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VMO Space Associated with Parabolic
Sections and its Application

Ming-Hsiu Hsu and Ming-Yi Lee

Abstract. In this paper we define a space VMO« associated with a family P of parabolic sections
and show that the dual of VMO is the Hardy space HY,. As an application, we prove that almost
everywhere convergence of a bounded sequence in H IT implies weak* convergence.

1 Introduction

Caffarelli and Gutiérrez [4] introduced a family F = {S(x,7) : x ¢ R” and r > 0} of
open and bounded convex sets, called sections, in R" satisfying certain axioms. The
axioms are established on the properties of the solutions of the real Monge-Ampere
equation,

det D*u = f,

where det D?u denotes the determinant of the Hessian matrix D?u of a function u in
R". Given a Borel measure p that is finite on compact sets, y(R") = oo and satisfies
the doubling property with respect to J; i.e., there is a constant C such that

(1.1) u(S(x,2r)) <Cu(S(x,r)), VS(x,r)eF.

They showed a variant of the Calder6n-Zygmund decomposition in terms of the ele-
ments of F by proving a Besicovitch-type covering lemma for the family & and using
the doubling property of the measure y. Sections and the decomposition are very
important and useful in the study of the Monge—Ampeére equation and the linearized
Monge-Ampére equation (see [2,3,5]). As an application, they defined the Hardy-
Littlewood maximal operator M and BMO+(IR") space associated with a family F of
sections and the Borel measure 4, and then obtained the weak type (1,1) boundedness
of M and the John-Nirenberg inequality for BMO5(R") in [4]. Later, Ding and Lin
[8] defined the Hardy space H:(R") associated with a family F of sections and the
measure ¢, and then showed that the dual space of Hi(R") is the space BMO(R").
They also proved that the Monge- Ampere singular integral operator is bounded from
HY(R") to L'(R™, du).

Huang [9] showed a Besicovitch-type covering lemma and a variant of Calderén-
Zygmund decomposition in terms of parabolic sections. A parabolic section Q(z, r)
is defined by

Q(z,r) = S(x,7) x (t - r/2,t+71/2),
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where z = (x,t) e R" xR, r > 0 and S(x, r) is a section mentioned above. In Huang’s
article, parabolic sections are used to study the Harnack inequality of nonnegative
solutions of the equation

Lou=u;— tr( (ngb(x))_lDzu) =0.

Here, u; = du/dt, D*u denotes the Hessian matrix of u in the x variable, (D*¢(x))™!
is the inverse of the Hessian matrix of a strictly convex smooth function ¢ defined in
R", and tr(A) means the trace of the matrix A.

It is natural that we want to study the theory of Hardy spaces associated with par-
abolic sections. In fact, some results about Hardy spaces associated with generalized
parabolic sections have been developed in [11,12]. Let ¢: [0, 00) — [0, 00 ) be a strictly
increasing function such that

(1.2) ¢(0)=0, lim ¢(r) =00, and ¢(2r) < C¢(r),
where C is a constant. A generalized parabolic section Q(z, r) is defined by
Q(zr) = S(x,7) x (1= ¢(r) /2, £+ $(r)/2),

where z = (x,t) € R", r > 0 and S(x,r) is a section. A parabolic section is a
generalized parabolic section with ¢(r) = r. From now on, we call Q(z,r) a para-
bolic section for simplicity. The space BMOx (R™*") and the Hardy space HY, (R"*")
associated with a family P of parabolic sections have been defined in [12], and it is
proved that the dual space of HY, (R™*!) is BMOx(R"*!). In [11], the authors showed
the John-Nirenberg inequality for BM O (R"*!). In this paper, we will show that
the Hardy space HY, (R"*") has a predual (Theorem 2.1), and then we prove that the
almost everywhere convergence of a bounded sequence in HY, (R"*!) implies weak*
convergence (Theorem 2.2).

