J. Austral. Math. Soc. (Series A) 64 (1998), 136-148

COMPACT TOEPLITZ OPERATORS ON WEIGHTED HARMONIC BERGMAN SPACES

KAREL STROETHOFF

(Received 30 August 1996; revised 15 August 1997)

Communicated by A. H. Dooley

Abstract

We consider the Bergman spaces consisting of harmonic functions on the unit ball in \mathbb{R}^n that are squareintegrable with respect to radial weights. We will describe compactness for certain classes of Toeplitz operators on these harmonic Bergman spaces.

1991 Mathematics subject classification (Amer. Math. Soc.): 47B35, 47B38.

1. Introduction

Let $n \ge 2$ be a fixed integer. We use the notation $B = \{x \in \mathbb{R}^n : |x| < 1\}$ and $S = \partial B = \{x \in \mathbb{R}^n : |x| = 1\}$. Let σ denote the rotation-invariant area measure on S, normalized so that $\sigma(S) = 1$. If u is harmonic on B, then u has the mean value property

(1.1)
$$u(y) = \int_{S} u(y + r\zeta) \, d\sigma(\zeta),$$

whenever the ball $B(y, r) \subset B$. For $-1 < \alpha < \infty$ let $dV_{\alpha}(x) = (1 - |x|^2)^{\alpha} dV(x)$, where V denotes Lebesgue volume measure on \mathbb{R}^n . The harmonic Bergman space $b^{2,\alpha}(B)$ is the space of all harmonic functions u which are in $L^2(B, V_{\alpha})$. Integrating (1.1) with respect to r we obtain

$$u(y) = \frac{1}{V_{\alpha}(B(y,r))} \int_{B(y,r)} u(x) dV_{\alpha}(x),$$

© 1998 Australian Mathematical Society 0263-6115/98 \$A2.00 + 0.00

The author was partially supported by grants from the Montana University System and the University of Montana.

whenever $B(y, r) \subset B$. Consequently, if u is harmonic on B, then

(1.2)
$$|u(y)| \leq \frac{1}{V_{\alpha}(B(y,r))^{1/2}} \left(\int_{B(y,r)} |u(x)|^2 dV_{\alpha}(x) \right)^{1/2}$$

(1.3)
$$\leq \frac{1}{V_{\alpha}(B(y,r))^{1/2}} \|u\|.$$

whenever $B(y, r) \subset B$. Inequality (1.3) implies that $b^{2,\alpha}(B)$ is a closed subspace of $L^2(B, V_{\alpha})$, thus a Hilbert space. We denote the orthogonal projection of $L^2(B, V_{\alpha})$ onto $b^{2,\alpha}(B)$ by Q_{α} . For $f \in L^{\infty}(B)$ the *Toeplitz operator* $T_f : b^{2,\alpha}(B) \to b^{2,\alpha}(B)$ is defined by

$$T_f u = Q_{\alpha}[f u], \qquad u \in b^{2,\alpha}(B).$$

The operator T_f is clearly bounded on $b^{2,\alpha}(B)$: $||T_f|| \le ||f||_{\infty}$. For certain classes of symbols we will describe when these operators are compact.

2. Preliminaries

Inequality (1.3) shows that for fixed $y \in B$ the linear functional $u \mapsto u(y)$ is bounded on $b^{2,\alpha}(B)$. By the Riesz-Fischer Theorem, there exists a unique function $R_{\alpha}(\cdot, y) \in b^{2,\alpha}(B)$ for which

(2.1)
$$u(y) = \langle u, R_{\alpha}(\cdot, y) \rangle, \qquad u \in b^{2,\alpha}(B).$$

The mapping R_{α} is called the *harmonic Bergman kernel* of $b^{2,\alpha}(B)$. Note that the projection operator Q_{α} is the integral operator with kernel R_{α} :

(2.2)
$$Q_{\alpha}[f](y) = \int_{B} f(x) R_{\alpha}(x, y) \, dV_{\alpha}(x),$$

for $f \in L^2(B, V_\alpha)$ and $y \in B$. The Bergman kernel is easily expressed in terms of the so-called zonal harmonics. We recall some terminology before we define these zonal harmonics.

A polynomial on \mathbb{R}^n is homogeneous of degree *m* (or *m*-homogeneous) if it is a finite linear combination of monomials $x_1^{k_1} \cdots x_n^{k_n}$, where k_1, \cdots, k_n are non-negative integers such that $k_1 + \cdots + k_n = m$. Note that a polynomial p on \mathbb{R}^n is homogeneous of degree *m* if and only if $p(tx) = t^m p(x)$ for all $x \in \mathbb{R}^n$ and all $t \in \mathbb{R}$. The space $\mathscr{H}_m(S)$ of restrictions to S of harmonic homogeneous polynomials of degree *m*, the so-called *spherical harmonics* of degree *m*, is a (finite-dimensional) Hilbert space with respect to the usual inner product on $L^2(S, d\sigma)$, where σ denotes the normalized surface-area measure on S. For each $\xi \in S$ the linear functional $p \mapsto p(\xi)$ on

the space $\mathscr{H}_m(S)$ is uniquely represented by a harmonic *m*-homogeneous polynomial $Z_m(\cdot, \xi)$, called the zonal harmonic of degree *m* at ξ . Extending Z_m to a function on $\mathbb{R}^n \times \mathbb{R}^n$ by setting $Z_m(x, y) = |y|^m Z_m(x, y/|y|)$, and using that each zonal harmonic $Z_m(\cdot, \xi)$ is real valued (see [1, pp. 78–79]) we have

