
Compositio Mathematica 109: 195–250, 1997. 195
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Levi–Tanaka algebras and homogeneous
CR manifolds

C. MEDORI1 and M. NACINOVICH2
1S.I.S.S.A., Trieste, Italy
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Abstract. In this paper we take up the problem of discussing CR manifolds of arbitrary CR
codimension. We closely follow the general method of N. Tanaka, while concentrating our attention
to the case of manifolds endowed with partial complex structures. This study required a deeper
understanding of the structure of the Levi–Tanaka algebras, which are the canonical prolongation
of pseudocomplex fundamental graded Lie algebras. These algebras enjoy special properties, the
understanding of which provided also a way to build up several different examples and points to a
rich field of investigations. Here we restrained further our consideration to the homogeneous models.

Mathematics Subject Classifications (1991): 32F25, 53C30

Key words: CR manifold, Levi–Tanaka algebra

Introduction

In a series of papers ([12], [13], [14]) N. Tanaka developed a general method for
the study of geometrical structures associated to the datum of a vector distribution
on a differentiable manifold. One important application of its research was the
study of the automorphism group of a CR hypersurface. Similar results were
later obtained by Chern and Moser in [4]. The main difficulty in the study of
this problem is that, although it has a quite natural formulation in terms of G-
structures, the classical methods do not apply because in general the group of
infinitesimal CR automorphisms does not have a faithful representation into the
group of infinitesimal automorphisms of the frame bundle. By considering the
prolongation of a graded Lie algebra associated to the vector distribution and
building up a principal bundle canonically associated to it, Tanaka succeeded in
showing that in several cases the group ofCR automorphisms is a finite dimensional
Lie group, whose dimension does not exceed that of the prolongation.

In this paper we take up the problem of discussing CR manifolds of arbi-
trary CR codimension. We closely follow the general method of N. Tanaka, while
concentrating our attention to the case of manifolds endowed with partial com-
plex structures. This study required a deeper understanding of the structure of
the Levi–Tanaka algebras, which are the canonical prolongations of pseudocom-
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plex fundamental graded Lie algebras. These algebras enjoy special properties, the
understanding of which provides also a way to build up several different examples
and points to a rich field of investigations. Here we restrained further our consid-
eration to the homogeneous models, which are interesting for their relationship to
simpler objects already considered in quantum mechanics.

1. Preliminaries

1.1. PARTIAL COMPLEX STRUCTURES AND CR MANIFOLDS

Let M be a smooth real manifold of dimension m, countable at infinity. Let n; k
be nonnegative integers with 2n+ k = m. A partial almost complex structure of
type (n; k) on M is the pair consisting of a real vector subbundle HM of rank
2n of the tangent bundle TM and a smooth fiber preserving bundle isomorphism
J :HM ! HM , with

J2 = �Id:HM ! HM

such that

[X;Y ]� [JX; JY ] 2 �(M;HM) 8X;Y 2 �(M;HM): (1)

Here we use � to indicate smooth sections of a fiber bundle.
The triple M = (M;HM;J), where (HM;J) is a partial almost complex

structure of type (n; k) on M , is then called an almost CR manifold of type (n; k).
We say that the almost partial complex structure (HM;J) on M is a partial

complex structure if it is formally integrable, i.e. if

N (X;Y ) := [JX; Y ] + [X;JY ]� J([X;Y ]� [JX; JY ]) = 0 (2)

for every X;Y 2 �(M;HM). When (HM;J) is a partial complex structure of
type (n; k), we say that the triple M = (M;HM;J) is a CR manifold of type
(n; k).

The integrability conditions (1) and (2) can be expressed in another equivalent
formulation. Let

T 1;0M = fX � iJX jX 2 HMg and

T 0;1M = fX + iJX jX 2 HMg

be the complex vector subbundles of the complexification CHM of HM , corre-
sponding to the eigenvalues i and �i of J . Then (1) and (2) are equivalent to each
of the following

[�(M;T 1;0M);�(M;T 1;0M)] � �(M;T 1;0M);

[�(M;T 0;1M);�(M;T 0;1M)] � �(M;T 0;1M):
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1.2. CR MAPS

Let M1 = (M1;HM1; J1) and M2 = (M2;HM2; J2) be two almost CR mani-
folds, of type (n1; k1) and (n2; k2) respectively. A differentiable map f :M1 !M2

is a CR map if

(1) f�(HM1) � HM2 and

(2) f�(J1Xx) = J2f�(Xx) 8x 2M1 ; 8Xx 2 HxM1:

When M2 is C with the standard complex structure of a CRmanifold of type (1; 0),
a CR map from M1 to C is called a CR function.