2 Preliminaries

Let us first recall the definition and some properties of sections. For every x in R”,
denote by {S(x,r) : r > 0} the one-parameter of open and bounded convex sets in
R” containing x. A collection F = {S(x,7) : x ¢ R” and r > 0} is called a family of
sections if it is monotonic increasing in r, i.e., S(x, 1) ¢ S(x,r") for r < r/, and satisfies
the following conditions:

(a) There exist positive constants Kj, K3, K3, €1, and €, such that given two sections
S(x0,10) and S(x, r) with r < ry such that

S(x0,70) NS(x,7) # @,
and given T an affine transformation that normalizes S(xo, 19), i.e.,
B(0,1/n) c T(S(x0,70)) < B(0,1),

where B(x, r) denotes the Euclidean ball centered at x with radius r, there exists x” €
B(0, K3) depending S(xg, r9) and S(x, r) such that

B(x',Kz(%)ez) c T(S(x,1)) cB(x',KI(%)EI),
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and
1 r\©
4
Tx € B(x ,EKZ(E) )
(b) There exists § > 0 such that given a section S(xo,7) and x ¢ S(xo,7). If T is
an affine transformation that normalizes S(xy, r), then

B(T(x),e’) n T(S(x0,(1-€)r)) =@, for0O<e<l

(C) mr>0 S(X, f') = {x} and Ur>0 S(X, 7’) =R"
Aimar, Forzani and Toledano obtained in [1] the following engulfing property for sec-
tions, i.e., thereisa constant 6 > 1, depending on 8, Kj and ¢;, such that for y € S(x, r),

(2.1) S(x,7r)cS(y,0r) and S(y,r)cS(x,0r).
Also, they showed that there is a quasi-metric p on R”, defined by
(2.2) p(x,y) =inf{t:x e S(y,t) and y € S(x, 1)},
such that

S(x,r/20) c B,(x,r) c S(x,r), VS(x,r)ed,
where B, (x,r) = {y e R" : p(x, ) <r}.
Let ¢:[0,00) — [0, 00) be a strictly increasing function satisfying equation (1.2).
For z = (x,t) in R"*' and r > 0, recall that a parabolic section Q(z, r) is defined by

Q(z,r) = S(x,r) x ( t—¢(r)/2,t+ ¢(r)/2) .
Given a parabolic section Q(zg, ¢ ), let T be an affine transformation that normalizes
S(x0, 7). Definea map Tp: R™*" — R""' by T (x, t) = (Tx, (t—to)/¢(ro)), we have

K(0,1/n) ¢ T,(Q(20,10)) © K(0,1),

where K(z,r) = B(x,r) x (t — r2/2,t + r*/2) is the usual parabolic cylinder. The set
T (Q(z0, o)) will be called the normalization of Q(zo, o) and T}, an affine transfor-
mation that normalizes Q(zo, ro). By the definition of sections, it is clear that each
parabolic section Q(z,r) is an open and bounded convex set in R”*! containing z,
and the family P = {Q(z,7) : z€ R""! and r > 0} of parabolic sections is monotonic
increasing in r and satisfies the following conditions:

(A) There exist positive constants Kj, K3, K3, €1, and €, such that given two para-
bolic sections Q(zg, r9) and Q(z, r) with r < rg such that

Q(ZQ,T’()) n Q(Z, 7') }é g,

and given T, an affine transformation that normalizes Q(z, 1), there exists 2’ =
(x',¢") € K(0,K3) such that

oY) e ) e

A 2)) 0 0 32

and .
Tpz=(Tx,t") € B(x', %KZ( ri) 2) x {t'}.
0
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(B) Thereexists § > 0 such that given a parabolic section Q(zo, ) and z ¢ Q(z, r).
If T}, is an affine transformation that normalizes Q(zo, r), then

K(Ty(2),e%) n Tp(Q(z0,(1-€)r)) =@, for0O<e<L

(© Nrso Q(Z) 7’) = {Z} and Urso Q(Z> 1’) =R",
Similar to equations (2.1) and (2.2), the engulfing property holds for parabolic sec-
tions; i.e., there is a constant 8 > 1, depending on §, K and ¢;, such that for z €

Q(Zo, T’),

(2.3) Q(z0,7) cQ(z,6r) and Q(z,r) c Q(zo,0r),
and there is a quasi-metric d on R"*! such that

(2.4) Q(z,7/20) c B(z,7) c Q(z,7), VYQ(z,r)€P,

where B(z,r) = {w e R"' : d(z,w) < r}.
Denote by Lip := Lip(R"*') the collection of functions on R™*! satisfying that
there is a constant C such that

f(2) - f(w)| < Cd(z,w), Vz,weR"

We assumed that a Borel measure p which is finite on compact sets, y(R") = oo
and satisfies the doubling property (equation (1.1)) is given. Let M be a measure on
R"*! defined by dM = dudt. It is easy to see that the measure M is finite on compact
sets, M(IR"*!) = oo and satisfies the doubling property with respect to P; i.e., there is a
constant C such that

(2.5) M(Q(z.2r)) <Cn(Q(2,7)), VYQ(z.r)e?.