(2.3)
$$\int_{S} p(\zeta) Z_{m}(\zeta, y) \, d\sigma(\zeta) = p(y)$$

for every harmonic m-homogeneous polynomial p. Spherical harmonics of distinct degrees are orthogonal, that is,

(2.4)
$$\int_{S} p \,\bar{q} \, d\sigma = 0$$

if p and q are harmonic homogeneous polynomials of distinct degree. If p is an m-homogeneous harmonic polynomial, then, using integration by polar-coordinates,

$$\int_{B} p(x)Z_{m}(x, y) dV_{\alpha}(x) = nV(B) \int_{0}^{1} r^{n-1} \int_{S} p(r\zeta)Z_{m}(r\zeta, y) d\sigma(\zeta)(1-r^{2})^{\alpha} dr$$
$$= nV(B)p(y) \int_{0}^{1} r^{n+2m-1}(1-r^{2})^{\alpha} dr$$
$$= \frac{n}{2}V(B)p(y) \frac{\Gamma(\frac{n}{2}+m)\Gamma(\alpha+1)}{\Gamma(\frac{n}{2}+m+\alpha+1)}.$$

It follows that

(2.5)
$$R_{\alpha}(x, y) = \frac{2}{nV(B)} \sum_{m=0}^{\infty} \frac{\Gamma(\frac{n}{2} + m + \alpha + 1)}{\Gamma(\frac{n}{2} + m)\Gamma(\alpha + 1)} Z_m(x, y).$$

Using that $Z_m(y, y) = h_m |y|^{2m}$, where h_m denotes the dimension of the space $\mathscr{H}_m(S)$ (see [1, page 80]), we get

$$R_{\alpha}(y, y) = \frac{2}{nV(B)} \sum_{m=0}^{\infty} \frac{\Gamma(\frac{n}{2} + m + \alpha + 1)}{\Gamma(\frac{n}{2} + m)\Gamma(\alpha + 1)} h_m |y|^{2m}.$$

The numbers h_m can be expressed in terms of binomial coefficients:

(2.6)
$$h_m = \binom{n+m-2}{n-2} + \binom{n+m-3}{n-2},$$

for $m \ge 1$ (see [1, page 94]), and it is easily shown that $h_m \sim 2m^{n-2}/(n-2)!$ as $m \to \infty$. By Stirling's formula, $\Gamma(m+c)/m! \sim m^{c-1}$ as $m \to \infty$, for all c > 0. Using \approx to denote that the ratio of two quantities is bounded above and below by constants independent of the variable, we thus have $(\Gamma(\frac{n}{2}+m+\alpha+1)/\Gamma(\frac{n}{2}+m))h_m \approx \Gamma(m+n+\alpha)/m!$, and conclude that

(2.7)
$$R_{\alpha}(y, y) \approx \frac{1}{(1-|y|^2)^{n+\alpha}}.$$

3. Compact Toeplitz operators with continuous symbols

In this section we will describe compactness of Toeplitz operators on the harmonic Bergman spaces $b^{2.\alpha}(B)$ with uniformly continuous symbols. Our results generalize those recently obtained by Miao [4] for Toeplitz operators on the unweighted harmonic Bergman space ($\alpha = 0$). Miao made use of the explicit formula for the reproducing kernel of the unweighted harmonic Bergman space given in [1, Chapter 8]. For weighted harmonic Bergman spaces no such formula is available, and we will use a different approach to obtain estimates on the reproducing kernels.

PROPOSITION 3.1. Let $-1 < \alpha < \infty$. If $f \in L^{\infty}(B)$ has compact support, then T_f is compact on $b^{2,\alpha}(B)$.

PROOF. If $f \in L^{\infty}(B)$ is supported in $\rho \overline{B}$, where $0 < \rho < 1$, then

$$\int_{B} \int_{B} |f(x)| |R_{\alpha}(x, y)|^{2} dV(x) dV(y) \leq ||f||_{\infty} \int_{\rho B} R_{\alpha}(y, y) dV(y) < \infty.$$

so T_f is Hilbert-Schmidt on $b^{2,\alpha}(B)$.

PROPOSITION 3.2. Let $-1 < \alpha < \infty$. In $b^{2,\alpha}(B)$ we have $R_{\alpha}(\cdot, y)/||R_{\alpha}(\cdot, y)|| \to 0$ weakly as $|y| \to 1^-$.