A differomorphism f :M1 ! M2 is called a CR diffeomorphism if f and
f�1:M2 !M1 are both CR maps. Two CR diffeomorphic almost CR manifolds
have necessarily the same type.

1.3. THE FORM OF LEVI–TANAKA

We begin by an easy proposition from linear algebra, that will be usefull in the
sequel.

PROPOSITION 1.1. Let V be a real vector space, of even dimension 2n, on which
a complex structure J 2 homR(V; V ), with J2 = �Id, is given. Then:

(1) For every alternating R-bilinear form a:V � V ! R
k such that a(Jv; Jw) =

a(v; w) for every v; w 2 V there is a unique Hermitian form f:V � V ! C
k

such that

=f(v; w) = a(v; w) 8v; w 2 V:

It is given by

f(v; w) = a(Jv;w) +
p
�1a(v; w) 8v; w 2 V

and is Hermitian symmetric for the real form R
k of C k .

(2) If a and f are as in (1),A 2 homC (V; V ) andB 2 homR(R
k ;Rk ), the following

are equivalent

a(Av;Aw) = Ba(v; w) 8v; w 2 V; (i)

f(Av;Av) = Bf(v; v) 8v 2 V: (ii)

(3) If a and f are as in (1), A 2 homC (V; V ), B 2 homR(R
k ;Rk ), the following

are equivalent

a(Av;w) + a(v;Aw) = Ba(v; w) 8v; w 2 V; (iii)

f(Av; v) + f(v;Av) = Bf(v; v) 8v 2 V: (iv)
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We note that (ii) and (iv) are respectively equivalent to

f(Av;Aw) = Bf(v; w) 8v; w 2 V; (ii0)

f(Av;w) + f(v;Aw) = Bf(v; w) 8v; w 2 V; (iv0)

for the complexification, still denoted by B, of the real linear map B.
Let now M = (M;HM;J) be an almost CR manifold of type (n; k), denote

by QM the quotient bundle TM=HM and let �:TM ! QM be the projection
onto the quotient. Given two sections X;Y 2 �(M;HM) and a point x 2M , the
value �([X;Y ]x) 2 QxM only depends on the values Xx; Yx at x of X and Y .
Thus we obtain an alternating bilinear form

lx:HxM �HxM 3 (Xx; Yx)! �([X;Y ]x) 2 QxM;

which is called the Levi–Tanaka form of M at x. Clearly the assignement M 3
x! lx 2 �2(HM;QM) is smooth.

By condition (1) this form is J-invariant

lx(JXx; JYx) = lx(Xx; Yx) 8x 2M; 8Xx; Yx 2 HxM:

By applying the proposition above, we obtain for every x 2M a unique Hermitian
symmetric form fx for the complex structure of HxM such that

lx(Xx; Yx) = =fx(Xx; Yx) 8Xx; Yx 2 HxM:

It is given by

fx(Xx; Yx) = lx(JXx; Yx) +
p
�1lx(Xx; Yx)

and therefore smoothly depends on x. The corresponding Hermitian quadratic form

HxM 3 Xx ! fx(Xx;Xx) 2 QxM

is often referred to as the (vector valued) Levi form.

1.4. PSEUDOCONVEXITY AND PSEUDOCONCAVITY

Let M = (M;HM;J) be an almost CR manifold of type (n; k). We define the
characteristic bundle of M as the smooth linear subbundleH0M of the cotangent
bundle T �M of M whose fiber H0

xM at the point x 2 M is the annihilator of
HxM � TxM

H0
xM = f�x 2 T �xM j hXx; �xi = 0 8Xx 2 HxMg:
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We define the (scalar) Levi form at �x 2 H0
xM by

L(�x;Xx) = hfx(Xx;Xx); �xi for Xx 2 HxM:

This is a real valued hermitian form for the complex structure of HxM .
We say that M is q-pseudoconvex at x 2M if we can find �x 2 H0

xM such that
the hermitian form L(�x; � ) has at least n� q positive eigenvalues.

We say that M is q-pseudoconcave at x 2 M if for every �x 2 H0
xM with

�x 6= 0 the Hermitian form L(�x; � ) has at least q negative eigenvalues.
Pseudoconvexity and pseudoconcavity are related to the local properties of the

CR complexes (see for instance [10] and [8]).

2. Prolongations of fundamental graded Lie algebras

2.1. GRADED LIE ALGEBRAS

A graduation of a Lie algebra g over a field K is a decomposition of g into a direct
sum of K -linear subspaces g =

L
p2Zgp such that

(
dimKgp <1 8p 2 Z;

[gp; gq] � gp+q 8p; q 2 Z:

We say that g is of finite kind �, for a nonnegative integer �, if gp = 0 for p < ��
and g�� 6= 0. In this case we call the dimension k of �p<�1gp the codimension of
g.

