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The Hamiltonian dynamics of a single particle in a rotating plasma column, interacting
with an magnetic multipole is perturbatively solved for up to second order, using
the method of Lie transformations. First, the exact Hamiltonian is expressed in terms
of canonical action-angle variables, and then an approximate integrable Hamiltonian
is introduced, using another set of actions and angles, which describe the centre of
oscillation for the particle. The perturbation introduces an effective ponderomotive
potential, which to leading order is positive. At the second order, the pseudopotential
consists of a sum of terms of the Miller form, and can have either sign. Additionally,
at second order, the ponderomotive interaction introduces a modification to the particle
effective mass, when considering the motion along the column axis. It is found that
particles can be axially confined by the ponderomotive potentials, but acquire radial
excursions which scale as the confining potential. The radial excursions of the particle
along its trajectory are investigated, and a condition for the minimal rotation frequency for
which the particle remains radially confined is derived. Last, we comment on the changes
to the aforementioned solution to the pseudopotentials and particle trajectory in the case
of resonant motion, that is, a motion which has the same periodicity as the perturbation.

Keywords: plasma dynamics, fusion plasma, plasma nonlinear phenomena

1. Introduction

A charged particle interacting with an electromagnetic wave of slowly varying amplitude
can experience a ponderomotive force of the Miller type (Gaponov & Miller 1958; Motz
& Watson 1967). If the (generalized) particle has one or more internal degrees of freedom
(e.g. cyclotron motion), the interaction can be attractive or repulsive, depending on the
difference between the wave frequency and the natural frequencies of the internal degrees
of freedom (Dodin, Fisch & Rax 2004; Dodin & Fisch 2006).

A particle can experience oscillating fields in its rest frame (or in its gyrocentre frame)
if it moves through spatially varying corrugated static fields, which can be electrostatic
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(Anderegg et al. 1995) or magnetostatic (Rubin, Rax & Fisch 2023) or both. In (Rubin
et al. 2023), the leading-order ponderomotive pseudopotential, resulting from the average
magnetic field along the particle trajectory, was shown to be independent of the rotation
frequency and the cyclotron frequency of the axial field. In addition, this pseudopotential
is always positive, leading to a repulsive force away from the perturbation region. Particle
motion in electromagnetic fields modelled by E · B = 0 was investigated by (Ochs & Fisch
2023a), in which a particle drifting in a slab experiences only pseudopotentials of the
Miller type, without the always-repulsive leading-order term.

Particle dynamics in these fields is oscillatory in all three degrees of freedom. These
oscillations give rise to higher-order ponderomotive potentials, which can be of use as
a ponderomotive end plug for open field line magnetic confinement devices, including
mirror-type confinement schemes (Baldwin 1977; Gormezano 1979; Post 1987; Ryutov
1988). The end-plug concept considered here utilizes plasma rotation, which is useful in
and of itself as a confinement strategy (Lehnert 1971; Bekhtenev et al. 1980; Volosov &
Pekker 1981; Hassam 1997; Fetterman & Fisch 2008, 2010a,b; Teodorescu et al. 2010;
Fowler, Moir & Simonen 2017; White, Hassam & Brizard 2018; Miller et al. 2023).
Following Pastukhov (1974) and Schwartz et al. (2023), even a small additional confining
potential may have an appreciable effect on the collisional energy loss rate due to the
increased confinement of tail particles, in roughly Maxwellian particle distributions.

The imposition of a multipole field on top of an axisymmetric configuration breaks
the axisymmetry and the associated Noether invariant (Noether 1918). Additionally, it
modifies the existing adiabatic invariant of the perpendicular motion, μ. Consideration
of the system from a Hamiltonian framework allows us to derive these two adiabatic
invariants, while deriving the ponderomotive pseudopotentials. Additionally, the same
treatment brings out corrections to the particle trajectory. By nature of these multipole
fields, the largest repulsive potential would occur near the outer radius of the device.
Radial oscillations in the particle trajectory are also largest at the outer radius, which
could cause a radial particle loss instead of axial particle confinement. This paper uses the
Lie transformation method to change variables from the particle coordinates to guiding
centre coordinates, describing the centre of oscillation, and generates an approximate
Hamiltonian which determines the time evolution of these variables. The dynamics in
these variables is easily solved for. The transformation can be inverted to determine the
particle trajectory from the guiding centre time evolution. This procedure has been used in
the plasma physics literature for several applications (Brizard 2022, 2023; Cary & Brizard
2009), in addition to works in celestial mechanics such as (Deprit 1981; Martinusi 2020).

Another effect of note in ponderomotive interactions is modification of the effective
particle mass (Dodin & Fisch 2008; Zhmoginov, Dodin & Fisch 2011), when considering
the dynamics in the perturbation region. This effect does not affect axial particle
confinement, but is an important aspect of the particle dynamics, which was neglected
in our previous work.

The purpose of this work is to formally explore the dynamics of the field configuration
proposed in (Rubin et al. 2023) up to second order in a perturbed quantity that is related
to the ratio of the energy of the multipole field to the energy in the axial magnetic field
and radial electric field, in order to find the Miller pseudopotential, mass effects, evaluate
the radial excursions and treat the case of resonant periodic motion. The second-order
corrections to the potentials are particularly important near resonances, including the
resonance corresponding to zero rotation. Small rotation frequencies are practically
favourable, with lower energy content in the plasma and lower electric fields touching solid
matter. We also suggest a method to utilize this field configuration for mass separation,
which is useful for nuclear waste treatment (Litvak et al. 2003; Gueroult & Fisch 2014;
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Timofeev 2014; Gueroult, Hobbs & Fisch 2015; Vorona et al. 2015; Dolgolenko &
Muromkin 2017).

This paper is organized as follows. In § 2, we present the action-angle form for the
Hamiltonian of an axially magnetized and rotating plasma column, with a multipole
magnetic field added to it, and identify several of its features. In § 3, we find the adiabatic
invariants and ponderomotive potentials for reflection off of the multipole field, up to
second order in the energy ratio. We find the radial excursions of these particles to that
order, and consider axial reflection and radial deconfinement. We give the simple example
of a particle with zero gyroradius. In § 4 we consider the case of resonant periodic motion,
and investigate the confinement properties of such a configuration. In Appendix A we
present the Lie transformation to the guiding centre coordinates.