PROOF. Using the reproducing property and (2.7) we have

$$\|R_{\alpha}(\cdot, y)\|^{2} = \langle R_{\alpha}(\cdot, y), R_{\alpha}(\cdot, y) \rangle = R_{\alpha}(y, y) \approx \frac{1}{(1 - |y|^{2})^{n + \alpha}}$$

It is easily verified that $V_{\alpha}(B(y, (1 - |y|)/2) \approx (1 - |y|)^{n+\alpha}$. So, if $u \in b^{2,\alpha}(B)$, then it follows with the help of (1.2) that

$$\left|\left\langle u, \frac{R_{\alpha}(\cdot, y)}{\|R_{\alpha}(\cdot, y)\|}\right\rangle\right| \leq C \left(\int_{B(y, (1-|y|)/2)} |u(x)|^2 dV_{\alpha}(x)\right)^{1/2}$$

and thus $\langle u, R_{\alpha}(\cdot, y) / || R_{\alpha}(\cdot, y) || \rangle \to 0$ as $|y| \to 1^-$.

For $-1 < \alpha < \infty$ and $f \in L^{\infty}(B)$ define the *Berezin transform* \tilde{f} of f by

$$\tilde{f}(y) = \left\langle T_f \frac{R_{\alpha}(\cdot, y)}{\|R_{\alpha}(\cdot, y)\|}, \frac{R_{\alpha}(\cdot, y)}{\|R_{\alpha}(\cdot, y)\|} \right\rangle, \quad y \in B.$$

Note that even though this is not reflected in the notation, \tilde{f} does depend upon α . Clearly, $|\tilde{f}(y)| \le ||T_f|| \le ||f||_{\infty}$, for all $y \in B$.

If T_f is compact on $b^{2,\alpha}(B)$, then T_f maps weakly null sequences to norm null sequences, so that by Proposition 3.2, $||T_f(R_\alpha(\cdot, y)/||R_\alpha(\cdot, y)||)|| \to 0$ as $|y| \to 1^-$, and thus $\tilde{f}(y) \to 0$ as $|y| \to 1^-$. We do not know whether the converse is true in general. In the next section we will prove that the converse holds if f is a radial function. Let $C_0(B)$ denote the subalgebra of $C(\bar{B})$ consisting of all continuous functions g on B such that $g(y) \to 0$ as $|y| \to 1^-$. For uniformly continuous symbols we have the following result.

THEOREM 3.3. Let $-1 < \alpha < \infty$ and $f \in C(\overline{B})$. Then: T_f is compact on $b^{2,\alpha}(B)$ if and only if $f \in C_0(B)$.

In the proof we will need the following lemma.

LEMMA 3.4. Let $-1 < \alpha < \infty$. If $0 < \delta < 1$, then there exists a finite positive number C_{δ} such that $|R_{\alpha}(x, y)| \leq C_{\delta}$ whenever $x, y \in B$ are such that $|x - y| \geq \delta$.

PROOF. If k is an integer, then it follows from [2, Lemma 3.2] that there exists a finite number C such that $|R_k(x, y)| \le C/(1-2x \cdot y+|x|^2|y|^2)^{(n+k)/2}$, for all $x, y \in B$. Since $1-2x \cdot y+|x|^2|y|^2 = |x-y|^2 + (1-|x|^2)(1-|y|^2) > |x-y|^2$, we obtain

(3.5)
$$|R_k(x, y)| \le \frac{C}{|x-y|^{n+k}},$$

for all $x, y \in B$, and the stated result follows with $C_{\delta} = C/\delta^{n+k}$.

Suppose $k - 1 < \alpha < k$, where $k \ge 0$ is an integer. Using (2.5) it is easy to verify that

(3.6)
$$R_{\alpha}(x, y) = \frac{k!}{\Gamma(\alpha+1)\Gamma(k-\alpha)} \int_0^1 2t^{n+2\alpha+1} R_k(tx, ty)(1-t^2)^{k-\alpha-1} dt.$$

If $x, y \in B$ are such that $|x - y| \ge \delta$ it follows from (3.6) and (3.5) that

$$\begin{aligned} |R_{\alpha}(x, y)| &\leq \frac{k!}{\Gamma(\alpha+1)\Gamma(k-\alpha)} \int_0^1 2t^{n+2\alpha+1} |R_k(tx, ty)| (1-t^2)^{k-\alpha-1} dt \\ &\leq \frac{k!}{\Gamma(\alpha+1)\Gamma(k-\alpha)} \frac{2C}{\delta^{n+k}} \int_0^1 t^{2\alpha-k+1} (1-t^2)^{k-\alpha-1} dt. \end{aligned}$$

So the constant $C_{\delta} = C\Gamma(\alpha - \frac{k}{2} + 1)k!/(\delta^{n+k}\Gamma(\alpha + 1)\Gamma(\frac{k}{2} + 1))$ works.

PROOF OF THEOREM 3.3. The implication using $f \in C_0(B)$ follows easily from Proposition 3.1.

