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INDEX FOUR SIMPLE GROUPS 

LEO J. ALEX AND DEAN C. MORROW 

1. Introduction 

1.1 An index four simple group is a finite simple group, G, with a self-central
izing Sylow ^-subgroup whose normalizer in G has order 4p. In this paper 
index four simple groups having a non-principal ordinary irreducible character 
of small degree in the principal ^-block are studied. 

In Section 2 several preliminary results primarily dealing with the values of 
the characters in B0(p) are obtained. In particular, inequalities relating the 
degrees of these characters are derived thus simplifying the task of solving the 
degree equation for BQ(p). Also quite precise information regarding the values 
of characters of the group on involutions which normalize Sylow ^-subgroups 
is obtained. 

In Section 3 the index four simple groups with a non-principal irreducible 
character of degree n ^ 15 in B0(p) are found. First given n, the degree equa
tion for B0(p) is solved. Then the possible degree equations are studied using 
the character information form Section 2, class algebra coefficients and various 
other character theoretic techniques. Thus it is shown that the only such groups 
withw ^ 15 are 0(5, 3), ^7, Mn and5z(8). 

1.2 Notation. In general, upper case letters denote groups, and Sp is used to 
denote a Sylow ^-subgroup. If A is a subgroup of G, then N(A), C(A), \G : A\, 
\A\ denote the normalizer of A in G, the centralizer of A in G, the index of A 
in G, and the order of A, respectively. 

The notation xn is used for a group element of order n. Then C{xn) denotes 
the centralizer of the element xn in G. Lower case Greek letters denote characters 
and a character of degree m is denoted by Xm-

The notation a(xi, xjt xk) denotes the class algebra coefficient which is the 
number of ways each element of the conjugacy class of xk can be written as a 
product of an element of the class of xf and an element of the class of x}. 

2. Preliminary results. In the sequel G is an index four simple group. Thus 
there is an odd prime p dividing \G\ to the first power only such that \N(Sp) : Sp\ 
= 4 for the self-centralizing Sylow ^-subgroup Sp. 
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9 L. J. ALEX AND D. C. MORROW 

Brauer's work [4] yields the following information concerning Bo(p), the 
principal ^-block of G. 

Let xp be an element of order p and let xQ be a ^-regular element. Then 
Bo(p) contains the principal character, 1, 3 other non-exceptional characters 
Xi> X2, X3, and (p — l ) /4 exceptional characters x (m\ m — \,2, . . . , (p — l ) / 4 . 
There are signs <5?:= ± 1 , i = 1, 2, 3 and <5' = ± 1 such that Xi(xP) = 5*» 
Xi(l) = ôifmod p), i = 1, 2, 3, E X(w)fo) = 5', x

( m ) ( l ) = - 4 0 ' (mod p), 
m - 1,2,. . . , (p - l ) / 4and 

(2.1) 1 + dlXi(xQ) + ô2X2(xQ) + ôixM + àYM)(xq) = 0. 

If xQ = 1 in (2.1) we obtain the following degree equation for Bo(p). 

(2.2) 1 + ôiXl(l) + 02X2(1) + Ô3X3(1) + ô'X
(m)(l) = 0. 

We next list several results which are extremely important in using the 
degree equation for Bo(p) to obtain information about the structures of 
various subgroups of G. The first two lemmas appear in the work [6] of Brauer 
and Tuan. 

LEMMA 2.1. Let G be a simple group of order p q* r where p and q are primes, 
(pq, r) = 1. Suppose the degree equation for Bç>(p) is J2 ^Xi(l) = 0, and G has 
no elements of order pq. Then for any q-block, B(q), S àiXiO-) = 0 (mod qb), 
where the summation is taken over all characters in Bo(p) C\ B(q). 

LEMMA 2.2. If G is a simple group, x is an irreducible character of G of degree 
ps, s > 0, then x cannot be in BQ(p). 

It follows from the work [6] of Brauer and Tuan that there are three possible 
trees for Bo(p). These trees are illustrated in Figure 2.1. Here Xw, Xxi Xy, Xz, 
denote respectively characters of degree w, x, y and z. 

Xv 

These trees determine the signs of the terms in the degree equation (2.2) 
for BQ(P). Thus with the Type I straight line tree, (2.2) has the form 

(2.3) l+x + y = z + w, 

with the Type II tree the equation is 

(2.4) 1 + x = w + 2z 

and with the Type III tree, the equation is 

(2.5) 1 + 2x + y = w. 
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SIMPLE GROUPS 3 

Note that we have not specified which vertex of the tree corresponds to the 
exceptional characters %{m). 

The following lemma and its corollary give some important information con
cerning the characters in Bo(p). The lemma gives information regarding con
stituents of products of characters in BQ(p), and the corollary gives some useful 
inequalities relating the degrees of the characters in BQ(p) when the tree for 
B0(p) is of Type I. 

LEMMA 2.3. Let G be an index four simple group. In the tree for B0(p), (cf. Fig. 
2.1), let Xw be the character adjacent to the principal character, 1, and let x and 6 
be any two adjacent non-principal characters. Then 

1) The character x# has Xw as a constituent, and 
2) If x is not an endpoint of the tree, then xx has Xw as a constituent. 

Proof. Since % and 6 are adjacent, they share a modular irreducible character. 
Thus x# has the modular identity character, 1, as a modular constituent. But 
1 appears only as a modular constituent of the principal character, 1, and Xw> 
Statement 1) now follows from the irreducibility of x and 6. 

When x is not an endpoint of the tree, xx must have 1 as a modular con
stituent at least twice. Since xx has the principal character, 1, as a constituent 
exactly once, it follows that xx has Xw as a constituent at least once. 

COROLLARY 2.4. Let G be an index four simple group with degree equation (2.3) 
forB0(p). Then 

1) yz ^ w, yw ^ z, wz ^ y, xz ^ w, xw ^ z, zw ^ x, w2 ^ x, w3 ^ z, 
2) z2 ^ w, x2 ^ w, z3 ^ x, z3 ^ y, and 
3) if the endpoint character Xy is not exceptional, then y4 + y3 — (y + 1) è x. 

Proof. Statement 1) follows from statement 1) of Lemma 2.3. Statement 2) 
follows from statement 2) of Lemma 2.3 and statement 1) of the corollary. 
Note that if X is a constituent of 777, 77, 7 irreducibles, then 17 is a constituent 
of A7. 

If Xy is not exceptional and xp is any element of order p, then it follows from 
the relations above Eq. (2.1) that Xy(xv) = 1- Since the character Xy2 has at 
least two ordinary irreducible constituents, it is clear that the character Xy3 

has Xy as a constituent at least twice. Then consideration of character values 
at xv implies that Xy3 has at least one of the characters Xw, and Xz as a con
stituent. Thus yz ^ w which implies that y4 ^ z, or y3 ^ z which implies that 
y4 J> w. Thus in any case x ^ y4 + y3 — (y + 1) and Corollary 2.4 is proved. 

Remark. Lemma 2.3 and Corollary 2.4 are slight generalizations of results 
obtained by Brauer which appear in a preprint of [3]. 

Next we note the well-known and, for us, extremely useful fact that if x is 
any irreducible character of a group, then the character x2 can be expressed 
as x2 = 0 + </>, where the characters 6 and <t> are respectively the alternating 
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4 L. J. ALEX AND D. C. MORROW 

and symmetric parts of x2- Also if g is any element of the group, then 

(2.6) 6(g) = |[x2(g) - x(g2)] and 4>(g) = hlxHg) + x(g2)]-

The following lemma bounds the size of the prime divisors of G in terms of 
the degree of an irreducible character of G. 

LEMMA 2.5. Let G be an index four simple group, let % be a non-principal 
irreducible character of G, and let r be any prime dividing \G\. Then x (1 ) ^ r — 1. 

Proof. Suppose not. Then there is a prime r dividing |G| and a non-principal 
irreducible character x of G such that x( l ) < r — 1. Then the work [9] of Feit 
implies that G is isomorphic to PSL(2, r) or r — 1 is a power of 2 and G is 
isomorphic to PSL(2, r — 1). It is well known (cf. [ I l , Ch. 2]) that the self-
centralizing cyclic Hall subgroups of PSL(2, q) are of index 2 or \{q — 1) in 
their normalizers. The latter could only occur when q = r for a Sylow r-sub-
group. But since G is an index four simple group we would have r = 9, contra
dicting the fact that r is a prime. 