2. Model

The non-relativistic Hamiltonian of a charged particle with charge e and mass m, with
a canonical momentum p interacting with the static fields B = ∇ × A and E = −∇Φ,
derived from the vector potenital A and the electrostatic potential � is

H(x, p) = (p − eA)2

2m
+ eΦ. (2.1)

We consider particle motion in a magnetized, rotating plasma column, with a multipole
magnetic field added on. The axial magnetic field B0 = Bzez, and a radial electric
field, E0 = −rωBzer describe the magnetization and solid-body rotation. Here, Bz,
ω are constants, and r, α, z are polar coordinates, associated with the right-handed
basis (er, eα, ez). A set of Cartesian coordinates x, y, z is defined such that x = r cos α,
y = r sin α and z = z. The added multipole field

B1 = Bwf (z)
( r

R

)n−1
(sin (nα) er + cos (nα) eα) , r < R, (2.2)

is used in order to both break axisymmetry, and to add an oscillating field in the
(non-inertial) frame rotating with the plasma. Here, n is an integer, R is the radius of
the cylindrical current sheet generating this field, Bw is the amplitude of the perturbation
and f : R → [0, 1] is a shape function, representing the ramp up of the multipole field.

A set of scalar and vector potentials generating these field is given by

Φ0 = 1
2 r2Bzω = 1

2 Bω(x2 + y2), (2.3)

A0 = 1
2 rBeα = 1

2(xey − yex)Bz, (2.4)

A1 = −Bwf (z)
R
n

( r
R

)n
cos (nα) ez, r < R. (2.5)

2.1. Action-angle variables
Substituting (2.3), (2.4) into (2.1) yields the Hamiltonian in Cartesian coordinates

H0 = 1
2m

( p2
x + p2

y + p2
z ) − 1

2
Ωc(xpy − ypx) + 1

8
m(Ω2

c + 4Ωcω)(x2 + y2). (2.6)

Following the work of Brillouin (1945) and Davidson (1990), particle motion in these
fields is integrable. The Brillouin frequency ΩB is related to the cyclotron frequency Ωc

https://doi.org/10.1017/S0022377823001307 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001307


4 T. Rubin, J.M. Rax and N.J. Fisch

and the E × B rotation frequency ω by

Ωc = eBz

m
, ΩB =

√
Ω2

c + 4ωΩc. (2.7a,b)

In order for a particle to remain confined within these fields, rather than be accelerated
radially by the electric field, ΩB must remain real, meaning ω/Ωc > −1/4.

Using a canonical transformation, generated by the generating function

F = 1
8 mΩB

(2px − mΩBy)2 cot(θ) + 1
8 mΩB

(2px + mΩBy)2 cot(ϕ), (2.8)

we find new coordinates; actions D, J and angles θ, ϕ, related to the Cartesian coordinates
x, y and their conjugate momenta px, py, by

x =
√

2
mΩB

(√
D cos θ −

√
J cos ϕ

)
, (2.9)

y =
√

2
mΩB

(√
D sin θ +

√
J sin ϕ

)
, (2.10)

px =
√

1
2

mΩB

(
−

√
D sin θ +

√
J sin ϕ

)
, (2.11)

py =
√

1
2

mΩB

(√
D cos θ +

√
J cos ϕ

)
. (2.12)

The axial coordinate z and momentum pz remain unchanged. The action D is the orbital
angular momentum, and the action J is the spin angular momentum. In the fields E0 and
B0, they are related to the gyrocentre position RG and the gyroradius ρ by

D = 1
2 mΩBR2

G, J = 1
2 mΩBρ

2. (2.13a,b)

In these coordinates, the Hamiltonian for the particle interaction with E0 and B0 can be
expressed as

H0 = p2
z

2m
+ Ω−D − Ω+J. (2.14)

This motion is described by two uncoupled harmonic oscillators and a free degree of
freedom. The two harmonic oscillators generate a cycloid motion with frequencies

Ω± = − 1
2(Ωc ± ΩB). (2.15)

2.2. Fourier expansion of the perturbation
The addition of the multipole field to the integrable Hamiltonian (2.14) consists of the
two terms e2A2

1/2m, and −(p − eA0) · eA1/m. For these vector potentials A0 · A1 = 0 and
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p · A1 = pzA1z. We write

H1 = −pzeA1z

m
+ e2A2

1z

2m
, (2.16)

−pzeA1z

m
= pzΩwf (z)

R
n

( r
R

)n
cos (nα) , (2.17)

e2A2
1z

2m
= 1

4
mΩ2

wf 2(z)
R2

n2

( r
R

)2n
(1 + cos (2nα)) . (2.18)

Where Ωw = eBw/m is the cyclotron frequency related to the amplitude of the perturbation
field.

We now require the axial momentum to be of the same order as the perturbation vector
potential

pz ∼ eA1z, (2.19)

so the inertial term p2
z/2m would be balanced by e2A2

1/2m. This brings the two terms in
the perturbation to be of the same order.

The term p2
z/2m still belongs in H0, because neglecting it reduces the dimensionality

of the motion. Furthermore, H0 represents the integrable motion, and the motion of a free
particle is integrable.

Substituting (2.9), (2.10) in rn cos(nα) yields the r, α dependence of A1z in action-angle
form

rn cos(nα) =
(

2
mΩB

)n/2 n∑

=0

Cn

 (−1)
D(n−
)/2J
/2 cos(
(θ + ϕ) − nθ). (2.20)

The A2
1 term can be derived from the cos2(nα) = (1 + cos(2nα))/2 relation, or from

squaring the sum in (2.20) and using the cosine product identity

P = mvz + eAwz = mvz − eBwf (z)
R
n

∑



Cn

 (−1)
Dn/2−
/2J 
/2 cos((θ + ϕ)
 − nθ).

(2.21)
Substituting (2.9), (2.10), (2.11) and (2.12) into (2.17) and (2.18) yields the contribution

of the A1 field to the energy in action-angle form

H1 = pz
ΩwR

n
f (z)

n∑

=0

U
 cos(
(θ + ϕ) − nθ)

+ 1
4

mΩ2
w

R2

n2
f 2(z)

(
n∑


=0

V0
 cos(
(θ + ϕ)) +
2n∑


=0

V2
 cos(
(θ + ϕ) − 2nθ)

)
,

(2.22)

with the coefficients U
, V0
, V2
, defined in (2.30), (2.31) and (2.32).
The dimensionless variables of this system are achieved by the following scaling:

D = 2D
mΩBR2

= R2
G

R2
, J = 2J

mΩBR2
= ρ2

R2
, (2.23a,b)

ζ = z
R

, P = 2pz

mΩBR
, H = 2H

mΩBΩcR2
, τ = Ωct, g(ζ ) = f (Rζ ). (2.24a–e)
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2.3. Dimensionless treatment
The dimensionless Hamiltonian H = H0 + H1 for the motion in these fields can be
written compactly as