A function f defined on R™*! is said to be in BMOg := BMO5»(R"*!) if

1
Iflsssor = sup o [, 17() = ma(1)|aM(z) < .

where mq(f) denotes the mean of f over the parabolic section Q defined by

ma() = 30y o f VD).

A function a in L®(dM) = L*®°(R""!,dM) is called an atom if there exists a
parabolic section Q(zo, r9) € P such that

(a) supp(a) € Q(zo,70);

(b) [pan a(z) dM(z) = 0;

(©) Jalz=cant) < [M(Q(20,70))] 7.

The Hardy space HY, := H, (R"*!) is defined by

HY = {Z/ljaj : each a; is an atom and Z|/\]~| < oo}.
j j

The norm of f in HY, is defined by
| fll, =inf 31251,
J

where the infimum is taken over all decomposition of f = }7;A;a; above.
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Denote by C, := C.(R™*!) the space of continuous functions on R"*! with com-
pact support. Let VMOgp := VMOx(R"™) be the closure of C, n Lip with respect
to the seminorm | - | gao, - Our main result follows.

Theorem 2.1 HL(R"*') is the dual space of VMOp(R™*!).

As an application, we prove that almost everywhere convergence of a bounded
sequence in HY, implies weak* convergence. This is an H, version of the Jones-Journé
theorem [10]. The Jones—Journé theorem is useful in the application of Hardy spaces
to compensated compactness (see [7]).

Theorem 2.2 Let {fi} be a bounded sequence in HY,(R™). If fi converges to f
M-almost everywhere, then f € Hy,(R"™') and fi weak* converges to f; i.e.,

L f@e) anix) — [ F0)9(x)dM(x), V¢ e VMOp(R™).

3 Proofs

Lemma 3.1  For each m € Z, there is a sequence {2 } jen such that R"*! is the union
of parabolic sections {Q(z]', 6™ : j e N} that are finitely overlapping. Moreover,
every f € HY, has the representation

£=Y ¥ A

=] m=—o0

.,

where afl' is an atom with support in Q(2', 0*™*?) and ey ez, '] < Clfll -

Proof For m € Z, let z]" be an arbitrary point in R"*!. By the engulfing property of
the parabolic sections (equation (2.3)), if Q(z, 0™ %) n Q(z}", 6*™?) # @, then

Q(Z, 02m—2) c Q(ZI)GZm—l) c Q(an,92m), VZ, c Q(Z, 62m—2) n Q(Z{n,GZm—2).

Letz)' € R"*! such that Q(z, 0*"2)nQ(z[", 0*™~2) = @. By the engulfing property
again, we have, for all Q(z, 0*™~2) with (z, 0>™2) n Q(z',0*"2) # @,

Q(z,6""7%) c Q(z5', 6°™).
Let 22" € R"*! such that Q(2', 6*"~2) n [U]Z; Q(2",6*"~?)] = @. By the engulfing
property again, we have, for all Q(z, 6*™~%) with (z, 6*"~%) n Q(z]", 6°m2) 4 @,
Q(Z, 92m—2) c Q(ztzn, 92m).