We note that g� =
L

p<0 gp, g+ =
L

p>0 gp and g0 are Lie subalgebras of g.
Moreover, for every p 2 Z the map

�p: g0 ! homK(gp; gp)

defined by

�p(X0)(Xp) = [X0;Xp] for X0 2 g0;Xp 2 gp (3)

is a linear representation of the Lie algebra g0 in gp.
A graded Lie algebra g is said to be:

(1) fundamental if gp = 0 for p > 0 and [gp; g�1] = gp�1 for p < 0, i.e. g�1

generates g;
(2) nondegenerate if [X; g�1] 6= 0 when 0 6= X 2 g�1;
(3) irreducible (respectively completely reducible) if the representation ��1 of g0

in g�1 is irreducible (resp. completely reducible);
(4) transitive if [X; g�1] 6= 0 when p > 0 and 0 6= X 2 gp. In this case the

representation ��1 of g0 in g�1 is faithful.
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A graded Lie algebra g over R is said to be pseudocomplex if a complex structure

J : g�1 ! g�1; J2 = �Idg
�1

is given on g�1 in such a way that

[X;Y ] = [JX; JY ] 8X;Y 2 g�1: (4)

2.2. FUNDAMENTAL GRADED LIE ALGEBRAS ASSOCIATED TO VECTOR
DISTRIBUTIONS

Graded Lie algebras were considered by Tanaka in [12] in order to investigate
canonical forms of vector distributions and CR manifolds. We rehearse here the
relevant construction.

Let D � TM be a rank r linear subbundle of the tangent bundle of a smooth
differentiable manifold M of dimension m. We set

D�1 = �(M;D)

and define by recurrence

Dp = [Dp+1;D�1] +Dp+1 for p < �1:

Then we have an increasing sequence of E(M)-modules of vector fields

D�1 � D�2 � � � � � �(M;TM):

For every x 2M and p < 0 we set

(Dp)x = fXx 2 TxM jX 2 Dpg:

Note that:

(i) [Dp;Dq] � Dp+q 8p; q < 0;

(ii) if p; q < 0;X 2 Dp; Y 2 Dq; f; g 2 E(M), then

[fX; gY ]� fg [X;Y ] 2 Dp+q+1:

Let us define then, for every fixed x 2M ,8<:
g�1(x) = (D�1)x;

gp(x) =
(Dp)x
(Dp+1)x

for p < �1:
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By conditions (i) and (ii), the commutator of vector fields inDp andDq, composed
with the projection onto the quotient (Dp+q)x ! gp+q(x), defines on

g(x) =
M
p<0

gp(x);

the structure of a real fundamental graded Lie algebra.
We say that D is regular if, for every p < 0, Dp is a vector distribution of

constant rank in M , i.e if

dimR gp(x) = dimR gp(y) 8p < 0; 8x; y 2M:

In this case there is a smallest positive integer � such that

Dp = D�� 8p < ��

and D�� is the smallest formally integrable vector distribution in M containing
D�1 = �(M;D). By the classical Frobenius Theorem M is locally foliated by
integral leaves of D��.

In particular we can apply the construction above to the linear vector subbundle
HM of TM for a given almost CR manifold M = (M;HM;J). We say that M
is contact regular if HM is regular.

We shall denote by m(x) the fundamental graded Lie algebra associated to HM
at the point x 2 M . It is pseudocomplex with respect to the complex structure J
on HxM = m�1(x). We note that m(x) is nondegenerate if and only if the Levi
form is nondegenerate at x.

A CR diffeomorphism induces isomorphisms of the pseudocomplex funda-
mental graded Lie algebras associated to the partial almost complex structures
at the corresponding points. In particular the algebras m(x) are pseudoconformal
invariants of the CR manifolds.

The fundamental graded Lie algebra m(x) takes into account also the higher
order Levi forms (see [11]). However, for the study of the local CR invariants of
M, it is convenient to extend m(x) to a graded Lie algebra g(x), via a canonical
prolongation. This g(x) will be called the Levi–Tanaka algebra of M at x.

2.3. CANONICAL PROLONGATIONS OF FUNDAMENTAL GRADED LIE ALGEBRAS

Given a finite dimensional graded Lie algebra a = ���6p6�ap, we say that a graded
Lie algebra b = ���6pbp is a prolongation of a if there is a monomorphism of
graded Lie algebras a! b inducing an isomorphism of a onto b6� = ���6p6�bp.

