CORRESPONDENCE.

AN ASSURANCE FALLACY.
 To the Ellutor of the Assurance Magazine.

Sir,-The following problem presents several points of interest.
An assurance of A pounds is to be effected on (x, at an annual premium (ϖ), subject to the condition that interest on the premiums paid up to and including the year of death is to be allowed by the Office, at the rate involved in the tables employed, which rate it is assumed is that realized by the Office. Required m.

Attempt a solution thus:- Since all the interest realized is to be handed over to (x) or his representatives, the Office has obviously nothing but the bare premiums out of which to pay the sum assured. It is, therefore, as regards the Office, the same thing as if no interest were made; and we consequently need take account only of the average number of premiums that will be received from each policyholder. This number being $1+e_{x}^{\prime}$ (where e_{x}^{\prime} is the curtate mean daration of lives aged x), we have
whence

$$
\begin{gather*}
w\left(1+e_{x}^{\prime}\right)=\mathrm{A} ; \\
w=\frac{\mathrm{A}}{1+e_{x}^{\prime}} . \tag{1}
\end{gather*}
$$

This is a very singular result. It is independent of the rate of interest; and yet it is obvions that the higher the rate realized by the Office the
greater will be the annual return to (x), and consequently the less the cost of the assurance to him. The foregoing equation therefore cannot be true, and the process by which it is attained must be fallacious.*

But where, then, is the fallacy? It is in the assumption, tacitly made in the so-called solution, that the interest realized by the Office and that payable to the policyholders are identical. They are so, however, only as to rate, but not as to amount, except during the first year. At the end of that period the premium fund is so reduced by payment of death claims, that the interest yielded by it is no longer sufficient to meet that due to the policyholders. The deficiency, therefore, must be made good from the premiums themselves, and these therefore require to be increased to meet this charge.

The reasons why I have commenced with an erroneous solution, arefirst, that an impression prevails, as I am informed, that this solution is a correct one; and secondly, that the problem belongs to a class which appear to invite the application of what are called common sense notions, while such applications usually lead, as in the present case, unless skilfully managed, to erroneous conclusions.

I now give a legitimate solution of the problem. The benefit consists of, first, a uniform assurance of A, the term corresponding to which is $A M_{x}$; and secondly, of an increasing annuity of $\varpi i, 2 \varpi i, 3 \varpi i, \& c$., which makes its last payment at the end of the year of death. The term given by this annuity, minus its last payment, is wi S_{x}, and that given by the last payment is $\varpi i \mathrm{R}_{x}$. Hence, the payment term being $\varpi \mathrm{N}_{x-1}$, we have

$$
w \mathrm{~N}_{x-1}=\mathrm{AM}_{x}+\varpi i\left(\mathrm{~S}_{x}+\mathrm{R}_{x}\right) .
$$

From this we obtain

$$
\varpi=\frac{\mathrm{AM}_{x}}{\mathrm{~N}_{x-1}-i\left(\mathrm{~S}_{x}+\mathrm{R}_{x}\right)} .
$$

Now,

$$
\begin{gather*}
\mathrm{N}_{x-1}-i\left(\mathrm{~S}_{x}+\mathrm{R}_{x}\right)=\mathrm{N}_{x-1}-i\left(\mathrm{~S}_{x}+v \mathrm{~S}_{x-1}-\mathrm{S}_{x}\right) \\
=\mathrm{N}_{x-1}-(1-v) \mathrm{S}_{x-1}=\mathrm{R}_{x} . \\
\therefore \underset{\sim}{ }=\frac{\mathrm{AM}_{x}}{\mathrm{R}_{x}} \tag{2}
\end{gather*}
$$

Of the value of w thus determined it would be easy to show that for any value of x, except the oldest age in the table (for which w is always equal to A), it increases with (not as) i, the rate of interest.

Since, when i diminishes without limit, $\frac{\mathrm{M}_{x}}{\mathrm{R}_{x}}$ approaches without limit to $\frac{\mathrm{D}_{x}}{\mathrm{~N}_{x-1}}$; therefore, when $i=0$, i.e., when money bears no interest, we have

$$
\varpi=\frac{\mathrm{AD}_{x}}{\mathrm{~N}_{x-1}}=\frac{\mathrm{A}}{1+\hat{e}_{x}^{\prime}}
$$

which agrees with (1). From this it appears that, although not true generally, (1) is true in the case of money bearing no interest. In this

[^0]case, however, no interest being realized there is none payable to the policsholders.

The following table shows the premium per cent., by the Carlisle rate of mortality, at several rates of interest. The commutation table for $i=0$ will be found at p. 145, vol. xiii. of the Journal of the Institute of Actuaries.