Note that if no such 27" exists then the parabolic sections {Q(z, 0*™) }{;11 are finitely
overlapping by equation (2.4) and the disjointness of the collection

m pn2m=2\\j-1
{Q(Zi >6 )}i:p
whose union is R"*!. Otherwise, continue the same argument to select Zﬁr Thus, we

can find {2’ }Nm_ for all m in Z, such that the parabolic sections {Q(z!", 6*™)} ¥ are

finitely overlapping and whose union is R"*!, where N,, can be finite or infinite.
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Let f € Hi, with representation f = 3; Axax, where 3 [Ax| < oo and each ay is
an atom with support contained in Q(zg, t). Let m = m(k) be the smallest integer
such that Q(zx, tx) © Q(zx, 0*™). Let i = i(k) be the integer such that

Q(zk,Hzm)m[i[JlQ(zf,sz)]:Q and  Q(z, 0°™) N Q(z]", 6*™) # @.
=1

Let y:N — N x Z be a function defined by y(k) = (i(k), m(k)). If y'(i,m) = @,
define A" = 0. Otherwise, let Agax = A" al”, where

Ak

AT =M( Q2! 6°"?)) .
(a ))M(Q(thk))

Then supp(a’) c Q(z1", 6*™*2),

1 Ak

A M(Q(zks t))
and hence a" is an atom with supp(a?”) c Q(z/, 6*™**). By the engulfing prop-
erty for Q(zk, 67) 0 Q(27",6") £ 2, we have Q(zi, 67°2) 0 Q(&]', 62%) # @
and hence Q(z, 0*"*?) c Q(zx, 8*™**). By the doubling property (equation (2.5)),
there is a constant C’ such that

Akl
A’-n :M m’62m+2 ‘ k
1= MR ) S, )

|/\k| < 7
— = <Al
N(QUzr, 077)) = M

m

1 -
@' = T Pllax] < = M(Q(z!", 0"**)) 7,

< M( Q(Zk, 92m+4))

Therefore,
> Arsc ¥ Ml < C Y Ml < C |l -
ieN,meZ kiy(k)=(i,m) keN
This completes the proof. ]

Lemma 3.2 Let {fi} be a bounded sequence in HY,. Then there is a subsequence
{fx,} and f € HY, such that

(3.1) lim fR fagdM = fR fgdM forallge C(R").

Proof We can assume that | fi | <1forall k. By Lemma 3.1, let

fe=3 S AT(R)ar (k)

i=1 m=—o0
where

> AR <Clfilm, <C,

ieN,meZ
each a” (k) is an atom with support contained in Q(z/", §*"*?), and

|af* (k) | L= (aney < M(Q(2]",6°"*2))™"  forall k.

By [6, Lemma 4.3], there is a subsequence A" (k;) such that lim;_, ., A7 (k;) = AT
for each (i,m) e NxZand }; ,, |A""| < C. Since {a!"(k)} is bounded in L (dM),
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which is the dual of L' (d0M), the Banach-Alaoglu theorem shows that there exists a
subsequence {a}"(k;)} that weak* converges to a function a}" with [[a]"| 1~ () <
M(Q(z",0*"*2))~ . By [6, Lemma 4.3] again, there exists a subsequence of {k;}
(still denoted by {k;} for simplicity) such that {a}" (k;) };en converges to al, as | —
oo, for all (i,m). It is easy to check that each a}" is an atom. Let f = ¥; ,, A"al".
Since ; ,, [\7| < C, we have f € H, (R"*").

To show (3.1), we write

fugddt= [ S AP (k)al (kg
=;§AZ~"(M)/RW al (ki) g dM
:( Z_M+ >+ Z)Z)t?”(kl)fwﬂa,f"(k,)gdm,

-M<m<M m>M i

Rn+1

Given € > 0, let M be a large number such that
1g(2) - g(z]")| <&, VxeQ(z]",0°™*?), m < -M.

Then
| Z—M Z M (k) fQ(ztn,92m+z) a’m(kl)(z){g(z) - g(ZT)} dj\/[(z)|
< Z_M Z IM-”(kz)IIIa,f”(k,)HLm(dM)M( Q) 62m+2))€
< Ce.