In [13] the following theorem is proved:

THEOREM 2.1. Let m =
L

��6p<0 mp be a fundamental graded Lie algebra over
R. Then we can construct a graded Lie algebra g =

L
p>�� gp, unique up to

https://doi.org/10.1023/A:1000166119593 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000166119593


202 C. MEDORI AND M. NACINOVICH

isomorphisms, which is maximal between the transitive graded Lie algebras g for
which there is a graded Lie algebras isomorphism

g� =
M

��6p<0

gp ! m:

Such a transitive graded Lie algebra g will be called the canonical prolongation of
m.

Let m be a fundamental graded Lie algebra of kind � and let ~m be its canonical
prolongation, given by the theorem above. We fix a Lie subalgebra g0 of the algebra
~m0 of all derivations of degree 0 of m. Then we define the canonical prolongation
of m� g0 setting by recurrence

gp = fXp 2 ~mp j [Xp; g�1] � gp�1g:

This is a graded Lie subalgebra of ~m and hence a transitive graded Lie algebra,
maximal between the graded Lie algebras a which are transitive and satisfy

m� g0 ' a60 =
M
p60

ap as graded Lie algebras:

When m is a pseudocomplex fundamental graded Lie algebra, we say that a prolon-
gation a = �p>��ap of m is pseudocomplex if the elements of a0 define derivations
of degree 0 of m which are C -linear on m�1 for the complex structure induced by
J .

If we define g0 to be the space of all degree 0 derivations of a pseudocomplex
fundamental graded Lie algebra m which are C -linear on m�1, we call the canonical
prolongation of m� g0 the canonical pseudocomplex prolongation of m.

A graded Lie algebra g = �p>��gp such that:

(i) m = ���6p<0gp is a fundamental pseudocomplex Lie algebra;
(ii) g is the canonical pseudocomplex prolongation of m;

will be called a Levi–Tanaka algebra.
In particular, when m = m(x) is the pseudocomplex fundamental graded Lie

algebra associated to a point x 2M of an almostCRmanifold M = (M;HM;J),
its canonical pseudocomplex prolongation g(x) is called the Levi–Tanaka algebra
of M at x.

We note that CR diffeomorphisms induce isomorphisms of the Levi–Tanaka
algebras at corrisponding points. In particular the Levi–Tanaka algebras, modulo
isomorphisms, are pseudoconformal invariants.

2.4. FINITENESS OF THE CANONICAL PROLONGATION

A useful criterion for the finiteness of transitive prolongations was given by Serre
(cf. [5] and [13]).
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THEOREM 2.2. Let g = �p>��gp be a transitive prolongation of a fundamental
graded Lie algebra of kind � and let

H(g) = fX 2 g j [X;Y ] = 0 8Y 2 �p<�1gpg:

Then g is finite dimensional if and only if H(g) is finite dimensional.

3. Levi–Tanaka algebras

3.1. CANONICAL PSEUDOCOMPLEX PROLONGATIONS

The finiteness criterion given in the previous section yields in the pseudocomplex
case:

THEOREM 3.1. Let m = ���6p6�1mp be a pseudocomplex fundamental graded
Lie algebra. The canonical pseudocomplex prolongation g = �p>��gp of m is
finite dimensional if and only if m is nondegenerate, i.e.

fX 2 g�1 j [X; g�1] = 0g = 0:

A necessary and sufficient condition in order that g be finite dimensional is that

fX 2 g1 j [X;Y ] = 0 8Y 2 �p<�1gpg = 0:

Proof. Let n = �p<�1gp and let h denote the graded Lie subalgebra of g defined
by h = fX 2 g j [X; n] = 0g.

The condition is necessary: assume that there is 0 6= X 2 g�1 such that [X;Y ] =
0 for every Y 2 g�1. Let g0�1 be a J-invariant subspace of g�1 complementary to
the subspace g00�1 generated by X and JX . Then we define Y0 2 h0 = h \ g0 � g0

by (
[Y0; Z] = 0 for Z 2 g0�1 � n;

[Y0; Z] = Z for Z 2 g00�1:

We note that Y0 2 h0 and that also the element ~Y0, defined by8<: [ ~Y0; Z] = 0 for Z 2 g0�1 � n;

[ ~Y0; Z] = JZ for Z 2 g00�1

belongs to h0 � g0. By recurrence we can define sequences fYpgp>0; f ~Ypgp>0,
with 0 6= Yp; ~Yp 2 hp � gp by setting, for p > 1,8>><>>:

[Yp; Z] = 0 for Z 2 g0�1 � n;

[Yp;X] = Yp�1;

[Yp; JX] = ~Yp�1;
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[ ~Yp; Z] = 0 for Z 2 g0�1 � n;