H0 = 1
4ΩbP2 + ω−D − ω+J , (2.25)

H1 =
∑
σ,


Vσ,
 cos Θσ,
, (2.26)

with the angular dependence Θσ,
 = (
 − σn)θ + 
ϕ, with 
, σ integers. Here, H0
contains the contributions of the E0, B0 fields and the inertia and H1 is the added
contribution of B1. The small parameter ε is the ratio of the multipole field energy to
the other electromagnetic field energies

ε = Ω2
w

n2Ω2
c Ωb

, H1 ∼ εH0. (2.27a,b)

The frequencies are defined by

ω± = −1
2
(1 ± Ωb), Ωb =

√
1 + 4

ω

Ωc
. (2.28a,b)

The coefficients Vσ,
 of the perturbation are

Vσ,
 =

⎧⎪⎨
⎪⎩

√
ΩbP√

εg(ζ )U
, σ = 1,
1
2εg2(ζ )Vσ,
, σ ∈ {0, 2},
0 otherwise,

(2.29)

with the radial dependence enclosed in U
, V0
, V2
, which depend only on the actions
D,J , defined by

U
 = (−1)
Cn

Dn/2−
/2J 
/2, (2.30)

V0,
 =
{∑n/2

i=0 Cn
2iC2i

i (D + J )
n−2i

(DJ )
i, 
 = 0,∑n

i=1

∑(i−1)/2
j=0 (−1)i2Cn

i C i
j(D + J )n−i(DJ )i/2δ
,i−2j, 
 �= 0,

(2.31)

V2,
 = (−1)
C2n

 Dn−
/2J 
/2. (2.32)

The symbol δ
,i−2j is the Kronecker delta, with indices 
 and i − 2j, and Cn

 = ( n


 ) =
n!/
!(n − 
)! are the binomial coefficients, which are defined to be 0 for 
 < 0 and 
 > n.

The sum over 
 in (2.26) is implicitly defined by the binomial coefficients in Vσ,
, U
;

 ∈ {0, . . . , n} for σ ∈ {0, 1}, and 
 ∈ {0, . . . , 2n} for σ = 2.

The dynamics of the system is generated by the Hamiltonian using the Poisson bracket.
Grouping the actions and angles as P = (P,D,J ) and Q = (ζ, θ, ϕ), respectively. The
Poisson bracket

{F, G} = ∂F
∂ζ

∂G
∂P − ∂F

∂P
∂G
∂ζ

+ ∂F
∂θ

∂G
∂D − ∂F

∂D
∂G
∂θ

+ ∂F
∂ϕ

∂G
∂J − ∂F

∂J
∂G
∂ϕ

, (2.33)

if defined for any functions F(P, Q), G(P, Q) of phase space. When substituting the
Hamiltonian in place of G, this operator gives the time derivative of F.
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It is clear that {P,H0} = 0, the actions are invariants under interaction with the
unperturbed fields. It is also apparent that this is no longer the case when the multipole
field is introduced {P,H1} �= 0. Also, the angles satisfy {Q,H} = {Q,H0} + O(ε) =
(ΩbP/2, ω−,−ω+) + O(ε).

Looking at H1, we identify the following;

(i) The term 1
2εg2V00 is independent of the angles θ and ϕ. This is the repulsive

potential identified in (Rubin et al. 2023), and alone, it would reflect particles with
0 < P <

√
2εV00/Ωb entering into interaction with the multipole field from a region

in which g = 0. The three terms in (2.25) in addition to this fourth term constitute
the integrable part of the Hamiltonian. This forth nonlinear term in the actions D, J
causes a shift in the frequencies of rotation.

(ii) Miller potentials can be derived from the oscillating terms in H1. The terms
derived from pzA1z are going to be proportional to εP2, which are a ponderomotive
modification to the effective mass of the particle, when considering the axial
dynamics. The terms derived from A2

1z are going to be proportional to ε2 and may be
attractive or repulsive ponderomotive terms, similar to the ones derived from radio
frequency (RF) waves, for example in Dodin & Fisch (2005).

(iii) For a certain frequency ratio ω/Ωc, the motion can become periodic with the
same periodicity as the multipole. For some choices of ω/Ωc, only one term in
H1 becomes near constant, while other choices result in two terms becoming near
constant at the same time. We treat periodic motion in § 4.

We proceed to investigate the phase space volume of confined particles. In § 3, we treat
the adiabatic case, where the coordinates θ, ϕ do not affect the ponderomotive potentials,
and can be averaged out. However, the motion in the x–y plane is constrained to the
previously mentioned limit of

√D + √J < 1. In general, the oscillating terms in H1
would introduce O(

√
ε) variations in D,J . As such, some particles would be pushed into

r > R due to the interaction with the multipole field.

3. Ponderomotive potentials away from resonance

Having identified the components of the Hamiltonian, we approach the task of
employing canonical perturbation theory in order to asymptotically solve for the particle
trajectory. We use the Lie–Poisson method outlined in Deprit (1969) and Cary (1981)
to perform a canonical transformation (symplectic, volume preserving) of the phase
space variables, from the old action and angle variables P, Q, which exhibit complex
oscillatory behaviour, to a new set of ‘guiding centre’ actions and angles P̄ = (P̄, D̄, J̄ )
and Q̄ = (ζ̄ , θ̄ , ϕ̄). The guiding centre variables are selected such that their evolution
exhibits smaller oscillations (at the cost of higher oscillation frequency). The Hamiltonian
generating their evolution is the guiding centre Hamiltonian K, which we will pick to be
independent of θ̄ , ϕ̄, and we approximate the evolution of the new variables up to O(ε2).
The variable transformation is detailed in Appendix A. We consider the limits

ε < 1, (3.1)

∀(σ, 
) �= (0, 0) :
R
L

ΩbP
2

1
Ωσ,


� 1. (3.2)

Equation (3.1) corresponds to a small multipole field compared with the axial and
radial electromagnetic fields E0, B0, and (3.2) requires each term in the perturbed
Hamiltonian H1 to vary smoothly along the particle trajectory. Here, Ωσ,
 = {Θσ,
,H0} =
(
 − σn)ω− − 
ω+, and R/L = g′(ζ ).
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The ponderomotive pseudopotentials are derived in Appendix A. The second-order
effects appear in the sum of the Miller-type terms in the approximate guiding centre
Hamiltonian

K = 1
4
ΩbP̄2 + ω−D̄ − ω+J̄ + V00 − 1

4

∑
(σ,
)�=(0,0)

∇D,σ,
V2
σ,


Ωσ,


, (3.3)

where ∇D,σ,
 = (
 − σn)∂D + 
∂J , and all the coefficients V and their derivatives are
evaluated at the new actions and angles P̄, Q̄. The derivatives with respect to the actions
are written compactly. The first four terms in (3.3) are the integrable part of the motion,
and the sum constitute the average contribution of the non-integrable part of the motion.

