
13 
Asymptotic freedom 

and dimensional transmutation 

In this chapter we return to the weak coupling limit of non-Abelian gauge 
theories. At the level of tree Feynman diagrams, relativistic field theory 
has no divergences and thus needs no renormalization. The bare coupling 
acquires cutoff dependence only after divergent one-loop diagrams are 
encountered. This implies that in the perturbative limit of our gauge theory 
of quarks and gluons 

y(go) = O(g~). (13.1) 

At the outset we know that one zero of the renormalization group function 
occurs at vanishing coupling. For this root to be ultraviolet attractive and 
therefore useable for a continuum limit requires a positive sign for the first 
non-vanishing term in this perturbative expansion. Politzer (1973) and 
Gross and Wilczek (1973a, b) first calculated the relevant term for non
Abelian gauge theories. Defining the coefficients Yo and Yl from the 
asymptotic series 

(13.2) 

we have the result for SU(n) gauge theory with n, fermionic species 

Yo = (1/167r2)(lln/3-2ntf3). 
Thus as long as 

n, < Iln/2, 

(13.3) 

(13.4) 

the fixed point at the origin can potentially give a continuum limit. The 
two-loop contribution (Caswell, 1974; Jones, 1974) is 

Yl = (1/167r2)2(34n2/3-lOnn,/3-nt<n2-1)/n). (13.5) 

Although in general y(go) is scheme dependent, these first two terms in 
its perturbative expansion are not. Consider two different schemes both 
defining a bare coupling as a function of cutoff: go(a) and g~(a). In the weak 
coupling limit each formulation should reduce to the classical Yang-Mills 
theory, and thus to lowest order they must agree 

g~ = go+c~+O(g3), } (13.6) 

go = g~-cg~3+0(g~o). 
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We now calculate the new renormalization group function 

y'(g~) = a(d/da)g~ = (ag~/ago)y(go) 
= (1 +3cg~)(YO~+Yl.ro)+O(g~) 

= Yog~3+Ylg~5+0(g~7). (13.7) 

To order g~5 all dependence on the parameter c cancels. 
Thus far our discussion of the renormalization group has been in terms 

of the bare charge in the theory with a cutoff in place. This is a natural 
procedure in the lattice theory; however, the renormalization group is still 
useful in the continuum theory if we define a finite renormalized coupling 
constant. Like the generic physical function H of the last chapter, a 
renormalized coupling is first of all an observable which remains finite in 
the continuum limit 

lim gR(r, a, go(a» = gR(r). (13.8) 
4-+0 

In general, the renormalized coupling g R retains a dependence on the scale 
r of its definition. The masses and radii of the physical particles determine 
the typical dimensions for this dependence. 

Secondly, to be properly called a renormalization of the classical 
coupling, gR should be normalized such that it reduces to the bare coupling 
in lowest order perturbation theory when the cutoff is still in place. 

gR(r,a,go) = go+O~). (13.9) 

Beyond this, the definition of gR is totally arbitrary. In particular, given 
any physical observable H satisfying the perturbative expansion 

H(r,a,go) = ho+hlg~+O~), (13.10) 

we can define a renormalized coupling 

gh(r) = (H-ho}fh1• (13.11) 

For perturbative purposes one often uses a renormalized three-gluon 
vertex with all legs at a given scale of momentum, representing the inverse 
of the scale r, and with a gauge fixing imposed. 

In the continuum limit it should be possible to re-express physical 
observables such as H in terms of renormalized quantities. The renorm
alized perturbation expansion then takes the form 

H(r,r',gR(r'» = ho+hld+O(g1z). (13.12) 

Here r represents the scale on which H is defined and r' is the scale used 
to define the renormalized coupling. In general the coefficients in this series 
will differ from those in eq. (13.10); however to second order they 
agree. As r' is selected for convenience, changing its value should not 
alter real physical observables. This gives rise to the usual continuum 
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renormalization-group equation 

r'(djdr')H(r,r',gR(r'» = 0 = r'(ajar')H+"IR(gR)H. (13.13) 