To prove the other implication we need only show that $\tilde{f} - f \in C_0(B)$. Using Lemma 3.4 and the observation that

$$\tilde{f}(y) - f(y) = \frac{1}{R_{\alpha}(y, y)} \int_{\mathcal{B}} (f(x) - f(y)) R_{\alpha}(x, y)^2 dV_{\alpha}(x)$$

we get

$$\begin{split} |\tilde{f}(y) - f(y)| &\leq \frac{1}{R_{\alpha}(y, y)} \int_{B} |f(x) - f(y)| R_{\alpha}(x, y)^{2} dV_{\alpha}(x) \\ &\leq \omega(\delta) \frac{1}{R_{\alpha}(y, y)} \int_{B(y, \delta)} R_{\alpha}(x, y)^{2} dV_{\alpha}(x) + \frac{2C_{\delta}^{2} \|f\|_{\infty}}{R_{\alpha}(y, y)} \\ &\leq \omega(\delta) + C_{\delta}'(1 - |y|^{2})^{n + \alpha} \|f\|_{\infty}, \end{split}$$

where $\omega(\delta) = \sup\{|f(x) - f(z)| : x, z \in B, |x - z| < \delta\}$. Letting $|y| \to 1^-$ we obtain

$$\limsup_{|y| \to 1^{-}} |\tilde{f}(y) - f(y)| \le \omega(\delta),$$

for each $0 < \delta < 1$. Since $f \in C(\overline{B})$, $\omega(\delta) \to 0$ as $\delta \to 0^+$ we conclude that $\tilde{f}(y) - f(y) \to 0$ as $|y| \to 1^-$.

If $\mathscr{L}(b^{2,\alpha}(B))$ denotes the Banach algebra of all bounded linear operators on $b^{2,\alpha}(B)$, and \mathscr{K} denotes the ideal of compact operators in $\mathscr{L}(b^{2,\alpha}(B))$, then the essential spectrum of an operator T in $\mathscr{L}(b^{2,\alpha}(B))$, denoted by $\sigma_e(T)$, is the spectrum of the operator $T + \mathscr{K}$ in the Calkin algebra $\mathscr{L}(b^{2,\alpha}(B))/\mathscr{K}$.

THEOREM 3.7. Let $-1 < \alpha < \infty$ and $f \in C(\overline{B})$. The essential spectrum of the operator T_f on $b^{2,\alpha}(B)$ is $\sigma_c(T_f) = f(S)$.

In the proof of the above theorem we will make use of Hankel operators. For $f \in L^{\infty}(B)$ the Hankel operator $H_f : b^{2,\alpha}(B) \to L^2(B, dV_{\alpha})$ is defined by $H_f u = (I - Q_{\alpha})[fu], u \in b^{2,\alpha}(B)$. In [5] it was shown that for every $f \in C(\overline{B})$ the Hankel operator H_f is compact on $b^{2,\alpha}(B)$. The following identity gives a simple relationship between Toeplitz and Hankel operators:

(3.8)
$$T_{fg} - T_f T_g = H_{\bar{f}}^* H_g,$$

for $f, g \in L^{\infty}(B)$.

PROOF OF THEOREM 3.7. We first show that $f(S) \subset \sigma_e(T_f)$. Suppose $\xi = f(\zeta)$, with $\zeta \in S$. We claim that $T_{f-\xi}$ cannot be left-invertible in the Calkin algebra, so that $\xi \in \sigma_e(T_f)$. To prove this claim we first observe that the argument in the proof of

Theorem 3.3 shows that $\|(f - f(y))R_{\alpha}(\cdot, y)/\|R_{\alpha}(\cdot, y)\|\| \to 0$ as $|y| \to 1^-$, and thus $\|T_{f-\xi}R_{\alpha}(\cdot, y)/\|R_{\alpha}(\cdot, y)\|\| \to 0$ as $y \to \zeta$ in *B*. If *T* is a bounded linear operator on $b^{2,\alpha}(B)$, then

$$\left\langle (I - TT_{f-\xi}) \frac{R_{\alpha}(\cdot, y)}{\|R_{\alpha}(\cdot, y)\|}, \frac{R_{\alpha}(\cdot, y)}{\|R_{\alpha}(\cdot, y)\|} \right\rangle = 1 - \left\langle T_{f-\xi} \frac{R_{\alpha}(\cdot, y)}{\|R_{\alpha}(\cdot, y)\|}, \frac{T^*R_{\alpha}(\cdot, y)}{\|R_{\alpha}(\cdot, y)\|} \right\rangle \to 1$$

as $y \to \zeta$ in *B*. It follows that $TT_{f-\xi} - I$ cannot be compact on $b^{2,\alpha}(B)$, proving our claim.

To complete the proof we show that if $\xi \in \mathbb{C} \setminus f(S)$, then $T_{f-\xi}$ is invertible in the Calkin algebra. Suppose $\xi \notin f(S)$. Then there are 0 < r < 1 and $g \in C(\overline{B})$ such that $(f - \xi)g = 1$ on $\overline{B} \setminus B(0, r)$. The function $h = 1 - (f - \xi)g$ is compactly supported, so by Proposition 3.1, T_h is compact on $b^{2,\alpha}(B)$. Using (3.8) we have

$$T_{f-\xi}T_g = T_{(f-\xi)g} - H^*_{\bar{f}-\bar{\xi}}H_g = I - T_h - H^*_{\bar{f}}H_g.$$

By [5, Theorem 4.3], the operator $H_{\tilde{f}}^*H_g$ is compact, thus $T_h + H_{\tilde{f}}^*H_g \in \mathcal{K}$, and consequently $T_{f-\xi}$ is right-invertible in the Calkin algebra. That $T_{f-\xi}$ is also left-invertible in the Calkin algebra is proved similarly.