For each m with —M < m < M, the compact support of g intersects a finite number
of {Q(2)", 0*™*2) } ey, since {Q(2!", 0*™) } jen are finitely overlapping by Lemma 3.1.
Thus,

> XAk [ ar (kg -
—M<m<M i R+t
Lo S Sartartogavi— [ fean

-M<m<M i

as | - oo and M — oo. Note that

2 AT (R)lai (k) [ aney gl aney < Clgliecaney-

i,m

Given € > 0, we have, for large M,

| Sk [ artgd

m>M i
< 2 2N ®al )l mao gl ane) <e.

m>M i

The proof is complete. ]

Proof of Theorem 2.1 By definition, VMO3 is a subspace of BMOx. Since BMO9p
is the dual space of H}, by [12, Theorem 1.2], the space H}, is a subspace of VMO,
Conversely, we note that, if (f,g) = 0 for all f € HY, then g is the zero element of
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BMOg, and hence g is the zero of VMOs. Thus, H5> is a total set of functionals
on VMOy. This shows that HY, is dense in VMO, in the weak*-topology. For each
x* € VMO, there exists a sequence { fi } in Hy, such that ( f, g) - (x*, g) forall g €
VMOsp. It follows from the Banach-Steinhaus theorem that {|| fi[ s } is bounded.

By Lemma 3.2, there exists f € HY, and a subsequence { f, }1en such that
(x",) = lim (fi.g) = lim [ fi,gd

= fgdM=(f,g), VgeCc(R"™).

Rn+1
Thus, the linear functional x* € VMO is represented by f € HZ,. The proof is

complete. ]

The Hardy-Littlewood maximal function with respect to a family P and the mea-
sure M is defined as follows:

1
MI(@) = S0P S0t Jagen (MM

Lemma 3.3 ([12, Lemma 2.2]) The Hardy-Littlewood maximal operator M is of
weak-type (1,1) with respect to the measure M; i.e., there exists a constant C > 0 such
that

M({z: Mf(2) > M) < S1flusaner

The noncentered Hardy-Littlewood maximal operator M with respect to P and the
measure M is defined by

Mf(z) = sup @ [ @),

zeQeP

By the doubling property (2.5), it is easy to see that there is a constant C such that
(3.2) Mf < Mf < CMF,

and hence M is of weak type (1,1) with respect to the measure M.
A nonnegative locally integrable function w is said to belong to A, 5,1 < p < oo, if

1 1 _ 1 p-1
Zl:g(m wi(z) dM(Z))(m an)(Z) P dM(Z)) < 00,
and w is said to belong to Ay p if

sup( m fQ w(z) dM(z)) (es:es(;lp w™(z)) < oo.

QeP

Lemma 3.4 Let f € L} (R"") such that Mf(z) < co M-almost everywhere. Then

loc

(Mf)° e Appfor0<d<1.
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Proof It suffices to show that there exists a constant C’ such that, for any Q € P and
M-almost every z € Q,

M(Q) f (Mf)’dM < C'(Mf(z))’.
Let Q = Q(0,10) Eg’. Leth = f1~+ fas where fi = fxaq and fo = fx(2q)c With
2Q = Q(zp,2r). Then Mf < Mf; + M f, and
(Mf)° < (M£)° +(Mf)°, VO0<d<L.
Since M is weak (1,1) with respect to the measure M, Kolmogorov’s inequality shows

that

C -
51a) Jo TR’ dM_M(Q)M(Q) il ane

M(Q ffdjvt )" < C(Fif(2)".

To estimate M f2, given w € Q and for any Q(wy,R) € P that contains w, we have
Q c Q(wo, 6* max{rg, R}). If R < rq, we have Q(wy, ro) N Q(zg,10) # @, and hence
Q(wo,ro) c Q(z, 6* ro) By equation (2.4), we have B¢ (wq, o) c B%(z9,260%r,), and
hence B?(wy, 7 ) © B?(zo,2r0) © Q(zo,2ro). Then the mequahtny(W ») L2l dM >

0 implies that R > 7%, and hence Q c Q(wo, 6°R) when R < rg. It is clear that

Q c Q(wo, 6°R) when R > r¢. Thus,

1 C ~
— AM< ———— dM < CMf(2),
M(Q(wo,R)) Ja(wo.R) gl M(Q(wo, 05R)) Ja(wo65R) gl 1)

so that M f,(w) < CM f(z) for any w € Q. Therefore,

1 ~ 5 ~ 5
) I (i) Paneow) < €(#f(2))"

The proof is complete. ]

Lemma 3.5 Ifwe Ay, thenlogw € BMOgp.