Here we have introduced the renormalized renormalization-group 
function (13.14) 

We can now draw a remarkable connection between this renormal
ization-group function and the one defined earlier for the bare coupling. 
When the cutoff is still in place, gR is a function of the scale r, the cutoff 
a, and the bare coupling go 

gR = gR(r,a,go)· 

However, since we are working with a dimensionless coupling, gR can 
depend directly on r and a only through their ratio. This simple application 
of dimensional analysis implies 

r(ojor)gR = -a(ajoa)gR. (13.15) 

Now, as we renormalize the theory, gR should become a function of r alone 
as a goes to zero, and we have 

(13.16) 

Using the above equations and an analysis similar to that in eq. (13.7), 

we find "IR(gR) = "IOg1+"I1g~+O(gk). (13.17) 

The renormalized and bare "I functions have the same first two terms in 
their perturbative expansions. Indeed, it was through consideration of the 
renormalized coupling that "10 and "11 were first calculated. 

Far from the weak coupling region, there is no simple relationship 
between the bare and renormalized "I functions. Perverse definitions (or not 
so perverse; see problem 1) of the renormalized coupling can lead to zeros 
in "IR which have no counterpart in the bare quantities. 

The perturbative expansion of "IR has important experimental conse
quences. If we consider the continuum limit to be taken at go = 0, and if 
gR is ever small enough that the first terms dominate in eq. (13.17), then 
the renormalized coupling itself will be driven to zero as r becomes small. 
Not only does the bare coupling vanish, but any effective coupling becomes 
arbitrarily weak when the scale of measurement decreases. This is the 
physical implication of asymptotic freedom; phenomena involving only 
short-distance effects may be accurately described with the perturbative 
expansion. Indeed, asymptotically free gauge theories were first invoked 
for the strong interactions as an explanation of the apparently free parton 
behavior manifested in the structure functions of deeply inelastic scattering 
of leptons from hadrons. 
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Returning to the bare renormalization-group function, we wish to 
investigate how rapidly go decreases with cutoff. Separating the variables 
in the form d 

3 g~ O(g7) = d(loga), (13.18) 
YOgO+YlgO+ 0 

we can integrate to obtain the result 

gil2 = Yolog(a-2Ao2)+(ydYo)log(log(a-2Ao2)+O(g~». (13.19) 

Here the parameter Ao represents a constant of integration. This equation 
indicates the well-known logarithmic decrease of the coupling with scale. 
The subscript on Ao is to remind us that it has been defined from the bare 
charge and with the Wilson lattice cutoff. For the renormalized coupling, 
this equation should be rewritten for gR with the cutoff a replaced by r 
and with a possibly different integration constant AR • 

The constant appearing upon integration of the renormalization-group 
equation represents a yardstick for measurement of the scales of the strong 
interactions. Its value is scheme dependent as can be seen by considering 
two different bare couplings related as in eq. (13.6). From the analog of 
eq. (13.19) for g~ with its own A~, we see 

10g(ANA~) = c/yo, (13.20) 

where c is the parameter appearing in eq. (13.6). Thus, perturbation theory 
relates the values of Ao in two different schemes. Furthermore, this requires 
only a one-loop calculation even though two loops were needed to define 
Ao through eq. (19). 

Hasenfratz and Hasenfratz (1980) were the first to perform the necessary 
one-loop calculations to relate Ao and A R . Defining the renormalized 
coupling from the three-gluon vertex in the Feynman gauge and with all 
legs carrying momentum p2 = ,-2, they found 

AR/Ao = { 57.5,SU(2) } 
83.5, SU(3), 

(13.21) 

for the pure gauge theory. Note that not only is A scheme dependent, but 
that different definitions can vary by rather large factors. The original 
calculation of these numbers was rather tedious, involving intermediate 
definitions of the coupling and evaluation of one-loop diagrams with the 
lattice regulator. These numbers have been verified with calculationally 
more efficient techniques based on a study of the quantum fluctuations 
around a slowly varying classical background field (Dashen and Gross, 
1981). These calculations have been extended to other lattice actions and 
to theories with fermions (Weisz, 1981; Kawai, Nakayama and Seo, 1981). 