We identify D̄, J̄ as the two adiabatic invariants, which are the constants of motion for
this approximate Hamiltonian. The axial dynamics is generated by

Kaxial = 1
4ΩbP̄2 (1 − �m−1(ζ̄ )

)+ V(ζ̄ ), (3.4)

where we absorbed the terms independent of ζ̄ and P̄ into Kaxial = K − ω−D̄ + ω+J̄ .
Particle reflection would occur if Kaxial < V(ζ̄ ). The modification to the mass is generated
by the Miller potentials for σ = 1, due to the P dependence of V1
. The average potential
is the sum of V00 and the Miller potentials for σ = 0 and σ = 2. The mass modification m̃
cannot be larger than one, or else the asymptotic expansion procedure fails.

Explicitly, the mass modification term and the ponderomotive potentials are

�m−1 = εg2
n∑


=0

(
 − n)∂D + 
∂J

(ω− − ω+) − nω−

U2

 , (3.5)

V = 1
2
εg2V00 + 1

16
ε2g4

[
n∑


=1

∂D + ∂J
ω+ − ω−

V2
0
 +

2n∑

=0

(
 − 2n)∂D + 
∂J

(ω+ − ω−) + 2nω−

V2
2


]
. (3.6)

Considering particles entering into interaction with the multipole, from a region where
the perturbation is zero, the value of D̄, J̄ is D,J at the start of the motion.

3.1. Approximate solution for the particle motion
The approximate Hamiltonian describes the dynamics of the guiding centre of the particle
oscillations. Using the two adiabatic invariants to reduce the dimensionality of the
problem, this is a one-dimensional system with D̄, J̄ being constants of motion.

The axial momentum is solved as a function of position by inverting the Hamiltonian

P̄(ζ̄ ) = ±

√√√√√ P̄2
0 − 4

Ωb
V(ζ̄ )

1 − �m−1(ζ̄ )
, (3.7)

with P̄0 being the axial momentum outside of the multipole region.
The guiding centre is implicitly given by inverting the integral

τ =
∫ ζ̄ ds√

Ωb(ΩbP̄2
0 /4 − V(s))(1 − �m−1(s))

, (3.8)

where the integration is performed along the particle path.
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(b)(a)

FIGURE 1. (a) Energy in the axial degree of freedom. In blue: numerical solution to the energy
in the axial degree of freedom. Reflection occurs when the axial energy reaches zero (purple
line). Orange: approximate solution with the potential being only V0,0. Green: approximate
solution taking into account the V0,0 and the mass shift term. Red: approximate solution taking
into account all terms in (3.3). (b) Numerical solution of the trajectory, projected on the x–y
plane. Thin black circles: inner and outer radii of unperturbed cycloid motion. Parameters:
ω/Ωc = −0.012, n = 2, ε = 0.01, P̄0 = 0.068, D̄ = 0.65, J̄ = 0.00005.

Figure 1 presents a comparison between a numerical solution for the motion and some
approximate Hamiltonians. The blue curve on the left plot presents the energy in the axial
motion, ΩbP2/4, as calculated numerically. The orange curve is the solution for the motion
with V(ζ̄ ) = V0,0 and �m−1 = 0, as presented in Rubin et al. (2023). The green curve
takes into account the mass shift term in (3.5). The red curve uses the mass shift term and
the full potential in (3.6). In this case the red curve is the best fit amongst the three analytic
expressions, even though none of them predicts the exact reflection point.

The solution for the motion was performed using a second-order volume preserving
particle pusher (Zenitani & Umeda 2018), generalizing Boris’ method (Boris 1970;
Qin et al. 2013), using the LOOPP code (Ochs & Fisch 2021, 2023b).

The old variables are related to the gyrocentre variables, up to the first order in V , by
the expressions

D = D̄ −
∑

(σ,
)�=(0,0)


 − σn
Ωσ,


Vσ,
(D̄, J̄ , ζ̄ ) cos Θ̄σ,
, (3.9)

J = J̄ −
∑

(σ,
)�=(0,0)




Ωσ,


Vσ,
(D̄, J̄ , ζ̄ ) cos Θ̄σ,
, (3.10)

P = P̄ −
∑

(σ,
)�=(0,0)

1
Ωσ,


∂Vσ,


∂ζ
(D̄, J̄ , ζ̄ ) cos Θ̄σ,
, (3.11)

ζ = ζ̄ + 1
Ω1,


√
Ωb

√
εg(ζ̄ )

∑



U
(D̄, J̄ ) sin Θ̄1,
, (3.12)
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θ = θ̄ +
∑

(σ,
)�=(0,0)

1
Ωσ,


∂Vσ,


∂D (D̄, J̄ , ζ̄ ) sin Θ̄σ,
, (3.13)

ϕ = ϕ̄ +
∑

(σ,
)�=(0,0)

1
Ωσ,


∂Vσ,


∂J (D̄, J̄ , ζ̄ ) sin Θ̄σ,
, (3.14)

which are the zeroth- and first-order terms in (A9) and (A10).
The time evolution of the angles is given by Hamilton’s equations

θ̄ = θ̄0 + τ

⎡
⎣ω− + ∂D

⎛
⎝V00 − 1

4

∑
(σ,
)�=(0,0)

∇D,σ,
V2
σ,


Ωσ,


⎞
⎠
⎤
⎦

D̄,J̄ ,ζ̄

, (3.15)

ϕ̄ = ϕ̄0 + τ

⎡
⎣−ω+ + ∂J

⎛
⎝V00 − 1

4

∑
(σ,
)�=(0,0)

∇D,σ,
V2
σ,


Ωσ,


⎞
⎠
⎤
⎦

D̄,J̄ ,ζ̄

. (3.16)

The oscillations around the gyrocentre position are evident in these expressions. Of
special note is the axial oscillations in ζ , which are of O(

√
ε), whereas the oscillations

in D,J , θ, ϕ are of O(ε). This degree of freedom stores the most energy, when particles
interact with the multipole field. The oscillations in P are of O(ε3/2), which is still ε times
smaller than P .

