
Impact of Gravitational Lensing on Cosmology
Proceedings IAU Symposium No. 225, 2004
Mellier, Y. & Meylan,G. eds.

c© 2004 International Astronomical Union
doi:10.1017/S1743921305001936

Strong & Weak Lensing United: the Cluster
Mass Distribution of RX J1347−1145
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Abstract. Weak gravitational lensing is considered to be one of the most powerful tools to
study the mass and the mass distribution of galaxy clusters. However, the mass-sheet degen-
eracy transformation has limited its success. We present a novel method for a cluster mass
reconstruction, which combines weak and strong lensing information on common scales and can
as a consequence break the mass-sheet degeneracy. We extend the weak lensing formalism to the
inner parts of the cluster, use redshift information of background sources and combine these with
the constraints from multiple image systems. We apply the method to N-body simulations as
well as to strong and weak lensing ground-based multi-colour data of RX J1347−1145, the most
X-ray luminous cluster known to date. If the redshift measurements of background sources (for
strong and weak lensing) and the identification of the multiple-image system are correct, we es-
timate the enclosed cluster mass within 360h−1kpc to M(< 360h−1kpc) = (1.2±0.3)×1015M�.
With higher resolution (e.g. HST) imaging data, reliable multiple imaging information could be
obtained and the reconstruction further improved.

1. Introduction
Clusters of galaxies have long been recognised as excellent laboratories for many cos-

mological studies. In particular, reliable mass-estimates are important since they provide
constraints on the structure formation paradigm.

We use a combined strong and weak lensing mass reconstruction to determine the mass
and the mass distribution of clusters. We reconstruct the gravitational potential ψ, since
it locally determines both the lensing distortion (for weak lensing) as well as deflection
(for strong lensing). The method extends the idea from Bartelmann et al. (1996); Seitz
et al. (1998). Its novel feature is that we extend the weak lensing treatment to the
critical parts of the cluster (i.e. κ � 1) and directly include strong lensing information.
In addition we use redshift information of the individual background sources and the
source(s) being multiply imaged. This allows us to break the mass-sheet degeneracy
and accurately measure the cluster mass and mass-distribution. The method is tested
using simulations and applied to observational weak and strong lensing data of the cluster
RX J1347−1145. In these proceedings we only briefly describe the method and the results,
the full work will be published elsewhere (Bradač et al. 2004a,b).

2. The cluster mass reconstruction method
The main idea behind the method is to parametrise the cluster mass-distribution by

a set of model parameters, where this parametrisation is chosen as generic as possible.
The most straightforward way is to use the gravitational potential ψ on a regular grid.
We then define a penalty function χ2 and minimise it with respect to the values of ψk.

155

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921305001936
Downloaded from https://www.cambridge.org/core. IP address: 34.204.175.38, on 19 Sep 2019 at 21:05:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1743921305001936
https://www.cambridge.org/core


156 Bradač et al.

The convergence κ, shear γ and the deflection angle �α at an arbitrary position in the
field are obtained by finite differencing and bilinear interpolation methods. The number
of grid points we use for ψk is (Nx +2)× (Ny +2); the extention by one row and column
at each side is needed to be able to perform the finite differencing at each inner Nx ×Ny

grid point.
We define the χ2-function as follows

χ2(ψk) = χ2
ε(ψk) + χ2

M(ψk) + ηR(ψk) . (2.1)

χ2
ε(ψk) contains information from statistical weak lensing, whereas in χ2

M(ψk) we include
the multiple imaging properties. R(ψk) is a regularisation term multiplied by the regular-
isation parameter η. The regularisation is a linear function of the potential and disfavours
any small-scale fluctuations in the potential.

In order to find the minimum χ2 solution, we consider

∂χ2(ψk)
∂ψk

= 0 . (2.2)

This is in general a non-linear set of equations, we solve it in an iterative manner. We
linearise this system and starting from some trial solution we repeat the procedure until
convergence. Inverting the resulting matrix of ∼ N2

dim elements for finding a solution
of linear system is difficult in general even for grids with small number of grid cells.
However, as it turns out, the resulting matrix is sparse and it is therefore computationally
inexpensive to solve the system.