We have been discussing the bare coupling as a function of the lattice 
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spacing. A useful alternative considers the coupling as a parameter which 
determines the cutoff. Inverting eq. (13.19), we have 

a = Ao1(g~ Yo)-Yl/(2Y~) exp ( -lj(2y~~»)(1 + O(g8». (13.22) 

Note the essential singularity at vanishing bare coupling. The perturbative 
renormalization group is about to give us non-perturbative information. 
Multiplying by the corresponding mass, we can obtain the weak coupling 
dependence of a correlation length on the lattice 

ma = ;-1 = (mjAo)(gho)-Yl/(2Y~)exp( -lj(2Yog8»)(1 +O(g~». (13.23) 

If m is the mass of a physical particle and remains finite in the continuum 
limit, then its value in units of Ao is given by the coefficient of the weak 
coupling dependence indicated in eq. (13.23). 

For the above discussion we could elect to work with the correlation 
length between operators which select any desired set of quantum numbers, 
such as spin, parity, etc. Thus the mass of any particle in units of Ao is 
the coefficient of the weak coupling dependence of some correlation 
function, as in eq. (13.23). Furthermore, Ao is universal, determined solely 
by the initial cutoff scheme. It will drop out of any dimensionless ratio of 
masses, which is then determined uniquely by the theory. This brings us 
to the remarkable conclusion that for pure gauge fields the strong 
interactions have no free parameters. The cutoff is absorbed into go(a), 

which in turn is absorbed into the renormalization-group dependence of 
eq. (13.23). The only remaining dimensional parameter is 1\0, which merely 
sets the scale for all other masses. In a theory considered in isolation, one 
may define Ao to be unity. Coleman and Weinberg (1973) have given this 
process, wherein a dimensionless parameter go and a dimensionful one a 

manage to 'eat' each other, the marvelous name' dimensional transmu
tation '. 

In the theory including quarks, their masses represent new parameters. 
Indeed these are the only parameters in the theory ofthe strong interactions. 
In the limit where the bare quark masses vanish, referred to as the chiral 
limit, we return to a zero parameter theory. In this approximation to the 
physical world, the pion mass is expected to vanish and all dimensionless 
observables should be uniquely determined by the theory. This applies not 
only to mass ratios, such as of the rho mass to the proton, but as well to 
quantities such as the pion-nucleon coupling constant, once regarded as 
a parameter for a perturbative expansion. As the chiral approximation has 
been rather successful in the predictions of current algebra, we hope that 
eventually we may develop the techniques to calculate these quantities. If 
they seriously disagree with experiment, the theory is wrong because there 
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are no parameters to adjust. Given a qualitative agreement, a fine tuning 
of the small quark masses should give the pion its mass and complete the 
theory. 

The exciting idea of a parameter-free theory is sadly lacking from 
treatments of the other interactions such as electromagnetism or the weak 
force. There the coupling a = 1/137 is treated as a parameter. One might 
optimistically hope for inclusion of the appropriate non-perturbative ideas 
into a grand unified scheme ultimately rendering a and the quark and 
lepton masses calculable. 

The renormalization group is indeed a rich subject. We have only 
touched on a few uses which we will find valuable in later chapters. Perhaps 
the most remarkable result of this chapter is that a perturbative analysis 
ofthe renormalization-group function can give important non-perturbative 
conclusions, such as eq. (13.23). 

Problems 

1. Define gk(r) to be proportional to r2 times the force between two 
quarks separated by a distance r. Argue that the corresponding 
renormalization-group function in the full theory of strong interactions 
including quark loops must exhibit a zero at non-vanishing gR' 

2. Show that the Yl term in eq. (13.19) is needed to properly define 

Ao· 

https://doi.org/10.1017/9781009290395.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290395.014