Our final preliminary results deal with involutions in an index four simple 
group. In the sequel w denotes an involution which is in the normalizer of the 
Sylow ^-subgroup of G. The following lemma is an immediate consequence of 
the work [5] of Brauer and Fowler. 

LEMMA 2.6. Let G be an index four simple group, let x2 be any involution in G 
not conjugate to w, and let xp be an element of order p. Then 

1) a(co, co, xp) = p, 
2) a(x2, #2, xp) = 0, and 
3) a(co, x2, xp) — 0. 

Our next lemma gives information regarding character values at the involu
tion CO. 

LEMMA 2.7. Let G be an index four simple group, and let \be a character of G 
such that x(xp) = c for all xp in Sp#. Then 

lx(«)l ^ X ( I ) - ( £ - ~ ) ( x ( l ) - c ) . 

Proof. Let r) be any one of the (p — l ) / 4 characters of degree 4 of N(Sp). 
Then 

(xU(Sp), v) = X (x(l) — c). 
P 

The result now follows since the other 4 characters of N(Sp) are linear. 

Remark. If x is a nY irreducible character of G other than an exceptional 
character for the prime p, then the value of the constant c in Lemma 2.7 is 1, 
— 1 or 0. The lemma may be applied to the exceptional characters x (m\ w = 
1,2,. . . , (p - l ) / 4 , by letting x = Zx ( 7 n ) .Thenc = $' = ± 1 . 
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The following lemma on involution values is proved in Hall [12]. 

LEMMA 2.8. Let G be a simple group, x2 any involution in G, and % a character 
ofG. Then 

x(x2) = x( l ) (mod 4). 

LEMMA 2.9. Let G be a simple group, x an irreducible character of degree pm, 
p a prime, (p, m) = 1, m < p — 1. Then if x is rational on elements of order p, 
then x is not in B0(p). 

Proof. Suppose x G BQ(P)\ let zP be a central p-element and let K be the 
class of zp. Then 

Thus xfe) = pm (mod p2). Since G is simple, xfe) ^ pm. Hence since 
|x fe) | < pm < p2, xOh) = Pm - p2. But then (x\(zp), 1) = [(p - 1) 
(pm — p2) + pm]/p < 0, since m < p — 1. This contradiction proves Lemma 
2.9. 

3. Proof of the main theorem. Next we apply the results of Section 2 to 
find all index four simple groups with a non-principal irreducible character of 
degree n S 15 in B0(p). 

3.1. The case n ^ 14. 

LEMMA 3.1. Let G be an index four simple group with a non-principal irreducible 
character of degree nin Bo(p). Then 

1) it is impossible that n = 1, 2, 3, 4, 5, 7, 8, 10, 13, or 15; 
2) if n = 6, then G is isomorphic to 0(5, 3) or Aj. 

Proof. If n — 1, G is not simple. If n = 2, 3, 5, 7, 8, 10 or 15 there is no 
choice for p = 1 (mod 4) consistent with the relations above Equation (2.1). 
If n = 4, the work of Blichfeldt [2] shows that no group exists, completing 
statement 1). If n = 13, the relations above Equation (2.1) imply that p — 17, 
contradicting Lemma 2.5. 

If n = 6, the work of Lindsey [13] shows that G is isomorphic to 0(5, 3) or 
A7. The work of Brauer [3] shows that 0(5, 3) is an index four simple group 
with p = 5 and BQ(5) = {1, xe, Xsi, X24, X64). It is an easy matter to verify 
that Ai is an index four simple group with p = 5 and J50(5) = {1, X6, XH, 
X I / , X21}. This proves 2). 

LEMMA 3.2. There is no index four simple group with an irreducible character 
of degree 9 in B0 (p). 

Proof. The relations above Equation (2.1) imply p = 5 or 13. Then Lemma 
2.5 implies p = 5 and |G| = 2a 3& 5 7d. We divide the work into two cases. 
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6 L. J. ALEX AND D. C. MORROW 

Case I. (The irrational case) When X9 has irrational values, it has a distinct 
conjugate in BQ(5). Obviously the tree for 5o(5) cannot be of T y p e I I I . If 
the tree for B0(o) is of Type I, the degree equat ion i n l + x + 3' = 9 + 9. 
There is no solution with x, y = 1 (mod 5) and x, y dividing |G| with x ^ 1, 
y j* 1. If the tree for BQ(o) is of T y p e I I , the degree equat ion is 1 + x = w + 
9 + 9. In this case X9 is not real, so tha t (x92, 1) = 0. The al ternat ing pa r t 036 
of X92 is + 1 on 5-elements, so 036 involves the character of degree x. T h u s 
x ^ 36. Now the only solution to the degree equation is 1 + 21 = 4 + 9 + 9. 
This contradicts Lemma 2.5. 

Case II. (The rational case) Suppose BQ(5) has a rational valued character 
of degree 9. The work [15] of Schur implies \G\ = 2a 36 5 7d with a ^ 16, 
b ^ 5, and d = 1. 

The tree for BQ(O) cannot be of Type I I I . If the tree is of T y p e I I , the degree 
equation is 1 + x = 9 + 2z. By Lemma 2.3, X92 involves X9- Since X92 also 
involves 1 and X92 is + 1 on 5-elements, X92 mus t involve the character of 
degree x which is + 1 on 5-elements. T h u s x ^ 45, the degree of the symmetr ic 
par t of X92. Now the only solutions to the degree equat ion are 1 + 16 = 9 + 
4 + 4 and 1 + 36 = 9 + 14 + 14. T h e first solution violates Lemma 2.5. 
For the second solution, \G\ = 2a 3& 5 7. Now Lemma 2.1 applied to J 3 0 ( 5 ) P\ 
BQ(7) implies 1, %9, X36 G BQ(7). Now Brauer 's work [4] implies t ha t | iV(57): 
C(S^\ = 2, as X9(l) = 2 (mod 7) . But this is inconsistent with the degree 
equation for BQ(7). 

Now suppose t ha t the tree for BQ(5) is of T y p e I with degree equation 
1 + x + y = z + w. If Xz = X9 (see Fig. 2.1), then Lemma 2.3 implies 
(X92, Xw) > 0, so t ha t w < 45. If Xw = X9, then Lemma 2.3 implies (xg2, Xx) > 
0, so t ha t x < 45. Lemma 2.3 also implies z S xw < 405. Now the only solu
tions to the degree equation, meeting these requirements and dividing the 
order of G are: 

1 ) 1 + 6 + 6 = 9 + 4 5 ) 1 + 1 6 + 56 = 9 + 64 
2) 1 + 6 + 16 = 9 + 14 6) 1 + 36 + 36 = 9 + 64 
3) 1 + 16 + 16 = 9 + 24 7) 1 + 36 + 56 = 9 + 84 
4) 1 + 6 + 56 = 9 + 54 8) 1 + 16 + 216 = 9 + 224. 

We eliminate each solution in turn . 
Solutions 1), 2) and 4) contradict Lemma 2.5. In solution 3) , if 7 divides |G|, 

intersection of B0(5) with BQ(7) yields a contradiction. So, in this case \G\ = 
2a 3b 5, and the work of Brauer [3] yields a contradiction. 

In solution 5) , intersection of B0(5) with BQ(2) and Lemma 2.1 imply 
a = 6, so t ha t \G\ = 2 6 3& 5 7. Now a count of Sylow 5-subgroups implies 
b — 5. But , as X9 $. -So(3), Lemma 2.1 implies b < 5, a contradiction. 

In solution 6) , application of Lemmas 2.1 and 2.2 to B0(o) C^ B 0 (2) and 
.Bo(5) H £ 0 ( 3 ) yields \G\ = 2 6 32 5 7 or 2 6 32 5. Now a count of Sylow 5-sub
groups yields a contradiction. 

In solution 7) , \G\ = 2a 3& 5 7. Consideration of BQ(5) H B0(7) implies X9 
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and X36G5o(7). Then the work of Brauer [4] implies \N(S7): C(S7)\ = 2, which 
is inconsistent with the degree equation for BQ(7). 

In solution 8), xie $ B0(2) by Lemma 2.2, and then Lemma 2.1 yields a 
contradiction to a ^ 5. This completes the proof of Lemma 3.2. 