Note, however, that the dimensionality of the problem is not (Nx + 2) × (Ny + 2).
Because the transformation ψ(�θ) → ψ(�θ)+ψ0+�a·�θ leaves κ and γ invariant, and therefore
the potential needs to be fixed at three points (see Seitz et al. 1998; Bartelmann et al.
1996). In addition, the transformation ψ(�θ) → ψ(�θ) + �a · �θ changes the deflection angle
�α, however it only causes a translation of the source plane, which is not an observable.
Therefore, even in the presence of strong lensing, three points of the potential need to be
held fixed. Our ultimate aim is to make a reliable estimate for the cluster mass, therefore
the mass-sheet degeneracy needs to be lifted. Hence in contrast to Seitz et al. (1998) the
potential ψk is not held fixed at an additional fourth point. The dimensionality of the
problem is thus Ndim = (Nx + 2)(Ny + 2) − 3.

Since the minimisation of χ2
ε can lead to a potential that reconstructs the noise in the

data, the solution needs to be regularised. Even without the measurement errors, the
intrinsic ellipticities would still produce pronounced small-scale peaks in the final recon-
struction. Motivated by the success of a moving prior in maximum-entropy distribution
(Seitz et al. 1998), we choose a very simple prescription for the regularisation function.
We start off by a relatively coarse grid, since if Ndim is much smaller than the number
of galaxies, the resulting reconstruction will not be able to follow the noise pattern. We
then gradually increase the number of grid points and compare the resulting surface mass
density map κ(n) with that from the previous iteration κ(n−1) linearly interpolated on a
finer grid, thus

R =
Nx,Ny∑
i,j=1

(
κ

(n)
ij − κ

(n−1)
ij

)2

. (2.3)

For the case of n = 0 we use an initial guess for κ which can in practice be obtained
from strong lensing, direct finite-field reconstruction, parametrised model fitting to weak
lensing data, or simply set to a constant. This form of regularisation is relatively easy to
implement and efficient in penalising the small-scale fluctuations in κ. If enough iteration
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steps are used it does not affect the mass-sheet degeneracy, since the information on the
initial κ(0) is lost and the initial guess can not bias the results.

3. Testing the reconstruction method using simulations
To generate the mock catalogues we use a cluster from the high-resolution N-body

simulation by Springel et al. (2001). The cluster we use is taken from the S4 simulation
(for details see the aforementioned paper). We constructed the mock catalogues that
closely follow the quality of the data (i.e. number density, redshift distribution, errors on
ellipticity measurements) we use in the next section. The two different type of catalogues
thus have the spatial and redshift distribution equal to the I and R-band catalogues of
RX J1347−1145. We generate a quadruply imaged system at a redshift of zs = 1.76 and
use it in the strong lensing constraints for the reconstruction. The image positions and
the original κ-map (for the cluster at a redshift of zd = 0.4) are given in Fig. 1a, the
reconstructed κ is given in Fig. 1b.

(a) (b)

Figure 1. a) The surface mass density κ (for a fiducial source at zs → ∞ of the simulated cluster
used to generate mock catalogues. The stars in a) denote the image positions of a four-image
system at zs = 1.76 we use for the reconstruction. b) The reconstructed κ-map (for a fiducial
source at zs → ∞) from Ng = 210 galaxies following the properties of the weak lensing catalogue

used in Sect. 4. Here we use the initial conditions on κ(0) from strong lensing.

From the reconstructed maps we have also estimated the mass within the radius of
1.′5 (340h−1 kpc) around the cluster centre. For this purpose we generated 10 mock
catalogues for each band and did the reconstruction again with three different initial
conditions. All the mass estimates are similar; note, however, that the two galaxy cata-
logues have galaxy positions and redshifts partly in common and the errors are therefore
correlated. We find the enclosed mass of the simulated cluster to be (1.0±0.1)×1015M�,
which is very close to the input value of Ms(< 340h−1 kpc) = 0.99 × 1015M�. The er-
ror has been estimated from the variance of mass determinations form different mock
catalogues. The results show that our method is effectively able to break the mass-sheet
degeneracy and is, as a consequence, very efficient in reproducing the cluster mass also
at radii different from the Einstein radius of the cluster. Note that a single multiple-
image system does not by itself break this degeneracy, since the transformation does
not affect the image positions (and the same is true for the magnification ratios). We
would need at least two different redshift multiple image systems to break the mass-sheet
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degeneracy with strong lensing data alone. It is also very encouraging that the results
are independent of the initial κ(0) used for the regularisation.

