ON TWO PROBLEMS CONCERNING THE GENERALIZED LOTOTSKY TRANSFORMS

AMRAM MEIR

1. The generalized Lototsky transform (or the $\left[F, d_{n}\right]$ transform) of a sequence $\left\{s_{n}\right\}$ into a sequence $\left\{t_{n}\right\}$ was defined in (2) in the following way: Let $\left\{d_{n}\right\}\left(d_{n} \neq-1\right)$ be a fixed complex sequence and let

$$
\begin{equation*}
\prod_{k=1}^{n} \frac{d_{k}+x}{d_{k}+1}=\sum_{m=0}^{n} c_{n m} x^{m} \tag{1.1}
\end{equation*}
$$

then the sequence $\left\{t_{n}\right\}$ is defined by

$$
t_{n}=\sum_{m=0}^{n} c_{n m} s_{m}, \quad n=1,2, \ldots
$$

In a recent paper by V. F. Cowling and C. L. Miracle (1) on these transformations, the following two problems were left open.

Denote

$$
\begin{equation*}
d_{n}=\rho_{n} e^{i \theta_{n}}, \quad n=1,2, \ldots, \tag{1.2}
\end{equation*}
$$

where $-\pi<\theta_{n} \leqslant \pi$, and $\rho_{n}>0$.
In (1, Theorem 3.1) it is proved that if

$$
\sum_{n=1}^{\infty} \rho_{n}^{-1}=+\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \theta_{n}^{2} \rho_{n}{ }^{-1}<+\infty,
$$

then the $\left[F, d_{n}\right]$ transformation is regular. The authors left open the question:
(i) Do

$$
\begin{equation*}
\sum_{n=1}^{\infty} \rho_{n}{ }^{-1}=+\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \theta_{n}=0 \tag{1.3}
\end{equation*}
$$

imply the regularity of the $\left[F, d_{n}\right]$ transform? We shall prove here that this question is to be answered in the negative. We shall show even more, namely that there exists a sequence $\left\{d_{n}\right\}$, such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \rho_{n}{ }^{-1}=+\infty, \quad \lim _{n \rightarrow \infty} \theta_{n}=0 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{2+\epsilon} \rho_{n}^{-1}<+\infty \tag{1.5}
\end{equation*}
$$

for every $\epsilon>0$, and the $\left[F, d_{n}\right]$ transformation is not regular.

Received November 30, 1962.

In (1, Theorems 2.2 and 2.3) it is proved that if

$$
\sum_{n=1}^{\infty} \rho_{n}=\infty, \quad \pi \geqslant \theta_{n} \geqslant \alpha>0 \text { or }-\pi<\theta_{n} \leqslant-\alpha<0 \text { for } n \geqslant N
$$

then the $\left[F, d_{n}\right]$ transformation is not regular. The authors left open the question: (ii) Does there exist a sequence $\left\{d_{n}\right\}$ such that θ_{n} does not tend to zero and the $\left[F, d_{n}\right]$ transformation is regular? We shall show that the answer is affirmative.

2. Proofs.

(i) Let

$$
\begin{equation*}
d_{n}=e^{i \theta_{n}}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{n}=\left(\frac{\log (n+1)}{n}\right)^{\frac{1}{2}}, \quad n=1,2, \ldots \tag{2.2}
\end{equation*}
$$

Clearly (1.4) and (1.5) hold.
Suppose that the $\left[F, d_{n}\right]$ transformation defined by the squence (2.1) is regular. Then there exists a constant $H<+\infty$ independent of n such that

$$
\begin{equation*}
\sum_{m=0}^{n}\left|c_{n m}\right| \leqslant H, \quad n=1,2, \ldots \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|d_{n}\right|=1, \quad n=1,2, \ldots \tag{2.1}
\end{equation*}
$$

Thus from (2.3) for $n \geqslant 1$

$$
\begin{equation*}
H \geqslant \sum_{m=0}^{n}\left|c_{n m}\right|=\sum_{m=0}^{n}\left|c_{n m}\right|\left|d_{n}\right|^{m} \geqslant\left|\sum_{m=0}^{n} c_{n m} d_{n}{ }^{m}\right| . \tag{2.5}
\end{equation*}
$$

By (1.1) and (2.1), this is equal to

$$
\prod_{m=1}^{n}\left|\frac{e^{i \theta_{m}}+e^{i \theta_{n}}}{e^{i \theta_{m}}+1}\right| \geqslant \prod_{m=1}^{n}\left\{1+\sin \frac{1}{2} \theta_{n} \sin \left(\theta_{m}-\frac{1}{2} \theta_{n}\right)\right\}^{\frac{1}{2}}
$$

The sequence $\left\{\theta_{n}\right\}$ being monotonic, this is

$$
\geqslant n^{\frac{1}{2}} \sin \frac{1}{2} \theta_{n} \sim \frac{1}{2}(\log n)^{\frac{1}{2}} .
$$