LEMMA 3.3. If G is an index four simple group with an irreducible character of 
degree 11 in B0(p), then G is isomorphic to the Mathieu group Mn. 

Proof. The relations above Equation (2.1) imply p = 5. By Lemma 2.5 we 
have \G\ = 2a 36 5 7d II e . 

Case I. (The irrational case) When xn £ -So (5) has irrational values, it has 
a distinct conjugate in 50(5). Obviously the tree for -So(5) cannot be of Type 
II. If it is of Type I, the degree equation in 1 + 11 + 11 = z + w. The only 
solution with z, w = —1 (mod 5) and dividing |G| is 1 + 11 + 11 = 14 + 9; 
but this would contradict Lemma 2.5. 

If the tree for B0(5) is of Type III, then the degree equation is 1 + 11 + 11 
+ y = w. Now 

xii2xn = hi + &xii + wxn + Vf 

where k = (xn2, Xn2) = 2. Checking xn2 Xn on a 5-element, we see that it 
must involve \w (which is the only character in -Bo (5) which is —1 on 5-ele-
ments). So w ^ l l 3 = 1331. It is easy to check that the only possible solu
tions to the degree equation are: 

1) 1 + 11 + 11 + 21 = 44 and 

2) 1 + 11 + 11 + 121 = 144. 

In solution 2), intersection with -B0(ll) shows e = 1, but this contradicts 
the existence of a character of degree 121. 

In solution 1), Lemma 2.9 implies %2i ? B0(7). Then Lemma 2.1 applied 
to -Bo(5) P\ -Bo(7) yields a contradiction. 

Case II. (The rational case) Suppose -B0(5) has a rational valued character 
of degree 11. Then a theorem of Feit [8] implies G has a subgroup of index 11 
or 12. Therefore, as G is simple, G is isomorphic to a subgroup of Ai2. In Au 
an 5n-subgroup is self-centralizing and index 5 in its normalizer. So, by 
Burnside's Theorem the same is true in G. Now a count of Ss's and Sn's yields 
\G\ = 24 32 5 11 or \G\ = 27 32 5 7 11. By the work of Parrot [14], G is iso
morphic to MU or M22- But If22 has no irreducible character of degree 11. 
Thus G is isomorphic to Mn. It is easy to verify that Mn is an index four 
simple group with p = 5 and -Bo(5) = {1, xn> Xi6, Xi6, X44Î. This completes 
the proof of Lemma 3.3. 

LEMMA 3.4. There is no index four simple group with a character of degree 12 
in BQ(p). 
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Proof. T h e relations above Equat ion (2.1) imply p — 13. Now N(Su) is 
a Frobenius group of order 52 which has three characters 771, t/2,773 of degree 4. 
By taking inner products wre find tha t XU\N(SU) = Vi + V2 + *?3. I t is easy to 
see tha t , in the matr ix representation affording r)U the matr ix for an element of 
order 4 is similar to diag {y/^l, — y/ —\, 1, — 1}. Thus , the matr ix for an 
element of order four has de te rminant — 1 . Since X12 on N(Sn) is a direct sum 
of 3 such representations, wre get t ha t the matr ix for an element of order 4 
in the representation affording X12 must also have de te rminant — 1 . This 
implies G is not simple, proving the lemma. 

3.2 The case n = 14. Here the relations above Equat ion (2.1) imply tha t 
p = 5 or 13. The next three lemmas provide useful information about a 
character of degree 14 and its values. 

L E M M A 3.5. Let G be an index Jour simple group with an irreducible character, 

X14, of degree 14 in BQ(p). Let x4 and w denote elements of order 4 and 2, respec

tively, in N(S)p. Then 

1) Xu(x4) = Oor ±2i. 

2) Ifxu(xt) = ± 2 ^ Men xu(w) = - 2 . 

3) J / x u W = 0,thenXuW = 2. 

Proof. Suppose first t ha t p = 13. Then N = N(SU) has three characters 
Vu V2, y]z of degree 4 and four linear characters \po = 1N, \pi, \p2, ^3 where yp\{x\) = 
— 1,^2(^4) = i, and \pz = \p2> Note t ha t 

XU\N = ?7l + ??2 + î?3 + 01 + 02 

where 0i and 02 are linear characters . Now, in the matr ix representat ion 
affording 77u the matr ix for x4 is similar to diag {1, —l,i, —i) and has determi
nan t — 1. But in the matr ix representation affording xi4, the matr ix for x4 

must have de terminant 1 as G is simple. As a consequence, we must have 
0i + </>2 = ^0 + ^ 1 , 2^2, or 2\pz. These possibilities yield xu(xù = 0, 2i, —2i 
a n d x u ( w ) = 2, —2, — 2, respectively. 

When p = 5, x^Lv = 317 + 0i + 02 where 77 is the unique character of 
degree 4 for N = N(S$) and 0i, 02 are linear. T h e same argument as above 
yields the desired result. 

L E M M A 3.6. Let G be an index four simple group with an irreducible character 
Xi4 € Bo(p). Suppose that xu(u) = ~2 for an involution co £ N(Sp). Then if Y 
is a subgroup of odd order inG, xi^lris rational-valued. 

Proof. If XA is an element of order four in N(Sp), Lemma 3.5 implies X H ( X I ) 
= ±2i. By switching to x n , if necessary, we may assume xu(x*) = 2i. 

Now let a be a primitive |G|/2°th root of uni ty and 0 a primitive 2 a th root of 
unity, a ^ 3. P u t K = Q(a) and L = i£(/3). There is an automorphism, 0-, 
of L which fixes i£ and takes j3 —> /3_ 1 . Since i = pn with n = 2a~2, we have 
i* = — i. Then xif is an irreducible character in B0(p) with xi4a(x4) = —2i. 
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Consideration of the trees in Figure 2.1 clearly shows that xif = XH. Thus, 
since a fixes K, xu and XH agree on elements of odd order. If XH was not 
rational on elements of odd order, it would have an algebraic conjugate distinct 
from XH in Bo(p). But then Equations (2.4) and (2.5) imply G has a character 
of degree 41 or 43, so that 41 or 43 divides \G\, in violation of Lemma 2.5. This 
completes the proof of the lemma. 

LEMMA 3.7. Let G be a simple group whose order is divisible by exactly 7 to 
the first power. If G has a rational-valued character XH of degree 14, then 

1) if xz is an element of order 3 in C{S7)} then xui^z) = —7, and 
2) \C(S7)\ divides 21. 

Proof. By Schur [15], \G\ = 2° 3& 5C 7 I I e 13'. Let I b e a cyclic subgroup of 
C(S7) of order 7q, where g is a prime dividing |G|. Now 

(xi4|x, 1) = (1/7$) (14 + (q- l)xi4(*,)) 

because xi4 is 0 on 7-singular elements. In all cas.es we must have xu(xo) — 
0 (mod 7). However, xu(%q) — 14 (mod q) yields a contradiction unless q — 2 
or 3. If g = 2, xu(%2) = 0, in violation of Lemma 2.8. If q = 3, xu(%z) = ~ 7 . 
Thus, it follows that C(S7) is a {3, 7}-group. 

Since xu(xz) = —7 for any element of order 3 in C(S7), C(S7) cannot have 
an elementary Abelian subgroup of order 9. Furthermore, if F is a cyclic sub
group of C(S7) of order 9, consideration of (XH|F, 1) yields a contradiction to 
the fact that xu(%9) = 2 (mod 3). We thus conclude that |C(57)| divides 21. 

Now let p = 5. In our present case Lemma 2.5 implies 

(3.1) \G\ = 2a3b5 7dlV13f. 

We begin with the irrational case. Here, Lemmas 2.7 and 2.8 imply XH(W) = 
± 2 , where to is an involution in N(S5). 

LEMMA 3.8. Let G be an index four simple group with an irreducible character 
Xi4 of degree 14 in BQ(5). If xi4 is irrational, then the degree equation for J30(5) is 
1 + 91 = 64 + 14 + 14 and the tree for B0(5) has Type II. 