COROLLARY 3.9. Let $-1 < \alpha < \infty$. If $f \in C(\overline{B})$, then the essential norm of T_f on $b^{2,\alpha}(B)$ is given by $||T_f||_e = \sup_{\zeta \in S} |f(\zeta)|$.

PROOF. By (3.8), $T_f^*T_f - T_fT_f^* = H_f^*H_f - H_f^*H_f$ is compact on $b^{2,\alpha}(B)$. Thus $T_f + \mathcal{K}$ is normal in the Calkin algebra, so that its norm is equal to its spectral radius, and the stated result follows from Theorem 3.7.

4. Compact Toeplitz operators with radial symbols

Korenblum and Zhu [3] proved that for a radial symbol the Toeplitz operator on the Bergman space of analytic functions on the unit disk is compact precisely when its Berezin transform vanishes near the unit circle. In [6] the author generalized Korenblum and Zhu's result to the setting of weighted Bergman spaces of analytic functions on the unit ball in \mathbb{C}^n . The following theorem shows that the analogous result holds for Toeplitz operators on weighted harmonic Bergman spaces.

THEOREM 4.1. Let $-1 < \alpha < \infty$ and let f be a bounded measurable radial function on B. Then: T_f is compact on $b^{2,\alpha}(B)$ if and only if $\tilde{f} \in C_0(B)$.

The proof of Theorem 4.1 makes use of the following lemma.

LEMMA 4.2. If f is a bounded measurable radial function on B, then each homogeneous harmonic polynomial of degree m is an eigenvector of T_f with eigenvalue given by

(4.3)
$$\lambda_m = \frac{\Gamma(\frac{n}{2} + m + \alpha + 1)}{\Gamma(\frac{n}{2} + m)\Gamma(\alpha + 1)} \int_0^1 2r^{n+2m-1}\varphi(r)(1 - r^2)^{\alpha} dr$$

where φ is a bounded measurable function on [0, 1), for which $f(x) = \varphi(|x|)$, for all $x \in B$.

PROOF. If p is an *m*-homogeneous harmonic polynomial, then, using (2.3), (2.4) and (2.5),

$$\int_{S} p(\zeta) R_{\alpha}(r\zeta, y) \, d\sigma(\zeta) = \frac{2\Gamma(\frac{n}{2} + m + \alpha + 1)}{nV(B)\Gamma(\frac{n}{2} + m)\Gamma(\alpha + 1)} r^{m} p(y)$$

and thus we have

$$\begin{split} (T_f p)(y) &= \int_B f(x) p(x) R_\alpha(x, y) \, dV_\alpha(x) \\ &= n V(B) \int_0^1 r^{n+m-1} \varphi(r) \int_S p(\zeta) R_\alpha(r\zeta, y) \, d\sigma(\zeta) (1-r^2)^\alpha \, dr \\ &= p(y) \frac{\Gamma(\frac{n}{2}+m+\alpha+1)}{\Gamma(\frac{n}{2}+m)\Gamma(\alpha+1)} \int_0^1 2r^{n+2m-1} \varphi(r) (1-r^2)^\alpha \, dr, \end{split}$$

establishing the proof.

As in Korenblum and Zhu's argument, we will need a Tauberian theorem. The following lemma follows from a classical result of Hardy and Littlewood (see [6]).

LEMMA 4.4. Let $0 < v < \infty$, and let (b_m) be a sequence of complex numbers for which $\sup\{|(m+1)b_m - mb_{m-1}| : m > 1\} < \infty$. Then:

$$(1-t)^{\nu+1} \sum_{m=0}^{\infty} \frac{\Gamma(m+\nu+1)}{m! \, \Gamma(\nu+1)} \, b_m t^m \to 0 \quad as \quad t \to 1^-$$

if and only if $b_m \to 0$ as $m \to \infty$.

PROOF OF THEOREM 4.1. If $f(x) = \varphi(|x|)$, for all $x \in B$, where φ is a bounded measurable function on [0, 1), then integrating by polar coordinates, using (2.5) and (2.4), it is readily verified that

$$\tilde{f}(y) = \frac{1}{R_{\alpha}(y, y)} \sum_{m=0}^{\infty} \frac{\Gamma(\frac{n}{2} + m + \alpha + 1)}{\Gamma(\frac{n}{2} + m)\Gamma(\alpha + 1)} h_m \lambda_m |y|^{2m},$$

where λ_m is as in (4.3).