Therefore (2.5) yields a contradiction when $n \rightarrow \infty$ and the $\left[F, d_{n}\right.$] transform under consideration is not regular.
(ii) Let

$$
d_{n}=\left\{\begin{array}{ll}
i, & \text { if } n=2 k, \tag{2.6}\\
-i, & \text { if } n=2 k-1,
\end{array} \quad k=1,2, \ldots\right.
$$

where $i=\sqrt{ }(-1)$.
We have by (1, (2.2)) that

$$
\begin{equation*}
c_{2 \nu, 2 \mu+1}=0, \quad \nu, \mu=0,1,2, \ldots \tag{2.7}
\end{equation*}
$$

and thus by (2, (1.2))

$$
\begin{equation*}
\left|c_{2 v+1,2 \mu+1}\right|+\left|c_{2 v+1,2 \mu}\right|=\sqrt{ } 2 .\left|c_{2 v, 2 \mu}\right|, \quad \nu, \mu=0,1, \ldots \tag{2.8}
\end{equation*}
$$

By (1, (2.2)), it follows that

$$
\begin{equation*}
\left|c_{2 \nu, 2 \mu}\right|=\binom{\nu}{\mu} 2^{-\nu}, \quad \nu, \mu=0,1, \ldots \tag{2.9}
\end{equation*}
$$

By (2.7), (2.8), and (2.9)

$$
\begin{gathered}
\lim _{n \rightarrow \infty} c_{n m}=0, \quad m=0,1, \ldots \\
\sum_{m=0}^{n}\left|c_{n m}\right| \leqslant \sqrt{ } 2, \quad n=0,1, \ldots
\end{gathered}
$$

and since by definition

$$
\sum_{m=0}^{n} c_{n m}=1, \quad n=0,1, \ldots
$$

the regularity of the [F, d_{n}] transformation defined by (2.6) follows. Clearly, θ_{n} does not tend to zero.
3. Remarks. We use this occasion to point out that the paper of V. F. Cowling and C. L. Miracle (1) contains a few inexact statements.
(i) Theorem 2.2 is not true without the further condition that

$$
\sum_{n=1}^{\infty} \rho_{n}=+\infty .
$$

Take, for example, $d_{n}=i n^{-2}(n \geqslant 1)$; it is easy to see that the sufficient conditions of Jakimovski (2) for regularity of the $\left[F, d_{n}\right]$ transformation are satisfied.
(ii) The above-mentioned example shows also that Theorem 2.4 is true only if

$$
\sum_{n=1}^{\infty} \rho_{n}=+\infty
$$

(iii) Theorem 2.3 is not true without the same condition concerning the sequence $\left\{d_{n}\right\}$. Take, for example, $d_{n}=-i n^{-2}(n \geqslant 1)$.
(iv) In the proof of Theorem 3.1 (p. 425) the authors state that

$$
\sum_{n=1}^{\infty} \theta_{n}{ }^{2} \rho_{n}{ }^{-1}<+\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \rho_{n}{ }^{-1}=+\infty
$$

imply that

$$
\lim _{n \rightarrow \infty} \theta_{n}=0
$$

But this is not true in general. Take, for example, $\theta_{n}=1$ for $n=2^{k}(k \geqslant 1)$, $\theta_{n}=0$ otherwise, and $\rho_{n}=n(n \geqslant 1)$.

At the end of the same proof the authors state that the assumption

$$
\sum_{n=1}^{\infty} \rho_{n}{ }^{-1}=+\infty
$$

implies that

$$
\sum_{j=N}^{\infty} \rho_{j}\left(1+\rho_{j}\right)^{-2}=+\infty
$$

but this is true only if

$$
\sum_{j=1}^{\infty} \rho_{j}=+\infty
$$

(v) In the proof of Theorem 4.1 after formula (4.5), the authors state that

$$
\lim _{n \rightarrow \infty} \theta_{n}=0,
$$

but this does not follow from the conditions, as the example mentioned in (iv) shows.
(vi) In Corollary 4.1 the authors state that the conditions imply that

$$
\lim _{n \rightarrow \infty} \theta_{n}=0,
$$

which is not true in general. Take, for example, $\rho_{n}=n(n \geqslant 1) ; \theta_{n}=1$ if $n=2^{k}(k \geqslant 0)$ and $\theta_{n}=1 /(\log n)$ otherwise.
(vii) In the Introduction the authors state that the sufficient conditions proved in Theorem 3.1 include as special case Theorem 3.1 of Jakimovski's paper (2). The real relation is the opposite. Namely, if

$$
\sum_{n=1}^{\infty} \theta_{n}^{2} \rho_{n}^{-1}<+\infty
$$

is satisfied, then by easy consideration we obtain that also

$$
\prod_{n=1}^{\infty} \frac{1+\left|d_{n}\right|}{\left|1+d_{n}\right|} \leqslant H<+\infty
$$

is satisfied; thus, together with

$$
\sum_{n=1}^{\infty} \rho_{n}{ }^{-1}=+\infty
$$

the regularity of the $\left[F, d_{n}\right]$ transformation follows by Jakimovski's theorem. Conversely, from Theorem 3.1 of (1) one cannot prove Jakimovski's conditions as the example $d_{n}=i n^{-2}(n \geqslant 1)$ shows.

References

1. V. F. Cowling and C. L. Miracle, Some results for the generalized Lototsky transform, Can. J. Math., 14 (1962), 418-435.
2. A. Jakimovski, A generalization of the Lototsky method of summability, Mich. Math. J. (1959), 277-290.

The Hebrew University, Jerusalem, Israel