Proof. As XH is irrational it has a distinct conjugate in BQ(5), so that BQ(5) 

has at least two characters of degree 14. Obviously the tree for B0(5) is not of 
Type III. If it is of Type I, the degree equation is 1 + x + y = 14 + 14. The 
only possible solutions are 1 + 6 + 21 = 14 + 14 and 1 + 11 + 16 = 14 + 14. 
The first solution implies G is isomorphic to A7 by Lemma 3.1. But in ^47 the 
two characters of degree 14 are rational. The second solution contradicts 
Lemma 3.3. 

If the tree for B0(5) is of Type II, then the degree equation is 1 + x = w 
+ 14 + 14. In this case xi4 is not real, so xi42 does not involve 1. Now the 
alternating part, 0gi, of xi42 is + 1 on 5-elements, so it must involve the char
acter of degree x. Thus x ^ 91 and the only possible solutions to the degree 
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equation are (1) 1 + 36 = 9 + 14 + 14, (2) 1 + 81 = 54 + 14 + 14 and 
(3) 1 + 91 = 64 + 14 + 14. 

The first solution contradicts Lemma 3.2. In the second solution Lemmas 2.1 
and 2.2 yield b = 4 with X54 6 BQ(S). This is impossible. This contradiction 
completes the proof of Lemma 3.8. 

LEMMA 3.9. Let G be an index jour simple group with an irrational irreducible 
character of degree 14 in BQ(5). Then G is isomorphic to the Suzuki group 5z(8). 

Proof. The previous Lemma 3.8 implies that the degree equation for BQ(O) 
is 1 + 9 1 = 64 + 14 + 14, where the two characters of degree 14 are com
plex conjugates. In Equation (3.1), consideration of Bo(5) H BQ(2) yields 
a = 6 by Lemma 2.1. 

Let co be an involution in iV(55). As %64 is defect zero for 2, X64(co) = 0. 
Now as we saw in the proof of Lemma 3.6, X9i must be the alternating part of 
Xi42. So X9i(co) = è(xi42(co) - 14) and X9i(«) = x i*M + Xu(co) - 1. This 
information implies xu(u) — —2 and X9i(w) = — 5. Computation of the 
coefficient a (co, co, x6) yields |C(co)| 2 = 212 3& 7d~l IV 13 '-1 . 

In the present case Lemma 3.6 implies xu is rational on elements of odd 
order. In particular, Schur [15] implies \G\ = 26 3& 5 7d IV 13 ' with d S 2, 
e ^ 1, a n d / ^ 1. From the form of |C(co)|2 given above it is clear that d = 1, 
e = 0, a n d / = 1. 

If s3 is an element of order 3 in Z(Sz), x^ fe ) = 2 (mod 3). Consideration of 
the coefficient a(z3, 23, x$) shows that at most 32 divides \G\. At this point we 
know (from Equation 3.1) that \G\ = 26 3& 5 7 13, and a count of Sylow 
5-subgroups shows 6 = 0 (mod 4). Thus we conclude that b = 0. 

Next suppose x2 represents a class of involutions other than co's. Put x n f e ) 
= s and X9i(x2) = /. Since X64(#2)

 = 0» Equation (2.1) implies / = 2s — 1. On 
the other hand X91 is the alternating part of X142, so that t = %(s2 — 14). 
The only values of s satisfying both equations are 5 = — 2 and 6. Now Lemma 
2.6 implies a(co, x2, x5) = 0, which gives the relation 5/ = 26s + 91. This is 
a contradiction. So G has one class of involutions. 

Now \G\ = 26 5 7 13, G has 1 class of involutions, and |C(co)| = 26. By 
Suzuki's classification theorem in [17], we see that G is isomorphic to 52(8). 
It is an easy matter to verify that 5z(8) is an index four simple group with 
p = 5 and BQ(5) = {1, X91, X64, X14, X14}. This proves Lemma 3.9. 

We next consider the rational case with n = 14 and p = 5. Throughout 
this case, Lemma 3.5 implies Xi4(co) = 2, where co is an involution in iV(55). 
The work of Schur [15] implies 

(3.2) |G| = 2a3&5 7d I I e 13 / with a ^ 25, b S 9, d ^ 2, e ^ 1 a n d / ^ 1. 

LEMMA 3.10. Let G be an index four simple group with a rational valued ir
reducible character of degree 14 in B0(5). Then the possible solutions for the degree 
equation of BQ(5) (in which all degrees are at least 14) are: 
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1) 1 + 91 - 39 + 39 + 14 14) 1 + 26 + 176 = 189 + 14 
2) 1 + 16 + 21 = 24 + 14 15) 1 + 36 + 81 = 104 + 14 
3) 1 + 16 + 36 = 39 + 14 16) 1 + 56 + 56 = 99 + 14 
4) 1 + 16 + 81 = 84 + 14 17) 1 + 66 + 91 = 144 + 14 
5) 1 + 16 + 96 = 99 + 14 18) 1 + 66 + 486 = 539 + 14 
6) 1 + 21 + 36 = 44 + 14 19) 1 + 81 + 156 = 224 + 14 
7) 1 + 21 + 56 = 64 + 14 20) 1 + 81 + 196 = 264 + 14 
8) 1 + 21 + 91 = 9 9 + 1 4 21) 1 + 81 + 256 = 324 + 14 
9) 1 + 21 + 96 = 104 + 14 22) 1 + 91 + 156 = 234 + 14 

10) 1 + 21 + 216 = 224 + 14 23) 1 + 91 + 216 = 294 + 14 
11) 1 + 26 + 26 = 39 + 14 24) 1 + 91 + 286 = 364 + 14 
12) 1 + 26 + 36 = 49 + 14 25) 1 + 91 + 546 = 624 + 14 
13) 1 + 26 + 91 = 104 + 14 26) 1 + 91 + 1056 = 1134 + 14. 

Proof. If the tree for 50(5) is of Type III, the degree equation for J30(5) is 
1 + 2x + y = 14 and there is no solution. If the tree is of Type II, the degree 
equation is 1 + x = 14 + 2x. Since XH and Xx are adjacent in the tree, Lemma 
2.3 implies xuXx involves XH and consequently XH2 involves Xx- Therefore 
x < 105. This leads to solution 1). 

If the tree is of Type I, then the degree equation islJrx-}-y = z-\-wf 

where z or w is 14. If z = 14, Lemma 2.3 implies Xw is involved in XH2, so that 
w < 105. This yields solutions 2) - 9), 11) - 13), 15) and 16). 

If w = 14, Lemma 2.3 implies Xx is involved in xi42. So x < 105 and x = 
1 (mod 5). If x = 96, then X96 must be involved in 0iO5, the symmetric part of 
Xi42, so that 0io5 = X96 + 09 where </>9 has value —1 on 5-elements. However, 
this would imply <£9 involves Xz- This is ridiculous because 1 + 96 + y = 
14 + z. Consequently, we must have x ^ 91. 

Now Lemma 2.3 implies xi4X* involves XH, Xx and Xz, so that z ^ 14x — x 
— 14 = 13x — 14. With this information one finds that the possible solutions 
are 2) — 26). This finishes the proof of Lemma 3.10. 

LEMMA 3.11. Under the hypotheses of Lemma 3.10, solutions 2) — 6), 8) — 9), 
11) — 23), and 26) can be eliminated. 

Proof. Recall that Equation (3.2) is in effect. Solutions 3), 9), 12), 14), 15), 
19), 23) and 26) can be eliminated by consideration of BQ(5) H Bo(13) using 
Lemma 2.1, the work of Brauer [4], and the work of Stanton [16]. As a typical 
example, look at solution 19). Here Lemma 2.1 implies xi4 £ Bo(13). Then 
Stanton [16] gives that C(Sn) = Su. It then follows that all irreducible 
characters not in JB 0(13) are defect zero for 13. Therefore xsi and X224 £ B0(13) 
and both must be exceptional by Brauer [4]. But this is ridiculous. 

Solutions 5), 6), 8), 16), 18), 20) can be eliminated by consideration of 
-So (5) C\ BQ(11) as above. For example consider solution 20). Here Brauer's 
work [4] implies X14, Xsi, X196 £ -Bo(ll), contradicting Lemma 2.1. 