Now, suppose $\tilde{f}(y) \to 0$ as $|y| \to 1^-$. Using (2.7) we get

(4.5)
$$(1 - |y|^2)^{n+\alpha} \sum_{m=0}^{\infty} \frac{\Gamma(\frac{n}{2} + m + \alpha + 1)}{\Gamma(\frac{n}{2} + m)\Gamma(\alpha + 1)} h_m \lambda_m |y|^{2m} \to 0$$

as $|y| \to 1^-$. We will use Lemma 4.4 to prove that $\lambda_m \to 0$ as $m \to \infty$. We first show that $\sup\{m|\lambda_m - \lambda_{m-1}| : m \ge 1\} < \infty$. Rewriting the integrand in the integral in (4.3) using $r^2\varphi(r) = \varphi(r) - \varphi(r)(1 - r^2)$, it is easily seen that

$$\lambda_{m} = \frac{n+2m+2\alpha}{n+2m-2} \lambda_{m-1} + \frac{\Gamma(\frac{n}{2}+m+\alpha+1)}{\Gamma(\frac{n}{2}+m)\Gamma(\alpha+1)} \int_{0}^{1} 2r^{n+2m-3}\varphi(r) (1-r^{2})^{\alpha+1} dr,$$

thus

$$\lambda_{m} - \lambda_{m-1} = \frac{2(1+\alpha)}{n+2m-2}\lambda_{m-1} + \frac{\Gamma(\frac{n}{2}+m+\alpha+1)}{\Gamma(\frac{n}{2}+m)\Gamma(\alpha+1)}\int_{0}^{1} 2r^{n+2m-3}\varphi(r) (1-r^{2})^{\alpha+1} dr,$$

and the claim follows from the estimate

$$\left| \int_{0}^{1} 2r^{n+2m-3}\varphi(r) (1-r^{2})^{\alpha+1} dr \right| \leq \|\varphi\|_{\infty} \int_{0}^{1} 2r^{n+2m-3} (1-r^{2})^{\alpha+1} dr$$
$$= \|f\|_{\infty} \frac{\Gamma(\frac{n}{2}+m-1)\Gamma(\alpha+2)}{\Gamma(\frac{n}{2}+m+\alpha+1)}.$$

Write

$$\frac{\Gamma(\frac{n}{2}+m+\alpha+1)}{\Gamma(\frac{n}{2}+m)\Gamma(\alpha+1)}h_m\lambda_m=\frac{\Gamma(m+n+\alpha)}{m!\,\Gamma(n+\alpha)}\,b_m.$$

Then

$$(m+1)b_m - mb_{m-1} = \{(m+1)a_m - ma_{m-1}\}\lambda_m + m(\lambda_m - \lambda_{m-1})a_{m-1}$$

where the a_m are given by

$$a_m = \frac{m! \Gamma(n+\alpha)}{\Gamma(m+n+\alpha)} \frac{\Gamma(\frac{n}{2}+m+\alpha+1)}{\Gamma(\frac{n}{2}+m)\Gamma(\alpha+1)} h_m.$$

It follows that the b_m satisfy the condition of Lemma 4.4 once we show that the $(m + 1)a_m - ma_{m-1}$ are bounded. A calculation shows that

$$(m+1)a_{m} - ma_{m-1} = \frac{(m+1)! \Gamma(n+\alpha)\Gamma(\frac{n}{2}+m+\alpha+1)}{\Gamma(m+n+\alpha)\Gamma(\frac{n}{2}+m)\Gamma(\alpha+1)} (h_{m} - h_{m-1}) + \frac{(3-n)m + (n+\alpha)(2-\frac{n}{2}) - 1}{(m+n+\alpha-1)(\frac{n}{2}+m-1)} \frac{m! \Gamma(n+\alpha)\Gamma(\frac{n}{2}+m+\alpha)}{\Gamma(m+n+\alpha-1)\Gamma(\frac{n}{2}+m-1)\Gamma(\alpha+1)} h_{m-1}.$$

144

It follows easily from (2.6) that

$$h_m - h_{m-1} = \frac{(n+2m-2)(n-1)}{m(m-1)} \frac{(n+m-4)!}{(m-2)!(n-2)!},$$

for $m \ge 2$, thus $h_m - h_{m-1} \approx m^{n-3}$. Recalling that $h_m \approx m^{m-2}$, our claim that the $(m+1)a_m - ma_{m-1}$ are bounded follows with the help of Stirling's formula. Applying Lemma 4.4 we conclude that $b_m \to 0$ as $m \to \infty$. Since the a_m have a non-zero limit, we conclude that $\lambda_m \to 0$ as $m \to \infty$, and thus T_f is compact on $b^{2,\alpha}(\underline{B})$.

5. Compact Toeplitz operators with discontinuous symbols

We write $b^2(B)$ for the unweighted harmonic Bergman space $b^{2,0}(B)$. If T_f is compact on $b^2(B)$, then T_{f^2} need not be compact. In fact, there are functions f on B for which T_f is compact, and T_{f^2} is the identity operator on $b^2(B)$. We will show this by considering a class of Toeplitz operators whose symbols are radial functions taking only the values 1 and -1.

Let (r_k) and (s_k) be sequences of positive numbers converging to 1 with $0 = r_1 < s_1 < r_2 < s_2 < \cdots$, and define f on B by

(5.1)
$$f(x) = \begin{cases} -1, & \text{if } r_k \le |x| < s_k, \\ 1, & \text{if } s_k \le |x| < r_{k+1}. \end{cases}$$

By Lemma 4.2 the eigenvalues of T_f are given by

(5.2)
$$\lambda_m = \sum_{k=1}^{\infty} \left(r_{k+1}^{n+2m} - 2s_k^{n+2m} + r_k^{n+2m} \right).$$

THEOREM 5.3. Let f be the function given by (5.1) with $r_k = 1 - 1/k^c$, where c > 0, and $s_k = (r_k + r_{k+1})/2$. Then: T_f is trace-class on $b^2(B)$ if c < 1/(n-1).

