Block idempotents and the Brauer correspondence

Jon F. Carlson

Let H be a subgroup of a finite group G. In this paper the Brauer correspondence between blocks of H and blocks of G is characterized in terms of a relationship among the block idempotents.

Let R be an integral domain (commutative with unit element) satisfying the ascending chain condition on ideals. Suppose that N, the radical of R, is a principal ideal $(N = (\pi))$ and that $R^* = R/N$ satisfies the descending chain condition on ideals. Let N contain a rational prime $p = 1 + 1 + \ldots + 1$. Assume that R is complete with respect to the topology induced by N. Then either $\pi = 0$ in which case $R = R^*$ is a field of characteristic p, or R is a complete discrete valuation ring.

Let G be a finite group with a subgroup H. Let R(G) denote the group algebra of G with coefficients in R. Then R(H) is a subalgebra of R(G). Let Z(G) and Z(H) denote the centers of R(G) and R(H), respectively. If E is a primitive idempotent in Z(G) the block B = B(E) is the collection of all (right) R(G)-modules V with $VE \approx V$. To each primitive idempotent E in Z(G) there is associated a linear character $\psi : Z(G) \rightarrow R^*$ with $\psi(E) = 1^*$ and $\psi(F) = 0^*$ for any primitive idempotent $F \neq E$ in Z(G). We shall assume that R^* is a splitting field for $R^*(G)$ and for $R^*(H)$. Then the linear characters on Z(G) and Z(H) will be in one-to-one correspondence with the primitive idempotents in Z(G) and Z(H) respectively (see [2]). We shall write

Received 8 June 1971.

337

 $B \leftrightarrow E \leftrightarrow \psi$ where B is the block of R(G) corresponding to the primitive idempotent in E in Z(G) and ψ is the character of Z(G) associated to E.

For any
$$\alpha = \sum_{g \in G} a_g g$$
 in Z(G), let

$$\Theta(\alpha) = \sum_{g \in H} a_g g .$$

Then θ : $Z(G) \rightarrow Z(H)$ is an *R*-module homomorphism.

DEFINITION. Let $b \leftrightarrow e \leftrightarrow \lambda$ be a block of R(H). If the map $\psi = \lambda \circ \theta : Z(G) \rightarrow R^*$ is a linear character of Z(G) corresponding to a block $B \leftrightarrow E \leftrightarrow \psi$ of R(G), then we say that $b^G = B$ is defined. The correspondence sending b to b^G is called the Brauer correspondence.

Let radZ(H) denote the radical of Z(H). We can now state the main result of this paper.

THEOREM. Let $B \leftrightarrow E \leftrightarrow \psi$ and $b \leftrightarrow e \leftrightarrow \lambda$ be blocks of R(G) and R(H) respectively. Then $b^G = B$ if and only if $\theta(F)e$ is in the radical of Z(H) for every primitive idempotent $F \neq E$ in Z(G).

Proof. Let K_1, \ldots, K_s be the conjugate classes of G. The ring Z(G) has an *R*-basis consisting of the elements $\hat{K}_1, \ldots, \hat{K}_s$ where

$$\hat{K}_i = \sum g \quad (g \in K_i)$$

In the same way if L_1, \ldots, L_t are the conjugate classes in H then $\hat{L}_1, \ldots, \hat{L}_t$ span Z(H). Let A = A(G : H) be the *R*-algebra generated by the class sums $\hat{K}_1, \ldots, \hat{K}_g$ and $\hat{L}_1, \ldots, \hat{L}_t$. That is, A is the minimal subalgebra of R(G) which contains both Z(G) and Z(H). The products $\hat{K}_i \hat{L}_j$ $(i = 1, \ldots, s, j = 1, \ldots, t)$ span A as an *R*-algebra.

The map θ can be easily extended to a map $\theta' : A \to Z(H)$ given by

$$\Theta'(\hat{k}_i\hat{L}_j) = \Theta(\hat{k}_i)\hat{L}_j = \left(\sum_{i}\hat{L}_k\right)\hat{L}_j \quad (i = 1, \ldots, s; j = 1, \ldots, t) ,$$

where the sum is over those k with $L_k \subseteq K_i$. θ' is the projection of

A onto Z(H).

Suppose $b^G = B$. Let F be any primitive idempotent in Z(G) with $F \neq E$. If $f \leftrightarrow \phi$ is any primitive idempotent in Z(H) with $f \neq e$ then fe = 0 and $\phi(\theta(F)e) = 0$. Also $\lambda(\theta(F)e) = \lambda \circ \theta(F) = \psi(F) = 0$. Since $\theta(F)e$ is in the kernel of every linear character on Z(H) it is in the radical of Z(H).