Solutions 2), 4), 11), 13), 17), 21), and 22) can be eliminated by the fol
lowing argument. If 72 divides \G\, then Lemma 2.9 implies X14 & B0(7). But 
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in each solution cited, this is inconsistent with Lemma 2.1 so 72 does not divide 
\G\. Now consideration of J30(5) C\ BQ(7) leads to a contradiction as above. 
For example, in solution 13), Lemma 2.1 implies .Bo(5) Pi BQ(7) — {1, X26, X1Q4}. 
Then by Brauer [4], \N{Si)\ C(5 7 ) | = 2 and the degree equation for BQ(7) 
would be 1 + 26 = 27, a contradiction. 

L E M M A 3.12. Let G be an index four simple group with p = 5. Then the degree 
equation for B0(5) is not 1 + 91 = 39 + 39 + 14. 

Proof. We sawr in the proof of Lemma 3.10 tha t in this case the two characters 
of degree 39 are complex conjugates and X9i is involved in XH 2 . Obviously 
3 0 ( 5 ) r\ 5 0 (13 ) = {1, X14}, so t ha t C(SU) = Su by S tan ton [16]. If d = 2 
in Equat ion (3.2) then Lemma 2.1 implies XH G B{)(7), contradict ing Lemma 
2.9. So d = 1 and 5 0 ( 5 ) P\ -So(7) = {1, X39, X39}. Brauer [4], then implies 
\N(S7): C(5 7 ) | = 3 and tha t the degree equation for B0(7) is 1 + 39 = x + y, 
where x,y = ~ 1 (mod 7) and x, y == 0 (mod 5) . The only possible solution to 
the degree equation is 1 + 39 = 20 + 20. Now Lemma 2.1 implies BQ(7) H 
5o(13) = {1, X20, X2(/} so tha t \N(SU): C(SU)\ = 6. If 11 divides |G|, then 
J30(5) P\ J3o(ll) = {1, X39, X39}. This would imply t h a t X39 and £39 were excep
t i o n a l for p = 11. However, since they are already exceptionals for p = 7, 
they are integer valued on 11-elements. This contradict ion implies 11 does not 
divide \G\. Thus , by Equat ion (3.2), \G\ = 2G 3& 5 7 13. A count of S5 's and 
Sn's shows \G\ = 29 3 3 5 7 13, 221 3 3 5 7 13, 2 s 3 7 5 7 13, or 2 1 7 3 7 5 7 13. 

Since X91 is involved in X142, either X91 = #91 or 0iO5 = X91 + X14, where 0 n 

is the a l ternat ing par t of X142 and </>i05 is the symmetr ic par t . First suppose 
X9i = ^9i. Since xi±M = 2, we have X9i(w) = — 5 and Equat ion (2.1) implies 
X39(w) = — 3. This contradicts Lemma 2.8. On the other hand, if </>io5 = X91 
+ XH, then xi4(w) = 2 implies X9i(w) = 7 so t ha t X3g(w) = 3. Now considera
tion of a(cc, co, X5) shows ô is even, a contradict ion. 

L E M M A 3.13. Let G be an index four simple group with p = 5. Then the degree 
equation for BQ(5) is not 1 + 21 + 216 = 14 + 224. 

Proof. In Equat ion (3.2) if d = 2, Lemma 2.1 implies XH G Bv(7), contra
dicting Lemma 2.9. Thus d = 1. Consideration of B0(5) P\ B0(ll) and J50(5) 
H 5 0 (13 ) shows t ha t e = / = 0. Consequently \G\ = 2a 3ft 5 7. A count of 
<S5's now gives a = 6 + 1 (mod 4 ) . 

T h e tree for .Bo(5) is of T y p e I. From Corollary 2.4 it is apparen t t ha t the 
tree is 

1 XU X21 X224 X216 

Then Lemma 2.3 implies 

(3 .3) X14X21 = XH + X21 + X224 + #35, 

where #35 is a character of degree 35. 
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Let co be an involution in N(S5). By Lemmas 2.7 and 2.8, X2i(w) = — 3 , 
1 or 5, and035(co) = —5, — 1 , 3 or 7. Using Equat ion (3.3) above and Equat ion 
(2.1), consideration of the coefficient a(co, co, x5) yields a contradiction in all 
bu t one case. In this case we get the following information: 

Xi4(w) = 2, X2i(w) = 1, X2ie(w) = 0, X224(co) = 0 and 
|C(co)|2 = 2G+436"1 . 

Here co is not a central involution as a = 5. So let x2 be a central involution. 
Then Lemma 2.6 implies a(œ, x2, xb) and a(x2 , x2, x5) are both zero. Let 
r = xi4(^2), ^ = X2i(#2) / = X2ie(^2), and u = X224OK2). Since x2 is a central 
involution, t = 0 (mod 8) and u = 0 (mod 32). Then we get s = 3r — 21 and 

(3.4) 2 5 3 3 7 + 2 5 32 s2 + 22 7 *2 - 24 3 3 r2 - 3 3 u2 = 0. 

W e also know from Equat ion (2.1) tha t l+s + t = r + u. One can easily 
check tha t there are no integral solutions with r even, \r\ < 14 and \s\ < 21. 
This completes the proof of Lemma 3.13. 

LEMMA 3.14. Let G be an index jour simple group with p = 5. Then the degree 
equation for Bo (5) is not 1 + 21 + 56 = 14 + 64. 

Proof. In Equat ion (3.2), consideration of BQ(5) f^ Bo(2) gives a = 6, by 
Lemma 2.1. Fur thermore, we must have d = 1, for if d = 2 Lemma 2.1 implies 
Xi4 6 Bo(7) contradicting Lemma 2.9. If 11 divides \G\, xu $ Bo(11), so tha t 
Bo(o) H Bo(11) = {1, X21} or {1, X56, X64}. In the first case, Stanton [16] gives 
C(5n) = 5 n . But then any irreducible character not in Bo(ll) is defect zero 
for 11, a contradiction. In the second case, since X64 Ç 5 0 ( 1 1 ) , we must have 
| iV(5n): .C(5n)! = 2. Consequently, the degree equation for Bo(11) would be 
1 + 64 = 65, which is absurd. Thus 11 does not divide \G\. Similarly, consider
ation of -So(5) r\ J B 0 ( 1 3 ) shows 13 does not divide \G\. At this point, Equat ion 
(3.2) implies \G\ = 26 3& 5 7; a count of S5 's yields b = 1,5 or 9. 

Now let co be an involution in N(S5). Since X64 is defect zero for 2, X<MM = 0. 
I t follows from Lemmas 2.7 and 2.8 tha t X2i(w) = —3, 1 or 5. Then considera
tion of the coefficient a(co, co, x5) yields a contradiction in all but one case: 
Xi4(co) = 2, X2i(co) = 1, X56(co) = 0, X64(co) = 0 and |C(co)|2 = 210 3b~\ 

Now Lemma 3.7 implies |C(5 7 ) | divides 21 and if x3 G C(S7) then xu(xz) = 

— 7. Note first tha t \N(S7): C(S7)\ 7^ 2 because of the resulting degree equa
tion for JB0(7). Then a count of S7 's yields \G\ = 26 3 5 5 7 with |iV(57)| = 126 
and |C(S 7) | = 21 or |G| = 2 6 3 9 5 7 with \N(S7)\ = 63 and \C(S7)\ = 21. Con
sideration of (xc(s7), 1), for each x ë B0(5), and the coefficient a(xz, x3, x5) 
showx2i(x 3) = 0, X56(^s) = —28, and X64(x3) = — 20, where x3 Ç C(S7). 

Now consideration of the coefficient a(co, x3, x5) shows |C(x3) | divides 22 

3i/2(&+i) 7̂  g y ^ g orthogonality relations, we have 

\C(x3)\ è £ x ( * s ) x f o ) = 1234, 

where the sum is over all x G ^>o(5). Therefore 6 = 9, \G\ = 26 3 9 5 7, and 
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| iV(57)| = 63. We also have |C(x 3) | = 22 34 7, 3 5 7, 2 3 5 7 or 22 3 5 7. Now C(x3) 
is solvable in all these cases (cf. Wales [19]), so X(xz) has a subgroup K of 
order 34 7 or 3 5 7. But \NK(S7)| = 21 or 63, which contradicts Sylow's Theorem. 
This final contradiction completes the proof of Lemma 3.14. 

L E M M A 3.15. Let G be an index four simple group with p = 5. Then the degree 

equation for 5 0 ( 5 ) is not 1 + 91 + 286 = 14 + 364. 