A comparison between the first order, second order and a numerical solution for the
motion in these fields is presented in figures 2 and 3. In this simulation, we used the
simplest ramp-up function

g(ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, ζ < − L
2R

,

ζR
L

+ 1
2
, ζ ∈

[
− L

2R
,

L
2R

]
,

1, ζ >
L

2R
,

(3.17)

with L/R = 5000, in order to satisfy (3.2).
Figure 2 shows the particle motion in the x–y plane, where the gyrocentre axial

momentum is zero, near the reflection point. The unperturbed trajectory is marked
in a black line, while the numerical solution is marked in green. The expressions in
((3.9)–(3.14)) generate the blue curve, and the expressions in (A9), (A10), (A5) and (A11)
generate the red curve. The red curve approximates the numerical solution fairly well.

Figure 3 shows projections of the particle trajectory on the z–x plane, and the z–y
planes. The motion presented in this figure is the motion starting outside the region of the
multipole field, and up to the reflection point. In green is he numerical solution, and the
full dark line is

√D + √J , using the second-order expressions for D(P̄),J (P̄) evaluated
at (θ = 0, ϕ = π) for the z–x plot and (θ = π/2, ϕ = π/2) for the z–y plot.

3.2. Radial excursions
Having transformed the Hamiltonian to second order in V , we see that careful choice of
electric and magnetic fields can cause the phase space volume of confined particles to be
extended in P by the second term of (3.6) over and above the leading-order effect of V00.
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FIGURE 2. Particle trajectory in the x–y plane, near the reflection point. Here, ω/Ωc = −0.012,
n = 2, εg = 0.0045, P̄ = 0, D̄ = 0.65, J̄ = 0.00005. Black: unperturbed trajectory (ε = 0).
Blue: first-order correction. Red: second-order correction. Green: numerical solution. A thin
black line shows r/R = 1.

This allows for particles of higher energy to be reflected. However, the phase space volume
is also reduced in D,J due to the condition in (3.23), which causes particles that start out
at a larger radius to have increased radial excursions and hit the machine wall.

Particles are confined radially if (r/R)2 = D + J − 2
√DJ cos(θ + ϕ) < 1. Since

both D,J are phase dependent, as illustrated in (3.9) and (3.10), one would have to
evaluate them at the appropriate angles to determine the radial excursion.

The leading-order expressions contain many terms. A useful limit is the
small-gyroradius limit, which reduces the number of terms significantly. We investigate
this case in the following subsection.

3.3. Small gyroradius
The zero-gyroradius limit (J̄ � D̄) is a useful one, as it reduces the number of non-zero
terms in H1 to the (σ, 
) = (0, 0), (1, 0), (2, 0) terms. In the gyro-averaged Hamiltonian,
the non-zero terms generate the following mass shift and potentials:

�m−1 = εn2g2D̄n−1

(
1

Ω11
− 1

Ω10

)
, (3.18)

V = 1
2
εg2D̄n + 1

4
ε2n2g4D̄2n−1

(
1

Ω20
− 1

Ω21
− 1

Ω01

)
. (3.19)

Since ε is proportional to n−2, the mass shift term depends on n only through the
frequencies appearing in the brackets of (3.18), and at the power of D̄. At this order,
it appears as though the mass term (∝ (1 − �m−1)) can be pushed into the negatives
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(b)

(a)

FIGURE 3. (a) Particle trajectory in the z–x plane. (b) Particle trajectory in the z–y plane. Both
up to the reflection point. Here, ω/Ωc = −0.012, n = 2, ε = 0.01, P̄0 = 0.064, D̄ = 0.65, J̄ =
0.00005. Dark line: second-order solution for the envelope of the motion. Green: numerical
solution.

through zero. This would not cause a reflection due to terms at the next order, which
are proportional to P̄2 and P̄ . Bringing this term to be of O(1) is a classic example of
the problem of small denominators, discussed extensively in Lichtenberg & Lieberman
(1983).

The potential, (3.19) determines the reflection boundary. Both terms have a pre-factor of
n−2 through ε and ε2n2, for constant Ωw/Ωc. The denominators in the brackets, however,
can be either negative or positive. The sum of inverse frequencies appearing in parenthesis
is plotted in figure 4. In the case of ω/Ωc < 0, corresponding to a positively charged
mirror, there is no opportunity for a resonance crossing by varying Ωc, in the manner used
in Dodin et al. (2004). However, a rotation of the same sign as the gyromotion, ω/Ωc > 0
does allow for resonant interaction.

Figure 4 also shows that, for ω/Ωc < 0, the Miller potentials are of larger magnitude
for low n. Combined with the n dependence of ε, low n is preferable for potentials used
for particle confinement.
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FIGURE 4. Evaluation of the term in parenthesis in (3.19). The zero crossing and the
resonances are marked by solid and dashed lines.

FIGURE 5. Evaluation of the term in parenthesis in (3.18). The resonances are marked by
dashed lines.

The denominators in the mass term are plotted in figure 5. For ω/Ωc < 0, the mass
shift is positive, increasing the effective mass for motion along the axis. Between the
ω/Ωc = 0 resonance and the second resonance, the mass shift is negative, hastening the
axial dynamics and making the particle less susceptible to added external forces. The sign
changes again past the second resonance.
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In the case of ω/Ωc < 0, J̄ = 0, P̄ > 0, the expression for the maximal D is given by

D ≈ D̄ −
√

εg
ω−

√
ΩbP̄D̄n/2 − 1

2
εg2

ω−
D̄n

+ 1
2

n
ε2g4

ω2−
D̄2n−1 + 1

4
n
εg2

ω2−
ΩbP̄2D̄n−1 + 7

8
n
ε3/2g3

ω2−

√
ΩbP̄D̄3n/2−1, (3.20)

up to second order in ε. All the terms in this expression are positive contributions.

Remembering P̄ ≈ P̄0

√
1 − 4V(ζ̄ )/ΩbP̄2

0 , the axial momentum contribution to the radial

excursion is large, taking into account the n/2 power of D̄ in the second term.
In order for the radial excursions to remain small, we require

εg <

∣∣∣∣ ω

Ωc

∣∣∣∣ , (3.21)

along the path, up to the reflection point.
The axial reflection condition is

4V(ζ̄ )

ΩbP̄2
0

< 1, (3.22)

and the radial excursion limit is

√
D̄ +

√
J̄ − 1

2

√
εg

ω−

√
ΩbP̄0

(
D̄n/2 − εg2

ΩbP̄2
0

D̄3n/2

)
− 1

4
εg2

ω−
D̄n < 1. (3.23)

Condition (3.21) effectively sets a lower limit for ω, the column rotation, and conditions
(3.22) (3.23) limit the phase space of confined particles.