Age.	$i=0$.	$i=\cdot 03$.	$i=04$.	$i=\cdot 05$.
30	$2 \cdot 8604$	37290	$4 \cdot 1146$	45707
50	$4 \cdot 6211$	54515	57719	6.1156
70	$10 \cdot 3371$	$11 \cdot 6040$	120426	12.4872
$26 \cdot 4432$	28.5903	293248	29.9864	

For further elucidation of this somewhat curious problem I have worked out the following example at length, by the Carlisle table, at 5 per cent. The age is 90 , and the sum assured $£ 100$. By (2) we get for the annual premium

$$
w=\frac{147 \cdot 9288}{4 \cdot 933192}=29 \cdot 98643 ; \text { whence } w i=1 \cdot 4993215
$$

		$\begin{aligned} & 925 \cdot 6613 \\ & * 462830 \end{aligned}$			$\begin{array}{r} 514 \cdot 7570 \\ * 257378 \end{array}$
$9 w i \times 14$	${ }^{*} 1889143$	9719443	$13 \pi i \times 5$	-97.4559	5404948
100×3	$300 \cdot$	4889145	100×2		297•4559
$11 w$		4830308	3π	*629715	243.0389
		3298507			899593
		8128815			3329982
		* 406440			*166499
10 mix 11		3535255	$14 \pi \iota \times 3$		3496481
	$\therefore 1649254$				
100×2	$200 \cdot$	3649254	100×2	200	2629715
		4886001	4	*22.4898	866766
$9 *$	${ }^{4} 148.4328$	2698779			299864
		$758 \cdot 4780$			1166630
		"379239			*58331
		7964019	$\begin{array}{r} 15 \pi i \times 1 \\ 100 \times 1 \end{array}$		$122 \cdot 4961$
$\begin{array}{r} 11 \pi i \times 9 \\ 100 \times 2 \end{array}$					
	200	3484328		100°	122.4898
7∞	$* 125.9 .330$200.	4179691			
		2099050			
		6578741			
		*328937			
$\begin{array}{r} 12 w i \times 7 \\ 100 \times 2 \end{array}$		6907678			
		3259430			
5π		3648248			
		149.9322			
		5147570			

Little explanation of the above is nceded. At the outset the premium is received from the tabular number alive at 90 , viz., 142 , and a year's interest is added, giving a total in hand at the end of the first year of $\mathfrak{£ 4 , 4 7 0 \text { . This is immediately ieduced by the payment of, first, }}$ $£ 2129037$, interest on the preminms, and secondly, $£ 3,700$, the claims arising on 37 deaths, to $£ 558.0731$. The premium is again received from the 105 suivivors, a year's interest is added, and the outgoings of the secoud year, amounting to $£ 3314$ 8575, are deducted, leaving $£ 577 \cdot 1232$ in haud at the commencement of the third year. In this way the scheme works itself out at the end of the fifteenth year.

It is visible now that after the first year the interest which the office realizes is altogether insufficient to meet that which it has to pay. And it is singular to note that, after the finst few years, the ratio of the interest receivable (by the Office) to the interest payable, closely approximates to that of 1:4.* Whether this is accidental, or whether the like wonld be observed in other circumstances, I am at present nnable to say.

Returning to equation (2), and writing it thus,

$$
w \mathrm{R}_{x}=\mathrm{AM}_{v},
$$

* To facilitate this comparison I have marked the interest on both sides with asterisks.
we see that the transaction resolves itself into an exchange or commutation of one assurance on (x) for another, viz., a uniform assurance of A payable by the Office, and an increasing assurance of $\approx, 2 \pi, \& c$. ($n \pi$ in the nth year), payable to the Office. And this is correct, as it is obviously the same thing, theoretically, whether the premiums be paid annually, interest being allowed upon them, or in the aggregate at the end of the year of death. In practice, however, there is a great distinction between the two modes of payment. No Office would consent to defer the receipt of premium till the emergence of the claim, as they would in a great many cases have then more to receive than to pay.

It is interesting, however, to watch the operation of this mode of payment in a particular case; and I have therefore worked it out for the same age as before, 90 , and at the same rate, 5 per cent. The preminm also is of course the same, $29 \cdot 98643$.

The great distinction between this mode of arranging the transaction and the other is that there the Office was pat in funds at the outset, enabling it to meet all claims as they arose, while here it is in advance from first to last.

If it is required to load the premium of this problem, we most proceed as in all cases in which the Office makes a return to the assured. It is not sufficient to apply the required loading to the valte of w, determined as above, since this would leave the additional interest which has to be returned unprovided for. The loading must, as in all such cases, be applied to the benefit side of the fundamental equation.

Let the required loading be k per pound. Then,
whence,

$$
\begin{aligned}
w \mathrm{~N}_{x-1} & =(1+k)\left\{\mathrm{AM}_{x}+w i\left(\mathrm{~S}_{x}+\mathrm{R}_{s}\right)\right\} ; \\
w & =\frac{(1+k) \mathrm{AM}_{x}}{\mathrm{~N}_{x-1}-(1+k) i\left(\mathrm{~S}_{x}+\mathrm{R}_{x}\right)}
\end{aligned}
$$