Proof. If 72 divides |G|, Lemma 2.1 implies xi4 G -Bo (7), contradict ing Lemma 
2.9. Consequently, from Equat ion (3.2) we have \G\ = 2a 3b 5 7 11 13. A count 
of S5 's yields a = b + 2 (mod 4) . Let m = \N(Sn): C(Sn)\. If m = 2, then 
the degree equation for J3 0 ( l l ) would be 1 + 364 = 365; bu t 365 doesn ' t 
divide \G\. Also, since C(S5) = 5 5 , m 9e 10, so tha t m = 5 by Burnside's 
Theorem. Now we see tha t C(Sn) has a fixed-piont-free automorphism of 
order 5. Hence, by Thompson ' s thesis [18], C(Su) is nilpotent. I t follows tha t 
| C ( 5 n ) | = 2h 3k 11, where h, k = 0 (mod 4) . Now a count of S n ' s shows tha t 
a is odd, and consequently b is odd too. 

In Lemma 3.10, the present degree equat ion arose with %9i involved in xi42. 
Consequently, either 09i = %9i is the al ternat ing par t of xu 2 or the symmetr ic 
pa r t is </>io5 = X9i + xu- This makes X9i(w) = —5, or 7 since xi4(w) = 2. Now 
Lemmas 2.7 and 2.8 imply tha t X286(w) = ^ with \u\ ^ 58 and u = 2 (mod 4) . 
Using Equat ion (2.1), consideration of the coefficient a(o>, w, x5) leads to a 
contradiction of the information found above. This completes the proof. 

L E M M A 3.16. Let G be an index four simple group with p = 5. Then the degree 
equation for £ 0 ( 5 ) is not 1 + 91 + 546 = 14 + 624. 

Proof. Application of Lemmas 2.1 and 2.9 and consideration of block inter
sections, gives \G\ = 2a 3& 5 7 13 from Equat ion (3.2). Fur thermore , since 
C{Su) = 5i3, a count of S^ 's yields a = b + 2 (mod 4) . 

As in Lemma 3.15, X9i is involved in xu 2 , so t ha t either 091 = X9i or </>io5 = 
X9i + Xi4- Again XH(W) = 2 implies X9i(w) = —5 or 7. Now Lemmas 2.7 and 
2.8 imply tha t X546(^) = u with \u\ ^ 110 and u = 2 (mod 4) . Consideration 
of the coefficient a(co, co, x-0) yields a contradict ion in all bu t the following cases: 

X l 4 ( w ) X 9 l ( w ) X 5 4 6 ( C O ) X624(CO) | C ( W ) | 2 

1) 2 - 5 6 0 2 a + 5 3 & + 1 

2) 2 - 5 - 9 0 - 9 6 2G + 53& + 1 

If x2 is an involution not conjugate to co, Lemma 2.6 together with the coeffi
cients a(co, x2, x5) and a(x2 , Xz, x-0) gives a contradict ion. (Note t ha t since 
09i = X9i or 0io5 = X9i + Xi4, the value of xi4 determines the value of X9i by 
Equat ion (2.6).) Thus , in both cases, G has one class of involutions and a = 5. 

In both cases 1) and 2) , Lemma 2.1 implies X624 G B0(2), a contradict ion 
since X624 must be in a block of defect 1. 

L E M M A 3.17. If G is an index four simple group with an irreducible character 
of degree 14 in J3o(5), then G is isomorphic to AT or Sz(S). 
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Proof. If the character of degree 14 is irrational, then G is isomorphic to 
Sz(8) by Lemma 3.9. If the character of degree 14 is rational, Lemmas 3.10-
3.16 imply that G must have a character of degree strictly less than 14 in 
Bo(o). This degree must be 6, 9 or 11 by the relations above Equation (2.1). 
Now Lemmas 3.1-3.3 show that G is isomorphic to AT. 

Now let p = 13. If xi4 is irrational then it has at least one distinct conjugate 
which must also be in Bo (13). It is then clear that the tree for J30(13) must be 
of Type III, and so the degree equation for B0(13) has the form 

(3.5) 1 + 14 + 14 + x = y, 

where the primes dividing xy come from the set {2, 3, 5, 7, 11}. 

LEMMA 3.18. The solutions to Equation (3.5) are (x, y) = (35, 64), (27, 56), 
(48, 77), and (196, 225). 

Proof. Let </>i05 and 09i be respectively the symmetric and alternating con
stituents of the character %i42. If $105 is irreducible then x = 105. But then 
y = 134 which is impossible. Thus XH2 has a norm of at least 3. Then the 
character Xi42xi4 contains xu at least 3 times as a constituent. Then an exami
nation of character values at an element of order 13 implies that Xy appears 
at least twice as a constituent of Xi42xi4- Thus y ^ ^ (143 — 42) = 1351. Now 
a short calculation utilizing the relations above (2.1) yields the solutions to 
Equation (3.5) as listed. 

LEMMA 3.19. There are no index four simple groups possible in the cases (x, y) 
= (27, 56), (48, 77) and (196, 225). 

Proof. Let co be an involution in N(Sn). Then Lemmas 2.7 and 2.8 imply 
thatxi4(w) = ± 2 . When (x, y) = (27, 56), Lemmas 2.7 and 2.8 give X27(w) = 
3 or —1. Then the class algebra coefficient a(co, co, x13) and a count of Sylow 
13-subgroups yield a contradiction in each possible case. Similarly when 
(x, y) = (48, 77), Lemmas 2.7 and 2.8 give X77(co) = 1, 5 or —3. Then a(co, 
co, xu) and a Sylow 13-subgroup count give a contradiction. 

When (x, y) = (196, 225), consideration of J30(13) H 5 0 ( 7 ) implies that 
XH and xi4 are in B0(7). Let x7 be an element of order 7 in the center of a 
Sylow 7-subgroup. Let xu(xi) + X14OK7) = w. Clearly n is an integer. More
over, w/14 = 2 (mod 7). Thus n = 28 (mod 49). But this is impossible since 
|XH(^7)I < 14. This completes the proof of Lemma 3.19. 

LEMMA 3.20. If G is an index four simple group with degree equation 1 + 14 + 
14 + 35 = 64 for B0 (13), then G is isomorphic to Sz (8). 

Proof. Here Lemmas 2.7 and 2.8 imply that xuM — ± 2 . Also Lemmas 2.1 
and 2.2 applied to B0(2) H B0(13) imply that \G\ = 26 3* 5C 7d I P 13. Let x2 

be any involution in G. Let u = xu (#2) then it is easy to verify that a (x2, X2, X13) 
is positive. Thus by Lemma 2.6, it follows that G has exactly one class of involu
tions, and in particular co is a central involution. Now consideration of the 
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coefficient a(co, «, x13) yields Xl4(a>) = - 2 , and iC(a>)|2 = 26 3b 5 e " 1 7"-1 I P . 
Since xu(w) = — 2, Lemma 3.6 implies t ha t %i4 is rational-valued on elements 
of odd order. Consequently, Schur [15] gives c ^ 3, d ^ 2, e ^ 1. From the 
form of |C(co)|2 it follows tha t c = l o r 3 , d = l , e = 0, and b is even. A count 
of Sylow 13-subgroups now yields c = 1 and b = 0 or 6. 

T o show b = 0, we proceed as follows. The symmetr ic par t #105 of xu 2 has 
0io5(#13) = 1 and 0105 does not involve 1G as x u is not real. If 0iO5 involves 
X14 or xi4, then 0iO5 = 0i4 + 09i- However 0i4(co) = —2 implies 09i(w) = 11, 
which contradicts Lemma 2.7. Consequently, we must have </>io5 = J2\=i X35(i). 
Let S3 (i Z(S3) be an element of order 3. As x u f e ) is rational, X14623) = 2 (mod 
3). We have xssfe) = (l/3)0io5(z8) = ( l / 6 ) ( x i 4 2 f e ) + x u W ) ) . Wi th this 
information consideration of a(z3, 23, X13) shows tha t b ^ 4. T h u s è = 0. 

Now |G| = 2 6 5 7 13, G has one class of involutions, and |C(co)| = 26 . So 
the classification [17] of Suzuki proves t ha t G is isomorphic to Sz(8). I t is an 
easy ma t t e r to verify t ha t Sz(8) is an index four simple group with degree 
equation 1 + 14 + 14 + 35 = 64 for BQ(13). This completes the proof of 
Lemma 3.20. 