Unfortunately we can not resolve both clumps present in the simulations. This is
due to the fact that the number density of background sources is low and the internal
smoothing scale (i.e. the average distance between two source galaxies) is large; with a
number density of ∼ 100/arcmin2 the clumps can be easily resolved.

4. Cluster mass reconstruction of RX J1347−1145
In this section we present the mass modelling of the most X-ray-luminous cluster

RX J1347−1145 (Schindler et al. 1995). Due to its record holding this cluster has been a
subject of many studies in X-rays, optical as well as at radio (mm) frequencies. Unfortu-
nately studies based on X-ray properties, SZ-effect, velocity dispersion measures, strong
and weak lensing have yielded discrepant results for the mass estimate (see e.g. Cohen
& Kneib 2002 for a summary).

Encouraged by the success of the tests of our cluster mass reconstruction method, we
apply it to VLT/FORS data on the field of 3.8 × 3.8 arcmin2 in UBVRI bands. These
five colours were also used for the photometric redshift estimates of the source galaxies in
weak lensing. In addition, we use J and H-band data from SOFI and K-band data from
ISAAC to improve the photometric redshift estimates for the strong lensing candidates
(in the inner regime of the cluster).

4.1. Multiple image systems of RX J1347−1145
Thus far, five arcs have been reported in the cluster. The first two were discovered
by Schindler et al. (1995), and HST images revealed three additional arcs (Sahu et al.
1998). Unfortunately, these five arcs (A1-A5 as labelled by Sahu et al. 1998) do not
belong to the same multiple image system. However two of them (A4 and A5) do have
the same colours and we consider them to belong to the same multiply imaged system.
Based on the colours and surface brightness of the images in the field we find a possible
candidate counter image which we include in the analysis. Using 8 colours for the redshift
determination of A4-A5 and 5 colours for the counter image (it is located at the edge of
the J, H, and K-band images and therefore the photometry is not reliable) we find all
three images are consistent with being at a redshift of zs � 1.76.

To obtain κ(0) we fit a non-singular isothermal ellipse model to the strong lensing data.
In addition to the image positions, we also use image ellipticities as constraints. We allow
the centre of the potential �θcl, the scaling b0, ellipticity |εg|, and position angle rc,nis to
vary. Following the prescription of Kneib et al. (1996) we also include the ten brightest
cluster members (selected according to their I-band magnitude and having photometric
redshifts estimate between 0.4 and 0.5) to the model. They have been modelled as non-
singular isothermal spheres with line-of-sight velocity dispersion σnis and core radius
rc,nis following σnis ∝ L1/4 and rc,nis ∝ L1/2. We stress, however, that the only aim of
this modelling was to obtain the initial model for κ(0). Therefore we also do not include
additional strong lensing candidates; for them one would need good redshift information.
The multiple-image system described here will be further included in the combined strong
and weak lensing reconstruction described in the next section.

4.2. Combined weak and strong lensing mass reconstruction of RX J1347−1145
Finally we apply our mass-reconstruction method to the I and R-band weak lensing
data of a redshift zd = 0.451 cluster RX J1347−1145 consisting of Ng = 210 and Ng =
145 galaxies respectively. In addition we use the multiply imaged system described in
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Sect. 4.1. We use three different initial models for κ(0); IM comes from the best-fit model
from the strong lensing analysis of the cluster, the IS model is the best-fit SIS model
to binned tangential ellipticities (centred on the brightest cluster member) and I0 has
κ(0) = 0. The regularisation parameter was set to η = 400(200) in all three cases for I
and R-band respectively.