$$
\begin{align*}
& \text { But, } \quad \begin{aligned}
\mathrm{N}_{x-1}-(1+k) i\left(\mathrm{~S}_{x}+\mathrm{R}_{x}\right) & =\mathrm{N}_{x-1}-(1+k) i\left(\mathrm{~S}_{x}+v \mathrm{~S}_{x-1}-\mathrm{S}_{x}\right) \\
=\mathrm{N}_{x-1}-(1+k)(1-v) \mathrm{S}_{x-1} & =(1+k)\left\{\mathrm{N}_{x-1}-(1-v) \mathrm{S}_{x-1}\right\}-k \mathrm{~N}_{x-1} \\
& =(1+k) \mathrm{R}_{x}-k \mathrm{~N}_{x-1} . \\
\therefore m=\frac{(1+k) \mathrm{AM}_{x}}{(1+k)} \mathrm{R}_{x}-k \mathrm{~N}_{x-1} & =\frac{\mathrm{AM}_{x}}{\mathrm{R}_{x}-\frac{k}{\mathrm{I}+k} \mathrm{~N}_{x-1}} \quad(8) .
\end{aligned} .
\end{align*}
$$

This is obviously greater than $\frac{\mathrm{AM}_{x}}{\mathrm{R}_{x}}$; but it can be shown to be also greater than $\frac{(1+k) A M_{x}}{\bar{R}_{x}}$, which is what the net premium becomes when the loading is directly applied to it. Thns,
if

$$
\begin{aligned}
\frac{\mathrm{AM}_{x}}{\mathrm{R}_{x}-\frac{1}{1+k} \mathrm{~N}_{x-1}} & >(1+k) \frac{\mathrm{AM}_{x}}{\mathrm{R}_{x}}, \\
\mathrm{R}_{x} & >(1+k) \mathrm{R}_{x}-k \mathrm{~N}_{x-1}, \\
k \mathrm{~N}_{x-1} & >k \mathrm{R}_{x}, \\
\mathrm{~N}_{x-1} & >\mathrm{R}_{x} ;
\end{aligned}
$$

and this last we know to be true.
If no interest is earned, M_{2} and R_{x}, as before, assume their limitiog values, and (3) becomes

$$
\pi=\frac{\mathrm{AD}_{x}}{\mathrm{~N}_{x-1}-\frac{k}{1+k} \mathrm{~N}_{x-1}}=(1+k) \frac{\mathrm{AD}_{x}}{\mathrm{~N}_{x-1}}
$$

In this case, therefore, it snffices to apply the Ioading directly to the net premium; which is in accorlance with the remark already made, the inteiest returbable by the Office being here nit.

I append a table of lowlenl premiums, corresponding to that already given of net pieminms The loding is 10 per cent., that is $k=1$,

Age.	$i=0$.	$2=03$.	$i=\cdot 04$.	$\imath=05$.
30	$3 \cdot 1464$	45002	$5 \cdot 1881$	6.1767
50	$5 \cdot 0909$	63154	68386	$7 \cdot 4329$
70	11-3708	130714	136844	14,3199
90	29.0875	318114	327722	336255

I am, Sir,
Your most obedient servant, P. GRAY.

London, 2nd Sept., 1867.
** A shart note on the problem which forms the subject of this letter will be farmd in vol. v., p. 348.

VALUE OF A POLICX-FORMULAB-MILNE.

To the Editor of the Assurance Magaztue.

Dear Str,--There is a theorem which I suppose must be in the heads of many actuaries, but I cannot find it in any of the books. It is that the values of a poliey, as it runs on, are proportional to the falls in the value of the annuity. That is, if a_{x} be the value of an annuity of $£ 1$ at the age x, the age of creation of the policy, the values of the policy at the ages y and z are as $a_{x}-a_{y}$ to $a_{x}-a_{x}$. That this theorem is not commonly expressed seems dne to the value at the age y being usually written $1-\frac{1+a_{y}}{1+a_{x}}$ instead of $\frac{a_{x}-a_{y}}{1+a_{x}}$.

I shalt be curious to see whether any one will produce a statement of this simple form. I find it oceasionally very useful to take out from the table, without any writing, that the policy-value of $1+c_{x}$ at death is $a_{x}-a_{y}$ at the age y, the age x being that of commencement. When a formila represents two different results, it is a useful excrcise of ingenaity to deduce one result drectly from the other. Now $a_{x}-a_{y}$ is the value to (x) of a counter-survivorship-as we may call it-of the following kind. The executors of the first who dies pay an annuity of $£ 1$ to the survivor; and $\left(a_{r}-a_{y}\right) \div\left(1+a_{z}\right)$ is the whole-hfe premium which (x) should pay to be put in this position. How, from the mature of this contract, does it follow that one payment of this preminm, over and above the annal premium which (x) sbould pay, admits (y) to a policy of $£ 1$ at the premitum for the age (x)?

Easy forms, corollaries from common forms, are things for second editions. A person who is engaged in a great effort, and has a heavy system of tables to look after, does not watch offshoots. Now none of the best known wolks-except only those of Plice and Morgan, which Jay no stress on formolx-have arrived at second editions: this may be said of Baily, G. Davies, Milne, and David Jones.

It is much to be regicted that Milne did not, in his later years, ocenpy himself with a reconstiuction of the algebraical part of his work. But it ts haidly hown how completely he abandoned the subject. In May,

[^0]: * The reasoning here does not seem quite conclusive.-Ed. J. I. A.