In figure 6, we present the confined, passing and radially lost particle populations, as
a function of initial gyrocentre position and axial momentum. The trapped population
(in blue), is characterized by having an initial axial energy that is smaller than the
ponderomotive pseudopotential, and also small enough such that the radial component of
the Lorentz force (using the multipole field and the axial velocity) would not cause large
radial excursions. In the case presented here, the additional confinement due to the Miller
potentials does not compensate for the large volume of phase space of particles hitting the
wall. Larger rotation would have more particles reflected instead of hitting the wall. In a
sense, for small rotation, the radial excursions grow faster than the confining potential.

3.4. Mass separation
The boundary between reflection and radial loss depends strongly on the frequency ratio
ω/Ωc, near ω = 0. This allows exploration of this configuration for mass-separation
purposes. The ratio ω/Ωc ∝ Z2/m, with Z being the ionization number and m the mass
number. Particles with high axial energy hit the wall at all initial radial position, for small
enough ω/Ωc, whereas for a more negative frequency ratio particles are either reflected or
continue along axially.
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(b)(a)

FIGURE 6. Phase space of confined, passing and radially lost particles, as a function of initial
axial momentum and gyrocentre position. Full-colour background: numerical solution. Blue:
trapped (reflected) particles. Green: passing particles.Yellow: radially lost particles. Red curve:
ponderomotive potential up to second order. Blue dashed curve: leading-order ponderomotive
potential. Green curve: approximate trapped – radial loss boundary, using (3.20). Here, n = 2,
ε = 0.01, J̄ = 0.00005. Panels show (a) ω/Ωc = −0.012, (b) ω/Ωc = −0.06.

4. Resonance
4.1. Resonance structure

The perturbation H1 consists of 4n + 3 terms, all but one of which are proportional to
cos Θσ,
, such that (σ, 
) �= (0, 0). The leading-order time evolution of Θσ,


Θ̇σ,
 = 
(θ̇ + ϕ̇) − 2nθ̇ ≈ {Θσ,
,H0} = 
Ωb − σnω−, (4.1)

depends only on ω/Ωc.
Resonance Ωσ,
 = 0, would occur for the (σ, 
) = (2, 
�), 0 ≤ 
� < n term in the

perturbation if

ω

Ωc
= (2n − 
�)
�

(2n − 2
�)2
. (4.2)

All such ω/Ωc > 0, necessitating a negatively charged plasma column.
If such 
� is even, the term (σ, 
) = (1, 
�/2) also becomes resonant.
These cases correspond to a periodic motion of the particle, with either the same

periodicity as the multipole field (even 
�) or twice the periodicity (odd 
�).
In this work we do not allow the time evolution of the electromagnetic fields, so we

would not see the back reaction of the particle reflection off the fields, or the RF waves
generated by the periodic motion.

4.2. Particle reflection at resonance
In resonance, condition (3.2) is not satisfied for the (2, 
�), and possibly also (1, 
�/2),
terms.

In this case, the averaging procedure is not applicable, due to the particle not sampling
the entire 2π range of Θσ,
 while entering the perturbation.
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The approximate Hamiltonian for motion near an odd resonance is

Kaxial = 1
4
ΩbP̄2 + V0,0 + V2,
�

cos Θ̄2,
�
− 1

4

∑
(σ,
)�=(0,0)
(σ,
)�=(2,
�)

∇D,σ,
V2
σ,


Ωσ,


, (4.3)

and the expressions in (3.9), (3.10), (3.11), (3.13) and (3.14) all have the sums skip the
(2, 
�) term.

The angle Θ2,
�
is a slow-changing or constant angle compared with the rate of motion

on axis, corresponding to the opposite limit of (3.2) for that angel

R
L

ΩbP
2

1
Ω2,
�

 1. (4.4)

Because this angle depends on the particle initial conditions before interacting with the
perturbation, and we assume a thermal particle distribution away from the perturbation, it
is customary to take the random angle approximation. In this case, the potential V(ζ̄ ) the
particle experiences as it comes into the perturbation region is increased or reduced by a
phase-dependent term, which at most can be ±V2,
�

.
The implication here can be a leaky end plug, where particles might arrive at the right

phase Θ2,
�
to experience a greatly reduced potential barrier. Particles that are reflected by

the barrier might thermalize by collisions within the bulk of the plasma, and try again.
The approximate Hamiltonian for motion near an even resonance is

Kaxial = 1
4
ΩbP̄2(1 − �m−1) +

√
ΩbP

√
εgU
�/2 cos Θ̄1,
�/2 + V(ζ̄ ). (4.5)

This Hamiltonian has the same phase-dependent term in the effective potential as the one
appearing in (4.3), and the mass term is also missing the 
 = 
�/2 term in the sum. The
new phase-dependent term, V1,
�/2, written here explicitly, is proportional to P .

Hamilton’s equations give the relation between the momentum and velocity in this case

˙̄ζ = Ωb

2
P̄(1 − �m−1) +

√
Ωb

√
εgU
�/2 cos Θ̄1,
�/2. (4.6)

The gyro-averaged velocity as a function of position is

˙̄ζ = ±
√

Ωb

√
εg2U2


�/2 cos2 Θ̄1,
�/2 +
(
P̄2

0 − 4V
Ωb

)
(1 − �m−1). (4.7)

Reflection would occur if the expression in the square root reaches zero. This resonance
makes reflection less likely due to the added term which is strictly positive.

5. Conclusions

The magnetostatic end-plugging scheme generated by a ponderomotive quasipotential
barrier has been further investigated. The ponderomotive barrier, which to leading order is
generated by the interaction of azimuthally rotating particles with an azimuthal multipole
magnetic field, is now better understood in the small rotation regime. In the small rotation
case, radial and azimuthal oscillations join the axial oscillations, and are responsible for
Miller-type potentials, which can take either a positive (repulsive) sign, or a negative
(attractive) sign.
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Plasma rotation has several qualities which makes it desirable for nuclear fusion
applications; shear stabilization of instabilities, centrifugal confinement and our innovative
magnetostatic ponderomotive end-plugging scheme, among others. However, a too large
rotation can be undesirable. Downsides include energy investment in the rotating ions
not immediately of use for the fusion reaction, magnetic pressure being spent on
the confinement of ion inertia rather than thermal pressure, plasma deformation into
an annulus and rotation-driven instabilities. Furthermore, in lower temperature plasma
devices, the rotation is limited by the critical ionization temperature. Thus, investigating
the case of small rotation is of practical use, as the aforementioned considerations may
make this regime favourable.