Conversely suppose that $\theta(F)e$ is in $\operatorname{rad}Z(H)$ for every primitive idempotent F in Z(G) with $F \neq E$. Let $E = E_1, E_2, \ldots, E_m$ be all of the primitive idempotents in Z(G). Then $E_1^*, E_2^*, \ldots, E_m^*$ are all of the primitive idempotents in $Z^*(G) = Z(G)/(\pi)Z(G)$. Since $\sum_{i=1}^m E_i^* = 1^*$, we

have that $e^* = \sum_{i=1}^{m} E_i^* e^*$. Now for any j = 1, ..., s,

$$\hat{k}_{j}^{*}e^{*} = \sum_{i=1}^{m} K_{j}^{*}E_{i}^{*}e^{*} = \sum_{i=1}^{m} \psi_{i}(\hat{k}_{j})E_{i}^{*}e^{*}$$

where $E_i \leftrightarrow \psi_i$. Then

$$\begin{split} \lambda \left(\theta \left(\hat{k}_{j} \right) \right) e^{*} &\equiv \theta \left(\hat{k}_{j}^{*} \right) e^{*} \equiv \theta' \left(\hat{k}_{j}^{*} e^{*} \right) \\ &\equiv \psi \left(\hat{k}_{j} \right) \theta' \left(E^{*} e^{*} \right) \\ &\equiv \psi \left(\hat{k}_{j} \right) e^{*} \mod \left(\operatorname{rad} Z^{*} (H) \right) \end{split}$$

since $e^* = \theta'(e^*) = \theta'\left(\sum_{\mathcal{L}} E_{\mathcal{L}}^* e^*\right) \equiv \theta'(E^*e^*) \mod (\operatorname{rad} Z^*(H))$. Hence $\lambda \circ \theta = \psi$ on Z(G).

COROLLARY. Let $B \leftrightarrow E \leftrightarrow \psi$ and $b \leftrightarrow e \leftrightarrow \lambda$ be blocks of R(G)and R(H) respectively. If b^G is defined then $b^G = B$ if and only if $\theta(E)e \equiv e \mod(\operatorname{rad}Z(H))$.

This follows directly from the theorem since if E_1, \ldots, E_s are all of the primitive idempotents in Z(G) then

$$e = \theta'(e) = \theta'\left(\sum E_i e\right) = \sum \theta(E_i)e$$
.

REMARK 1. The condition $\theta(E)e \equiv e \mod(\operatorname{rad}_{Z}(H))$ is not sufficient to guarantee that b^{G} is defined. For example let $G = \langle x | | x^{3} = 1 \rangle$, $H = \{1\}$, and $R = Z_{2}[\alpha]$, the algebraic extension of the field with two elements by an element α with $\alpha^{2} + \alpha + 1 = 0$. Then the elements $E_{1} = 1 + x + x^{2}$, $E_{2} = 1 + \alpha x + \alpha^{2}x^{2}$, and $E_{3} = 1 + \alpha^{2}x + \alpha x^{2}$ are all of the idempotents in Z(G). But e = 1 is the only idempotent in Z(H)and $\theta(E_{1})e = \theta(E_{2})e = \theta(E_{3})e = e$.

REMARK 2. If *H* is a normal subgroup of *G* then $B = b^G$ if and only if Ee = e (see [4]).

REMARK 3. Using these results it is easy to prove the well known result that if $b^G = B$ then any defect group of b is conjugate to a subgroup of some defect group of B (see [1]). For suppose Z(G : H)denotes the centralizer of H in R(G). If D is a defect group of bthen by [3] the R-subalgebra $Z_D(G : H)$, spanned by those class sums of conjugate-in-H elements of G with defect groups conjugate to subgroups of D, is an ideal in Z(G : H). Since $\theta(E)e \equiv e \mod(\operatorname{rad} Z(H))$ it is clear that some defect group of B must contain D.

References

- [1] Richard Brauer, "Zur Darstellungstheorie der Gruppen endlicher Ordnung. II", Math. Z. 72 (1959), 25-46.
- [2] Walter Feit, Representations of finite groups, Part I (Mimeographed Notes, Yale University, New Haven, 1969).
- [3] Masaru Osima, "Notes on blocks of group characters", Math. J. Okayama Univ. 4 (1955), 175-188.
- [4] D.S. Passman, "Blocks and normal subgroups", J. Algebra 12 (1969), 569-575.

Department of Mathematics, University of Georgia, Athens, Georgia, USA.

340