circuits in planar graphs", Combinatorial Mathematics III, 171-175 (Lecture Notes in Mathematics, 452. Springer-Verlag, Berlin, Heidelberg, New York, 1975).
[3] D.A. Holton and C.H.C. Little, "Elegant odd rings and non-planar graphs", Proceedings of the Eighth Australian Conference in Combinatorial Mathematics (to appear).

Department of Mathematics,
National University of Singapore,
Bukit Timah Road,
Singapore 1025,
Republic of Singapore.