PROOF. Note that each of the terms of the series in (5.2) is positive. Using that the multiplicity of λ_m is h_m and the fact that $h_m \approx (m + n - 2)!/m!$, we conclude that

$$\begin{aligned} \operatorname{tr}(T_f) &= \sum_{m=0}^{\infty} \lambda_m h_m = \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} \left\{ r_{k+1}^{n+2m} + r_k^{n+2m} - 2s_k^{n+2m} \right\} h_m \\ &\leq C \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} \left\{ r_{k+1}^{n+2m} + r_k^{n+2m} - 2s_k^{n+2m} \right\} \frac{(m+n-2)!}{m! (n-2)!} \\ &= C \sum_{k=1}^{\infty} \left\{ \frac{r_{k+1}^n}{(1-r_{k+1}^2)^{n-1}} + \frac{r_k^n}{(1-r_k^2)^{n-1}} - \frac{2s_k^n}{(1-s_k^2)^{n-1}} \right\} . \\ &\leq C' \sum_{k=1}^{\infty} \frac{\delta_k^2}{(1-r_k)^{n+1}}, \end{aligned}$$

https://doi.org/10.1017/S144678870000135X Published online by Cambridge University Press

where $\delta_k = r_{k+1} - s_k = s_k - r_k$. So, if $\sum_{k=1}^{\infty} \delta_k^2 / (1 - r_k)^{n+1} < \infty$ then T_f is trace-class on $b^2(B)$. For $r_k = 1 - 1/k^c$ and $s_k = (r_k + r_{k+1})/2$ we have $2\delta_k = 1/k^c - 1/(k+1)^c \approx 1/k^{c+1}$, thus $\delta_k^2 / (1 - r_k)^{n+1} \approx 1/k^{2-(n-1)c}$, and we see that T_f is trace-class on $b^2(B)$ if (n-1)c < 1, that is, if c < 1/(n-1).

THEOREM 5.4. Let f be the function given by (5.1) with $s_k = (r_k + r_{k+1})/2$ and put $\delta_k = r_{k+1} - s_k = s_k - r_k$. Then: T_f is compact on $b^2(B)$ if and only if

 $\delta_k/(1-r_k) \to 0$ as $k \to \infty$.

In the proof of the above theorem we will need the following lemma.

LEMMA 5.5. Let *m* be a positive integer, and let (r_k) be an increasing sequence of positive numbers converging to 1 and $2\delta_k = r_{k+1} - r_k$, for all *k*, then

(5.6)
$$\sum_{k=1}^{\infty} \frac{2\delta_k}{(1-r_k^2 t)^{m+1}} \le \frac{1}{(1-t)^m}$$

for all 0 < t < 1.

PROOF. Since $r_{k+1} > r_k$, we have

$$r_{k+1}^{j+1} - r_k^{j+1} \ge (r_{k+1} - r_k)(j+1)r_k^j \ge 2(j+1)\delta_k r_k^{2j},$$

and consequently

$$\sum_{k=1}^{\infty} 2\delta_k r_k^{2j} \le \frac{1}{j+1} \sum_{k=1}^{\infty} (r_{k+1}^{j+1} - r_k^{j+1}) = \frac{1}{j+1} (1 - r_1^{j+1}) \le \frac{1}{j+1}.$$

Thus

$$\sum_{k=1}^{\infty} \frac{2\delta_k}{(1-r_k^2 t)^{m+1}} = \sum_{j=0}^{\infty} \frac{(j+m)!}{j!\,m!} \left\{ \sum_{k=1}^{\infty} 2\delta_k r_k^{2j} \right\} t^j \le \sum_{j=0}^{\infty} \frac{(j+m)!}{j!\,m!} \frac{1}{j+1} t^j$$
$$= \frac{1}{m} \left\{ \frac{1}{(1-|t|^2)^m} - 1 \right\} / t \le \frac{1}{(1-t)^m},$$

proving the stated result.

PROOF OF THEOREM 5.4. Write R for the reproducing kernel of $b^2(B)$. Step 1. Using equation (2.5) it is easy to show that for 0 < r < 1 we have

$$\int_{rB} R(x, y)^2 \, dV(x) = \sum_{m=0}^{\infty} (n+2m)r^{n+2m}h_m |y|^{2m}.$$

Consequently,

(5.7)
$$\tilde{f}(y) = \frac{1}{R(y, y)} \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} (n+2m)(r_{k+1}^{n+2m} - 2s_k^{n+2m} + r_k^{n+2m})h_m |y|^{2m}.$$

Step 2. Similar to the proof of Theorem 5.3: there exists a finite positive constant C such that

$$\tilde{f}(y) \leq C(1-|y|^2)^n \sum_{k=1}^{\infty} \left\{ \frac{r_{k+1}^n}{(1-r_{k+1}^2|y|^2)^n} + \frac{r_k^n}{(1-r_k^2|y|^2)^n} - \frac{2s_k^n}{(1-s_k^2|y|^2)^n} \right\},\,$$

for all $y \in B$.