Now we consider the case t h a t x u is a rational character . Here it follows 
from Lemma 2.5 and Schur [15] t ha t 

(3.6) \G\ = 2 a 3 6 5 c 7 M l e 13, where a g 25, b ^ 9, c g 3, d S 2, and 

e S 1. 

Also Lemma 3.5 implies t ha t xi4(w) = 2. Now consideration of F igure 2.1, 
the relations above Equa t ion (2.1) and L e m m a 2.5 yield t ha t the tree for 
J50(13) cannot be of Type I I . 

L E M M A 3.21. There are no index four simple groups having a rational character 
of degree 14 in 2$0(13) when the tree for £ 0 (13 ) is of Type III. 

Proof. Suppose not, then Equa t ion (2.5) implies t ha t the degree equation 
for 2$o(13) has the form 15 + 2x = w. I t follows from the relations above 
Equa t ion (2.1) t ha t w is the degree of the 3 exceptional characters in Bo(13). 
Since X14 is rational, it must be the case t ha t X142 has a norm of a t least 3. 
Then X143 must have X14 as a const i tuent at least 3 times. T h u s X143 has the 
sum of the 3 exceptional characters as a const i tuent a t least twice. T h u s 
6w ^ 143 — 42, whence w < 451. I t is now an easy ma t t e r to verify t ha t the 
only possible degree equations for Bo(13) consistent with the relations above 
Eq. (2.1) are 1 + 14 + 66 + 66 = 147 and 1 + 14 + 105 + 105 = 225. In 
the former case, Lemma 2.1 and Brauer ' s work [4] applied with 11 as the prime 
yield a contradict ion. 

In the lat ter case, Lemmas 2.7 and 2.8 imply t ha t |xios(w)| ^ 9. Let x2 be a 
central involution. Then the coefficients a(œ, 00, x i 3 ) , a(co, #2, xu), a(x2 , #2, #13) 
and a count of Sylow 13-subgroups yield a contradiction. This completes the 
proof of Lemma 3.21. 
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Thus we see that the tree for 50(13) must be of Type I and the degree 
equation for -So(13) has the form 

(3.7) 15 + x = w + z. 

Here Corollary 2.4 implies that x ^ 144 + 143 — 15 = 41145. Also if d91 is 
the alternating part of xi42> then the character xi4 09i has xi4 as a constituent. 
Thus xi4 09i has Xw or Xz as a constituent; thus min (w, z) ^ 1260. Using these 
bounds and the relations above Equation (2.1) it is a straightforward but 
tedious matter to verify that the only possible solutions to Equation (3.7) are 

X w z X w z 
1; ) 35 25 25 34; 924 264 675 
2; ) 40 25 30 35; 945 64 896 
3; ) 66 25 56 36; 945 168 792 
4; 100 25 90 37; 945 480 480 
5; ) 105 30 90 38; 1080 420 675 

e; ) 105 56 64 39; 1080 220 875 
7; ) 126 64 77 40; 1470 77 1408 

s; ) 165 90 90 41; 1470 675 810 
9; 196 64 147 42; 1470 225 1260 

10; ) 243 90 168 43; 1470 693 792 

n; 1 300 90 225 44; 1782 147 1650 
12; ) 300 147 168 45; 1920 675 1260 
13; ) 352 147 220 46 ) 2250 25 2240 
14' ) 360 25 350 47 ) 2310 675 1650 
15' ) 378 168 225 48̂  ) 2640 675 1980 
16; ) 490 25 480 49; ) 2640 30 2625 
17, ) 490 64 441 50; ) 2640 225 2430 
18 ) 495 90 420 51 ) 2640 576 2079 
19; ) 495 30 480 52; ) 2700 90 2625 
20; ) 495 160 350 53 ) 2835 225 2625 
2i; 560 25 550 54 ) 2835 420 2430 
22; ) 560 225 350 55 ) 2835 1200 1650 
23; ) 594 168 441 56 ) 3402 792 2625 
24; 729 264 480 57 ) 3675 90 3600 
25; ) 729 168 576 58s ) 3675 1260 2430 
26; ) 729 324 420 59 ) 4200 90 4125 
27 ) 750 90 675 60 ) 5760 875 4900 
28 ) 750 324 441 61 ) 6600 675 5940 
29 ) 768 90 693 62 ) 6930 225 6720 
30 ) 768 108 675 63 ) 8100 30 8085 
31 ) 880 220 675 64 ) 9408 675 8748 
32 ) 924 64 875 65 ) 11025 480 10560 
33 ) 924 147 792 66 ) 12000 675 11340 
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67) 12000 108 11907 70) 23760 675 23100 
68) 12936 576 12375 71) 32340 675 31680 
69) 13365 420 12960 72) 36960 225 36750. 

We have here excluded solutions to Equat ion (3.7) with x, w, or z < 14 
since they have been considered in previous cases when n < 14. 

In the next several lemmas we show tha t none of the solutions to Equat ion 
(3.7) gives an index four simple group. 

L E M M A 3.22. There are no index four simple groups with degree equation (3.7) 
for BQ(13) for the solutions 1) - 5) , 7) - 14), 16) - 35), 37) - 53), and 
55) - 72). 

Proof. Here Equat ion (3.6) and consideration of Bo (13) C\ BQ(11) eliminates 
solutions 7) , 8) , 18) - 20), 24), 29), 31) - 34), 40) , 43) , 44) , 47) - 51), 
56) - 59), 61) - 63), 65) and 68) - 72). 

Now Lemma 2.9 and consideration of Bo(13) P\ -Bo(7) eliminates solutions 
2) - 5) , 9) , 10), 12) - 14), 16), 17), 21), 23), 25) - 28) , 30), 37) - 39), 
41), 42), 45), 52), 55), 57), 58), 60), 64), 66) and 67). 

Solutions 35) and 46) are eliminated by Lemmas 2.1 and 2.2 applied to 

B0(13) H BQ(2) and BQ(13) H J50(o), respectively. 
In the case of solution 1), if c = 2, then %35 cannot be in i30(5), whence 

Lemma 2.1 yields a contradiction. Similar a rguments eliminate solutions 11), 
22) and 53). This completes the proof of Lemma 3.22. 

In the remaining cases, class algebra coefficients involving w and other 
involutions are crucial to the arguments . 

L E M M A 3.23. There are no index four simple groups with degree equation (3.7) 
for Bo(13) for the solutions 6) and 54). 

Proof. Wi th solution 6) , Lemmas 2.1 and 2.2 applied to B0(2) H B0(13) 
yield a = 6. Now Lemmas 2.7 and 2.8 imply tha t X5Ô(W) = 0, 4 or —4 for any 
exceptional character X56- Then if x2 is a central involution, Lemma 2.8 and 
the coefficients a(w, co, X13), a(œ, x2, Xu) and a(x2, X2, Xu) yield a contradict ion 
in each case. 

In the case of solution 54), Lemma 2.3 implies t ha t X14X420 = X2835 + #3045, 
where X420 is any one of the exceptional characters in i30(13), and #3045 is the 
sum of the remaining irreducible const i tuents of X14X420. Now #3045 cannot have 
Xi4 as a const i tuent since X142 would then have X420 as a const i tuent which is 
absurd. But since #3045 is not defect zero for 13, it mus t contain some const i tuent 
from .Bo(13). Now consideration of character values a t an element of order 13 
leads to a contradiction, completing the proof of Lemma 3.23. 

L E M M A 3.24. There are no index four simple groups with degree equation (3.7) 
for Bo(13) with solution 15). 

Proof. Here Equat ion (3.6), Lemma 2.9 and Lemma 2.1 applied to Bo(13) P\ 
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B0(7) and 50(13) H B0(ll) imply that |G| = 2° 3& 5e 7 13 where c = 2 or 3. 
A count of Si3 subgroups yields a + 46 = 9 (mod 12) when c = 2 and 
a + 4b = 0 (mod 12) when c = 3. 

Now if 5 = xi68(w) and t = X225(i)(w), then Lemmas 2.7 and 2.8 give 
\s\ ^ 12 and s = 0 (mod 4), while |/| ^ 17 and t = 1 (mod 4). Then Equation 
(2.1) and consideration of the coefficient a(w, co, xi3) yield a contradiction 
unless we have one of the following sets of values. 