In the small rotation regime, the Miller potentials are largest, adding the most to the
confining pseudopotential. However, we find the limiting design criterion to be the radial
excursion of particles. At large initial radii, where the confining potential is greatest, the
radial oscillations take particles into the wall, where otherwise they would have been
confined by the ponderomotive pseudopotential. The expression for the radial excursions
can also be interpreted as the limit for the minimum electric field needed for this type of
magnetostatic ponderomotive end plug to be useful, rather than drive much of the plasma
to the wall.

One can also integrate the dynamics backwards, and use this end plug to fuel the plasma,
by supplying low energy fuel next to the wall, at a position where travelling into the plasma
it would end up in an interior flux surface. The particle axial dynamics is further explored,
and a mass modification term is found. This effect, which is formally a first-order one,
allows for determination of the particle time evolution more precisely.

The investigation performed in this paper is largely confined to the adiabatic regime,
where the ramp up of the multipole field is slow compared with the azimuthal rotation.
We considered two cases in which this is not the case, the resonances, where the particle
rotation has either twice or once the periodicity of the multipole. We found that resonance
is not conducive to confinement, either producing a ‘leaky’ potential barrier or, in addition,
adding an always-positive term to the axial velocity.

Thus, this investigation ties up some of the loose ends for particle motion in this electric
and magnetic fields configuration. One question remaining unanswered by the present
work is the practical generation of these electric and magnetic fields. In addition to the
matter of how to set up the perturbing fields, there is the matter of how the plasma responds
to the imposed fields. It may be that the electric field, or equivalently the distribution of
angular momentum in the plasma, would distribute itself such that |E · B| is minimized
in the presence of the multipole. In that case, the analysis of Ochs & Fisch (2023a) would
pertain.
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Appendix A. Transformation from particle coordinates to guiding centre coordinates
using the Lie transformation method

After the works of Deprit (1969) and Cary (1981), we seek generating functions wi that
transform the actions, angles and Hamiltonian, such that the approximate Hamiltonian is
independent of the angles θ , ϕ. As mentioned in § 2, all terms in the perturbation scale as
the small parameter ε.

The generating function w =∑i wi used in Deprit’s method generates the
transformation between the particle coordinates to the guiding centre coordinates. This
transformation uses the small parameter ε as a ‘time’ parameter, and the generating
function w as a ‘Hamiltonian’ of the transformation. Further details on the construction of
the transformation are available in Deprit (1969) and Cary (1981).

To leading order
K0 = H0. (A1)

The first-order generating function, w1, relates the two Hamiltonians by its Lie derivative
with respect to H0

{w1,H0} = K1 − H1 = −
∑

σ,
�=0,0

Vσ,
 cos((
 − σn)θ + 
ϕ). (A2)

We take K1 = V00, and write w1 =∑σ,
�=0,0 w1σ
 due to (A2) being a linear partial
differential equation in w1. Its solution is the convolution

w1σ
 = − 2
ΩbP

∫ ζ

−∞
Vσ,
(s) cos

(
Θσ,
 + 2Ωσ,


ΩbP (s − ζ )

)
ds, (A3)

where the bottom limit of integration is taken where g and all of its derivatives are
zero. We use again the angular dependence Θσ,
 = (
 − σn)θ + 
ϕ, with 
, σ integers,
and its Lie derivative with respect to the unperturbed Hamiltonian Ωσ,
 = {Θσ,
,H0} =
(
 − σn)ω− − 
ω+.

Assuming the derivatives of g become smaller in magnitude, or g has only a finite
number of non-zero derivatives, this expression can be partially integrated, and written
as the sum

w1σ
 = − 1
Ωσ,


∞∑
j=0

(
ΩbP
2Ωσ,


) j
∂ jVσ,


∂ζ j
sin
(
Θσ,
 + j

π

2

)
. (A4)

We take the limit in which R/L ∼ ε, and evaluate w1 explicitly

w1 = −
∑

σ,
�=0,0

Vσ,


Ωσ,


sin Θσ,
. (A5)

With no second order in H, the next generating function w2 and the next component of
the approximate Hamiltonian are related by

{w2, H0} = 2K2 − {w1, (K1 + H1)}. (A6)

We start by evaluating the Lie derivative appearing on the right-hand side of (A6).
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The j = 0 component of the sum in (A4)

{w1,σ1
1,H1,σ2
2} = −1
2
Vσ1,
1

Ωσ1,
1

∇D,σ1,
1Vσ2,
2

(
cos Θσ1−σ2,
1−
2 + cos Θσ1+σ2,
1+
2

)
− 1

2
Vσ2,
2

Ωσ1,
1

∇D,σ2,
2Vσ1,
1

(
cos Θσ1−σ2,
1−
2 − cos Θσ1+σ2,
1+
2

)

+ 1
2

1
Ωσ1,
1

(
δ1,σ1

∂Vσ1,
1

∂P
∂Vσ2,
2

∂ζ
− δ1,σ2

∂Vσ1,
1

∂ζ

∂Vσ2,
2

∂P
)

sin Θσ1+σ2,
1+
2

+ 1
2

1
Ωσ1,
1

(
δ1,σ1

∂Vσ1,
1

∂P
∂Vσ2,
2

∂ζ
− δ1,σ2

∂Vσ1,
1

∂ζ

∂Vσ2,
2

∂P
)

sin Θσ1−σ2,
1−
2 .

(A7)

With δ1σ1 being the Kronecker delta. The last two sums in (A7) appear at this order by
virtue of the P derivative removing an ε and the ζ derivative adding an ε.

The next correction to the approximate Hamiltonian is taken to be (half of) the
angle-independent part of (A7), which is the last sum in (A8).

The approximate Hamiltonian is

K = 1
4
ΩbP̄2 + ω−D̄ − ω+J̄ + V0,0(P̄) − 1

4

∑
σ,
�=0,0

∇D,σ,


Ωσ,


V2
σ,
(P̄). (A8)

Where the sum for which σ = 1 is proportional to P2 and thus modifies the mass of
the particle in the transformed frame. The sums for which σ = 0, 2 constitute regular
potentials. This Hamiltonian is a function only of the new variables P̄.