Step 3. There is a finite positive constant M for which we have the inequality

$$\frac{r_{k+1}^n}{(1-r_{k+1}^2|y|^2)^n} + \frac{r_k^n}{(1-r_k^2|y|^2)^n} - \frac{2s_k^n}{(1-s_k^2|y|^2)^n} \le \frac{M\delta_k^2}{(1-r_k^2|y|^2)^{n+2}},$$

for all $k \ge 1$ and all $y \in B$.

Step 4. It follows from steps 2 and 3 and Lemma 5.5 that

$$\begin{split} \tilde{f}(y) &\leq C(1-|y|^2)^n \sum_{k=1}^{K} \left\{ \frac{r_{k+1}^n}{(1-r_{k+1}^2|y|^2)^n} + \frac{r_k^n}{(1-r_k^2|y|^2)^n} - \frac{2s_k^n}{(1-s_k^2|y|^2)^n} \right\} \\ &+ C'(1-|y|^2)^n \sum_{k=K}^{\infty} \frac{\delta_k^2}{(1-r_k^2|y|^2)^{n+2}} \\ &\leq C(1-|y|^2)^n \sum_{k=1}^{K} \left\{ \frac{r_{k+1}^n}{(1-r_{k+1}^2|y|^2)^n} + \frac{r_k^n}{(1-r_k^2|y|^2)^n} - \frac{2s_k^n}{(1-s_k^2|y|^2)^n} \right\} \\ &+ C'(1-|y|^2)^n \sup_{k\geq K} \left(\frac{\delta_k}{1-r_k} \right) \sum_{k=K}^{\infty} \frac{\delta_k}{(1-r_k^2|y|^2)^{n+1}} \\ &\leq C(1-|y|^2)^n \sum_{k=1}^{K} \left\{ \frac{r_{k+1}^n}{(1-r_{k+1}^2|y|^2)^n} + \frac{r_k^n}{(1-r_k^2|y|^2)^n} - \frac{2s_k^n}{(1-s_k^2|y|^2)^n} \right\} \\ &+ C' \sup_{k\geq K} \left(\frac{\delta_k}{1-r_k} \right), \end{split}$$

for all $y \in B$ and every integer $K \ge 1$. Because each of the terms in the series (5.7) is positive,

$$\limsup_{|y| \to 1^-} |\tilde{f}(y)| \le C' \sup_{k \ge K} \left(\frac{\delta_k}{1 - r_k} \right).$$

for every integer $K \ge 1$. So, if $\delta_k/(1-r_k) \to 0$ as $k \to \infty$, then $\tilde{f}(y) \to 0$ as $|y| \to 1^-$, and by Theorem 4.1, T_f is compact on $b^2(B)$.

[12]

To prove the converse, note that the inequalities in steps 2 and 3 can be reversed to obtain

$$\tilde{f}(y) \ge c(1 - |y|^2)^n \sum_{k=1}^{\infty} \frac{\delta_k^2}{(1 - r_k^2 |y|^2)^{n+2}}$$

for all $y \in B$. In particular, for $\zeta \in S$ we have $\tilde{f}(r_k\zeta) \ge c(1-r_k^2)^n \delta_k^2/(1-r_k^4)^{n+2}$, which easily implies that $(\delta_k/(1-r_k))^2 \le C \tilde{f}(r_k\zeta)$, for all $k \ge 1$. If T_f is compact on $b^2(B)$, then $\tilde{f}(r_k\zeta) \to 0$, and hence $\delta_k/(1-r_k) \to 0$ as $k \to \infty$.

COROLLARY 5.8. Let f be the function given by (5.1) with $r_k = 1 - 1/k^c$, where c > 0 and $s_k = (r_k + r_{k+1})/2$. Then T_f is compact on $b^2(B)$.

PROOF. Since $\delta_k \approx 1/k^{c+1}$, we have $\delta_k/(1-r_k) \approx 1/k$.

Acknowledgements

The research for this paper was mostly done while visiting the Free University, Amsterdam, The Netherlands, on sabbatical leave; I thank the University of Montana for awarding me a sabbatical and the Mathematics Department of the Free University for its hospitality and support.

References

- [1] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory (Springer, New York, 1992).
- [2] R. Coifman and R. Rochberg, 'Representation theorems for holomorphic and harmonic functions,' Astérisque 77 (1980), 11–66.
- [3] B. Korenblum and K. Zhu, 'An application of Tauberian theorems to Toeplitz operators,' J. Operator Theory 33 (1995), 353-361.
- [4] J. Miao, 'Toeplitz operators on harmonic Bergman spaces,' Integral Equations Operator Theory 27 (1997), 426–438.
- [5] K. Stroethoff, 'Compact Hankel operators on weighted harmonic Bergman spaces,' *Glasgow Math. J.* **39** (1997), 77-84.
- [6] K. Stroethoff, 'Compact Toeplitz operators on Bergman spaces,' *Math. Proc. Cambridge Phil. Soc.*, to appear.

Department of Mathematical Sciences University of Montana Missoula, MT 59812–1032 USA e-mail: ma_kms@selway.umt.edu

148