Proof Let f = logw Then exp(f) € Az p. By Iensen’s inequality, for any Q € P,
=exp( 557 Sl ~ M) < g [ expl(f = ma(h) e

and hence

35(Q) Jo Pl - maln)a
<(5a) Jo 2 ~maMD) (5507 f, expmal) - Him)

1 1
:(Wf()exp(f)d?\/f)(mf()exp(—f)dj\/[) <C.

Similarly,

AN

m/;exp(mQ(f)—f)dMSC.
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Therefore,
1

5@y Jolf - el
< sty Joesellf - ma(nhax
! 1
Smf()exp(f_mQ(f))dMJ’M(Q)_/QeXP(mQ(f)—f)dMgzc,

Hence, f € BMOs. ]

Proof of Theorem 2.2 It is suffices to show that
(3.3) fR lfk¢d3vt—>fR fedM, ¥gepeConlLip.

Assume that | fi | <1. Let ¢ € C.nLip. Without loss of generality, we can assume that
I¢lianty <L [llz=(any <1 and |¢(z) - ¢(2)| < d(z,2") forall z,z" € R**'. Let

8 €(0,1/26) and 5 > 0 such that yexp(67"') < 8C133[g26 and [, |f]dM < 8 whenever
M(E) < Cnexp(87'). Choose k large enough such that

M(Ex) := M({z € supp(¢) : | i (2) = f(2)| > n}) <.
Define
1(z) = max{ 0,1+ 810g(1\71XEk)(z)} .
Itis clear that 0 < 7(z) < 1and 7 = 1 M-almost everywhere on Ey. By Lemmas 3.4 and

3.5, we have | 7] ao, < 28| log(Myg,)"?|smo, < CO. By Lemma 3.3 and equation
(3.2), we have

M({z: Myg,(z) > 67671}) < % f dM = Ce‘rlM(Ek),
e Ex

and therefore,

Observe that

(F=fogan] <| [ (F=fosa-nax | [ (7~ f)gran
| [y, G~ S0 <] [ (- fidgran]

<Al ¢llmanty + 19l aney Supp(s) 1M + ‘ [RM fk¢TdM|

<26+ | fillwm, 7l 8o, <26 + [$7]BMO, -
Equation (3.3) will be established if we have
(3.4) l¢7|Brmo, < CO.
Let Q = Q(zo, 7). Note that
97— mq($7)| <[¢7 - mq($)mq(7)| +|mq($)mq(r) - mo(¢7)|

<lé7-ma(@Ima(n)] + 5o [ 147 ma(@)ma(n)]dM.

| ]Rn+1
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Suppose that ry < 6, then

1
5(Q) o |47~ malenl
< 5y Jo 97 ma@ma(@lad
2 2lmq(4)
W[Q|¢T—mo(¢)T|dM+W/Q|T—T"Q(T)|dM

< C62 + 2||¢HL°°(dM) HTHBMOT < C((S2 + 26) < Cé.

For ro > & with Q(zg, ) N Q(wo, 0™") = &, we have
1 2
M(Q) fo 97— ma(¢r)]dM < M(Q) [Q 7] dM < Co.

For ro > &8 with Q(2¢,8) N Q(wy, 87') # @, we have Q(z9, 6™') c Q(wy, 0571), and
hence M(Q(wy,87")) < M(Q(zo,087")). The doubling condition shows that

M(Q(20,067)) < CECTIN(Q(20,6)).

Thus,
1 . Cljs[gZ(G(siz) . C;s[gz(egiz) . C;c[gz(egiz)
M(Q) = M(Q(20,0071)) ~ M(Q(wo,671)) =~ M(Q(wo,1))
and hence
1 2
— - dM < —— dMm
51(Q) Jo 197~ matonladts sos [ o
log,(0872)
2038
< —  M(s T
M(QUwo, 1) (supp(7))
log, (6677%)
20,8
< — M yexp(d7t) < CS.
Qo))" xp(67)
Therefore,

1
Q) /(; |¢p7 — mq(¢7)|dM < C8

and hence equation (3.4) follows. To show that f is in HY,, by weak* compactness
of the unit ball in Hy, there exists a subsequence {fi, } and g € Hy, with[g[m <1

such that {fi, } weak* converges to g. By equation (3.4), we have [ f¢ = [ g¢ forall
¢ € C. nLip, and hence f = g € H,. ]
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