X H ( C O ) X378(CO) X168(W) X22O (' }(^) |C(CO)|2 

1) 2 -6 - 8 5 2a+13&-25c 

2) 2 6 4 5 2a+236-25c+1 

3) 2 -18 0 -15 2a+J365c 

4) 2 - 3 0 - 1 2 - 1 5 2a+23&-15c+1 

It is apparent that co is not a central involution in any of these cases. Let x2 

be a central involution. It follows from Lemma 2.1 that if a ^ 6, then xi4 and 
X378 are in BQ(2). Even when a < 6, xi4 and X378 must be in the same 2-block. 
Therefore XIA(X2) = X37s(̂ 2) (mod 4). Now Xi6s(^2) = 0 (mod 8), so Equation 
(2.1) implies that X225('} (x2) = 1 (mod 4), for i = 1,2 and 3. Then Lemma 2.6 
and the coefficients a(oo, x2, Xu) and a(x2, x2, Xu) yield a contradiction in 
cases 1) and 2) above. 

To eliminate the cases 3) and 4), wre concentrate on the prime 7. Now 
Lemma 2.1 implies X225(0 G B0(7). The work of Brauer [4] then shows \N(S1): 
C(S7)| = 6 and the tree for .Bo(7) is a straight line. The degree equation for 
B0(7) is 1 + 3(225) = x + y + z, where x, y, z = 13 (mod 91). The only 
possible such equation is 1 + 3(225) = 104 + 104 + 468. 

Now by Lemma 3.7, and a count of S7 and Su subgroups in cases 3) and 4) 
we obtain C(Si) = S7. Consideration of the character X142 on 13-elements 
implies that the symmetric part, </>105, of X142 has 1 as a constituent. Let </>i05 = 
1 + 0io4. Since (t>ioi(x^ = —1, <£io4 must involve an irreducible from B0(7). 
Thus </>io4 is irreducible. Now Brauer [4] implies that we have the following 
equation. 

(3 .8) 1 + 3X225 0 ) (^) = 01O4(w) + Xl04(co) + X46s(w). 

S i n c e <t>io±(o>) = 8 a n d x?.25 ( i )(w) = —15 in cases 3) and 4), Equation (3.8) 
simplifies to XKM(CO) + X46s(w) = —52. This contradicts the fact, given by 
Lemmas 2.7 and 2.8 that |xio4(«)l ^ 8 and |x46s(w)| ^ 36. This completes the 
proof of Lemma 3.24. 

Our final lemma deals with solution 36) of Equation (3.7). 

LEMMA 3.25. There are no index four simple groups with degree equation (3.7) 
for J 3 0 ( 1 3 ) with solution 36). 

Proof. Here Equation (3.6), Lemmas 2.1 and 2.9 and consideration of 
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S o ( l l ) ^ Bo(13) and 5 0 (13 ) C\ 5 0 ( 7 ) yield 

(3.9) \G\ = 2a 3* 5C 7 11 13, a g 25, 6 g 9, c ^ 3. 

If c = 1 in Equat ion (3.9) the coefficient a ( x n , #n , xu) implies t ha t G has no 
elements of order 55. Then consideration of BQ(5) C\ BQ(11) implies tha t 
\N(Sb): C(S5)\ ?* 2. T h u s \N(Sb): C(Sb)\ = 4 and the trees for £ 0 ( 5 ) are 
those il lustrated in Figure 2.1. I t is easy to verify t h a t the tree for BQ(O) mus t 
be of Type I. Now Lemma 2.3 implies t ha t XH 2 involves the character , rj, 
next to the principal character in the tree. Now t\ ^ x u so r\ must be a character 
not in J50(13) such tha t 77(1) = 4 (mod 5) and 77(1) ^ 196. I t is now clear 
tha t the degree equation for 5 0 ( 5 ) mus t be 1 + 26 + 26 = 39 + 14 or 1 + 
26 + 91 = 14 + 104. In each case Lemma 2.1 and consideration of -Bo(5) (~\ 
£ o ( l l ) yield a contradiction. T h u s c = 2 or 3 in Equa t ion (3.9). 

Now set 5 = xi68(w) and t = xvài(w). Then Lemmas 2.7 and 2.8 give \s\ ^ 
12 and 5 = 0 (mod 4) , while |/| ^ 60 and / = 0 (mod 4) . Lemma 3.7 implies 
t h a t w does not centralize any 7-element. Now Equat ion (2.1), a count of Sn 
subgroups, and consideration of the coefficient a(co, co, Xu) yield a contradict ion 
unless we have one of the following sets of values. 

XH(CO) X 9 4 5 ( < ) ( « ) Xl68(w) X792(w) |C(«)|» 
1) 2 5 0 8 2 a+93&-35 c + 1 

2) 2 5 8 0 2a+43&"35cll2 

3) 2 - 3 9 8 - 4 4 2 a + 1 3 & - 2 5 c - 1 l l 2 

4) 2 45 12 36 2a+23&+25c 

5) 2 45 0 48 2a+33& 50+1 

Now let x2 be any central involution. I t follows from Lemma 2.1 t h a t xu G 
2*o(2), whence x n f e ) = 2 (mod 4) . Also if a ^ 7, then xies and X792 are also 
in 2>0(2); thus xns(x2) = 8 (mod 16) and X792(x2) = 8 (mod 16). Even if 
X168 and X792 are not both in 2>0(2) they must be in the same 2-block, B, by 
Lemma 2.1. If B ^ B0(2), then xie,s(x2) = Xi92(x2) (mod 16). These facts 
yield t ha t w cannot be a central involution in any of these cases. Next Lemma 
2.6 and consideration of the coefficients a(co, x2, Xu) and a(x2, x2, Xi3) give a 
contradiction in cases 1) — 4) above. 

In case 5) if a ^ 7, then the coefficients a(co, x2, Xi3) and a(x2 , x2j xu) imply 
t ha t X i 4 (x 2 ) = 6, X945(i)(^2) = - 3 7 5 , Xi68(x2) = - 1 0 4 , and X792(x2) = - 2 6 4 . 
If y2 is any other involution, then the coefficients a(00, y2, x i 3 ) , a(x2 , y2, xu) 
and a(y2, y2, xu) imply tha t x u ^ ) = 10, X945(')(3;2) = 285, x i e s ^ ) = 32, 
and X792(^2) = 264. Now by Glauberman 's Z*-Theorem (cf. [10]), there is an 
involution x2 in the same 5 2 subgroup with x2 such t ha t x2 and x2 are conju
gate. Let y2 = x2x2 ' , then restriction of xies and X14 to (x2l y2) yields t ha t 
Xiwiji) ^ 40. This contradiction eliminates case 5) when a ^ 7. 

In case 5) when a < 7, the coefficients a(co, x2, Xi3) and a(x2, x2j x i 3) imply 
tha t X H ( X 2 ) = - 2 , X945('}(^2) = - 1 5 , xi68(^2) = - 1 6 , and X792OK2) = 0. 
Here a count of Su subgroups yields \G\ — 2 5 3 6 53 7 11 13. Now by Lemma 3.7 
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|C(57)|/21 and if x3 is a 3-element in C(57), then x n f e ) = — 7. Next set 
^ = Xiesfe) and v = X792(x3), whence X94Ô(^3) = u + v + 6. Since the coeffi
cient a (#2, #3, #13) is non-negative, we find that 5u — v ^ —120. Similarly the 
coefficients a(xn, x3, X13), a(co, x3, #13) and a(x3, Xi3, xi3) yield the inequalities 
U3u + 8v S -3828, Uu - 3v ^ - 6 6 , and 429w + 299*/ + 15444 ^ 0, re
spectively. Here xn is an 11-element. This system of inequalities has no 
solution. This final contradiction completes the proof of Lemma 3.25. 

We now restate our main theorem which follows immediately from Lemmas 
3.1 - 3.3, 3.4, and 3.17 - 3.25. 

THEOREM 3.26. Let G be a finite simple group with a s elf-centralizing Sylow 
p-subgroup whose normalizer has order 4p. If there is a non-principal irreducible 
character in Bo(p) of degree n ^ 15, then G is isomorphic to one of the groups 
0(5 ,3) , Alt MnandSz(8). 
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