The resulting κ-maps for the IM initial model for I and R band weak lensing data are
given in Fig. 2. We determine the enclosed mass within a radius of 1.′5 (for zd = 0.45
corresponding to 360h−1 kpc) for both bands and all three initial model as follows:

IM: MI = 1.46 × 1015M� and MR = 1.36 × 1015M�
IS: MI = 1.19 × 1015M� and MR = 1.19 × 1015M�
I0: MI = 1.10 × 1015M� and MR = 1.03 × 1015M�

We estimate the mass of the cluster to be M(< 360 h−1kpc) = (1.2 ± 0.3) × 1015M�.
The error and the differences between reconstructions with different initial models are
larger than in the case of simulated images. This is mostly attributed to the fact that we
only use a three-image system. In addition, when computing the redshifts for the mock
catalogues we did not include the outliers (i.e. galaxies with redshift estimates which can
be wrong by more than factor 2). However, within the given error the results for both
bands and for different initial models are consistent.

The resulting mass is larger than obtained by velocity dispersion measurements of
Cohen & Kneib (2002). It is, however, consistent with X-ray data by Allen et al. (2002)
and the previous weak-lensing results by Fischer & Tyson (1997). We note however,
that our results depend upon the correct redshift determination and identification of the
members of the multiple image system we use. If we put the multiple image system to a
redshift of ∼ 3 (∼ 1.3) the estimated mass decreases(increases) by ∼ 10%. If the images
do not belong to the same system, the changes might be even more drastic. However, at
least for the two arcs A4 and A5 we consider this possibility unlikely.

Figure 2. Left I-band and right R-band reconstructed κ-maps obtained using weak and strong
lensing data of the cluster RX J1347−1145 with known photometric redshifts. We use the best-fit
model from the strong lensing analysis of the cluster for κ(0). The regularisation parameter was
set to η = 400 for I and η = 200 for the R-band data. The positions of 10 brightest cluster
members (in I-band) are plotted as white circles.

5. Conclusions
We have developed a potential reconstruction method to determine the cluster mass

and mass-distribution that uses the combined constraints from weak and strong lensing.
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We test the method on simulated data and conclude that it is very successfully in recon-
structing the cluster mass and mass distribution. We determine the enclosed mass within
340h−1 kpc of the simulated cluster to be (1.0 ± 0.1) × 1015M�, which is very close to
the input value of Ms(< 340h−1 kpc) = 0.99×1015M�. With the data quality we use we
are therefore effectively able to break the mass-sheet degeneracy and therefore obtain the
mass and mass-distribution estimates without prior assumptions on the lensing potential.

In the second part we apply the method to the weak and strong lensing data of
RX J1347−1145 and reach the following conclusions.

(a) The combined reconstruction confirms that the most X-ray luminous cluster is
indeed very massive. If the redshift and identification of the multiple-image system is
correct we estimate the enclosed cluster mass within 360 h−1kpc to M(< 360 h−1kpc) =
(1.2 ± 0.3) × 1015M�.

(b) The reconstruction shows a south-east mass extension, comparable to the X-ray
measurements and a possible north-west one.

The mass-reconstruction of RX J1347−1145 can be significantly improved. Deep HST
imaging would greatly help in identifying and confirming new multiple-image systems
that we can use, thus allowing even more detailed modelling. In addition, not only the
centre of the light for each of the arcs can be used as constraints, but also their mor-
phology. The reconstruction technique with an adaptive grid at the image positions can
be used for these purposes and will be a subject of future work. Further, spectroscopic
redshifts need to be obtained for the multiple-image system candidates. Deep, wide-field
imaging data of this cluster will help us improve the weak lensing constraints and the
reconstruction can be performed at larger radii than presented here.

The method has thus shown a high potential for the future. If highest-quality data
is used (higher number density of background sources and additional multiply imaged
systems), a combination of strong and weak lensing has proven to offer a unique tool
to pin down the masses of galaxy-clusters as well as their profiles and accurately test
predictions within the CDM framework.
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Bradač, M., Schneider, P., Erben, T., & Lombardi. 2004a, in prep.
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