One strength of the Lie transformation method is the ability to simply invert it, and
relate the original coordinates P, Q to the guiding centre coordinates P̄, Q̄. The relation
between the old and the new variables is given by

P = P̄ + {w1, P̄} + 1
2

({w2, P̄} + {w1, {w1, P̄}})+ O(ε3), (A9)

Q = Q̄ + {w1, Q̄} + 1
2

({w2, Q̄} + {w1, {w1, Q̄}})+ O(ε3), (A10)

with (A5), (A11). The entire right-hand side is evaluated using the new variables.
In addition to the solution of (A6), we move into w2 2 times the j = 1 terms of (A4). The

exact form of w2 is presented in (A11), and was used in conjunction with (A9) in order to
calculate the trajectory envelope to second order, as presented in figure 3

w2 =
∑

σ,
�=0,0

[
2Vσ,


Ω2
σ,


∇D,σ,
V00 sin Θσ,
 − ΩbP
Ω2

σ,


∂Vσ


∂ζ
cos Θσ,


]
+
∑




2
Ω2

1,


∂V1


∂P
∂V00

∂ζ
cos Θ1,


+
∑

σ1,
1 �=0,0
σ2,
2 �=0,0

σ1,
1 �=σ2,
2

1
2

[
Vσ1
1∇D,σ1,
1Vσ2,
2

(
1

Ωσ1
1

+ 1
Ωσ2
2

)
sin Θσ1−σ2,
1−
2

Ωσ1−σ2,
1−
2
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+ Vσ1
1∇D,σ1,
1Vσ2,
2

(
1

Ωσ1
1

− 1
Ωσ2
2

)
sin Θσ1+σ2,
1+
2

Ωσ1+σ2,
1+
2

]

+
∑

σ2,
2 �=0,0
1,
1 �=σ2,
2

1
2

∂V1,
1

∂P
∂Vσ2,
2

∂ζ

(
1

Ω1,
1

− 1
Ωσ2,
2

)
cos Θ1+σ2,
1+
2

Ω1+σ2,
1+
2

+
∑

σ2,
2 �=0,0
1,
1 �=σ2,
2

1
2

∂V1,
1

∂P
∂Vσ2,
2

∂ζ

(
1

Ω1,
1

+ 1
Ωσ2,
2

)
cos Θ1−σ2,
1−
2

Ω1−σ2,
1−
2

. (A11)

Where, again, we took the first term in the expansion of the convolutions, which is the
solution of (A6).

The third-order correction to the approximate Hamiltonian is

K3 = 1
6 〈{w2,H1} + {w1, {w1,H1}}〉 , (A12)

where 〈·〉 indicate averaging over the angles θ, ϕ

1
6

〈{w1, {w1,H1}}〉

=
∑

2,
3

1
24

1
Ω1,
2−
3

∂V1,
2−
3

∂P
∂

∂ζ

[
1

Ω1,
2

∂V1,
2

∂P
∂V0,
3

∂ζ
− 1

Ω2,
2

∂V2,
2

∂ζ

∂V1,
3

∂P
]

+
∑

2,
3

1
24

1
Ω1,
2+
3

∂V1,
2+
3

∂P
∂

∂ζ

[
1

Ω1,
2

∂V1,
2

∂P
∂V0,
3

∂ζ
− 1

Ω0,
2

∂V0,
2

∂ζ

∂V1,
3

∂P
]

+
∑

σ1,
1 �=0,0
σ2,
2 �=0,0

1
24

Vσ1,
1

Ωσ1,
1Ωσ2,
2

∇D,σ1,
1

(Vσ2,
2∇D,σ2,
2

(Vσ2−σ1,
2−
1 + Vσ1−σ2,
1−
2

))

+
∑

σ1,
1 �=0,0
σ2,
2 �=0,0

1
24

Vσ1,
1

Ωσ1,
1

∇D,σ1,
1

(
Vσ3,
3∇D,σ3,
3

( Vσ1+σ3,
1+
3

Ωσ1+σ3,
1+
3

− Vσ1−σ3,
1−
3

Ωσ1−σ3,
1−
3

))

+
∑

σ2,
2 �=0,0
σ2,
2 �=σ3,
3

1
24

(Vσ2,
2∇D,σ2,
2

(Vσ2−σ1,
2−
1 + Vσ1−σ2,
1−
2

))
Ωσ1,
1Ωσ2,
2

∇D,σ1,
1Vσ1,
1

+
∑

σ1,
1 �=0,0
σ2,
2 �=0,0

1
24

Vσ3,
3∇D,σ1,
1Vσ1,
1

Ωσ1,
1

∇D,σ3,
3

( Vσ1+σ3,
1+
3

Ωσ1+σ3,
1+
3

− Vσ1−σ3,
1−
3

Ωσ1−σ3,
1−
3

)
(A13)

1
6
〈{w2,H1}〉

=
∑




1
6

1
Ω2

1,


∂V1,


∂P
∂

∂ζ

(
∂V1,


∂P
∂V0,0

∂ζ

)
−
∑




1
12

ΩbP
Ω2

1,


∂2V1,


∂ζ 2

∂V1,


∂P
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+
∑

σ,
�=0,0

1
12

∂

∂P
(

ΩbP
Ω2

σ,


∂Vσ,


∂ζ

)
∂Vσ,


∂ζ
+
∑

σ,
�=0,0

1
6
∇D,σ,


( V2
σ,


Ω2
σ,


∇D,σ,
V0,0

)

+
∑

1,
2

1
24

1
Ω1,
1+
2

(
1

Ω1,
1

− 1
Ω0,
2

)
∂V1,
1+
2

∂P
∂

∂ζ

(
∂V1,
1

∂P
∂V0,
2

∂ζ

)

−
∑

1,
2

1
24

1
Ω2,
1+
2

(
1

Ω1,
1

− 1
Ω1,
2

)
∂V2,
1+
2

∂ζ

∂V1,
1

∂P
∂2V1,
2

∂ζ∂P

+
∑

1,
2

1
24

1
Ω1,
1−
2

(
1

Ω1,
1

+ 1
Ω0,
2

)
∂V1,
1−
2

∂P
∂

∂ζ

(
∂V1,
1

∂P
∂V0,
2

∂ζ

)

−
∑

1,
1 �=σ2,
2

1
24

1
Ω0,
1−
2

(
1

Ω1,
1

+ 1
Ω1,
2

)
∂V0,
1−
2

∂ζ

∂V1,
1

∂P
∂2V1,
2

∂ζ∂P

+
∑

σ1,
1 �=0,0
σ2,
2 �=0,0

σ1,
1 �=σ2,
2

1
24

[(
1

Ωσ1
1

+ 1
Ωσ2
2

) ∇D,σ1−σ2,
1−
2

Ωσ1−σ2,
1−
2

Vσ1−σ2,
1−
2Vσ1,
1

(∇D,σ1,
1Vσ2,
2

)

+
(

1
Ωσ1
1

− 1
Ωσ2
2

) ∇D,σ1+σ2,
1+
2

Ωσ1+σ2,
1+
2

Vσ1+σ2,
1+
2Vσ1,
1

(∇D,σ1,
1Vσ2,
2

)
] . (A14)
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