[ ~Yp;X] = ~Yp�1;

[ ~Yp; JX] = �Yp�1:

This shows that g is infinite dimensional.
Conversely, when m is nondegenerate, h1 = 0 and the criterion applies. Indeed,

let us consider the Hermitian symmetric C 
 g2-valued form

(XjY ) = [JX; Y ] +
p
�1[X;Y ] for X;Y 2 g�1:

Then h0 is contained in the space of A 2 homC (g�1; g�1) such that

(AXjY ) + (XjAY ) = 0 8X;Y 2 g�1:

Let � 2 h1 and denote by B: g�1 ! g0 the corresponding R-linear map. Then we
have (

B(X)Y = B(Y )X 8X;Y 2 g�1;

(B(X)Y jZ) + (Y jB(X)Z) = 0 8X;Y;Z 2 g�1:

Since B(X) 2 h0 for X 2 g�1, we obtain

(B(X)Y jZ) = (B(Y )XjZ) = �(XjB(Y )Z) = �(XjB(Z)Y )

= (B(Z)XjY ) = (B(X)ZjY ) = �(ZjB(X)Y )

= �(B(X)Y jZ) 8X;Y;Z 2 g�1:

This shows that

<(B(X)Y jZ) = 0 8X;Y;Z 2 g�1

and hence B = 0, which gives � = 0. The proof is complete.
The subspaces gp = gp(m) of a canonical pseudocomplex prolongation g(m) =

���6pgp(m) of a pseudocomplex fundamental graded Lie algebram= ���6p<0mp

can be defined inductively by

gp(m) =

8>>>>>>>><>>>>>>>>:

mp if p < 0;

fA 2 Der(m;m) jA(mj) � mj 8j < 0;

A(JX) = JA(X) 8X 2 m�1g if p = 0;

fA 2 Der(m;�h<pgh(m)) j
A(mj) � gp+j(m) 8j < 0g if p > 0;

(5)
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where Der(m; V ) indicates the space of derivations of the Lie algebra m which take
values in a left m-module V . This is indeed the characterization of the canonical
prolongation given in [12]. In the following we will use these identifications without
mentioning whenever it will simplify our arguments.

PROPOSITION 3.2. Assume that m = h � n is the semidirect sum of a graded
pseudocomplex ideal h and of a graded pseudocomplex subalgebra n. Then

(i) if m is fundamental, then n is also fundamental;
(ii) if m is fundamental and pseudocomplex, then there is a natural pseudocom-

plex graded Lie algebras homomorphism g(m) ! g(n) from the canonical
pseudocomplex prolongation g(m) of m into the canonical pseudocomplex
prolongation g(n) of n which makes the diagram

m - n

g(m)
?

- g(n)
?

in which the top horizontal arrow is the projection associated to the direct
sum decomposition m = h� n and the vertical arrows are the inclusion maps,
commute.

Proof. Statement (i) is a consequence of the fact that h is an ideal. We use
formula (5) to define the subspaces of the canonical prolongations ofn andm. Then,
if �:m! n is the pseudocomplex graded Lie algebra homomorphism associated to
the direct sum decomposition g = h� n, we define inductively �p: gp(m)! gp(n)
by setting

�p(X) = �(X) 8X 2 mp = gp(m) if p < 0;

�p(A)(X) = �p+j([A;X]) 8X 2 nj; j < 0; 8A 2 gp(m) if p > 0:

The direct sum of the �p’s yields the desired homomorphism.
We also have:

PROPOSITION 3.3. Assume that the pseudocomplex graded Lie algebra m =
���6p<0mp is the direct sum of two pseudocomplex graded ideals a = ���6p<0ap
and b = ���6p<0bp. Then:

(i) m is fundamental if and only if a and b are both fundamental;
(ii) m is nondegenerate if and only if a and b are both nondegenerate;
(iii) if m is fundamental and nondegenerate, its canonical pseudocomplex prolon-

gation g(m) is isomorphic to the direct sum of the canonical pseudocomplex
prolongations g(a) and g(b) of a and b respectively.
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Proof. Statements (i) and (ii) are trivial, as [a; b] = 0. To prove (iii), we note
first that we have an inclusion map: g(a) � g(b) ,! g(m). To prove that this map
is an isomorphism, we argue by contradiction. If it was not the case, there is a
smallest integer p such that gp(a) � gp(b) 6= gp(m). Clearly p > 0. Denote by �a
and �b the projections of�h<pgh(m) onto�h<pgh(a) and�h<pgh(b) respectively.
By (5) each element X of gp(m) is defined by the restriction of ad(X) to m. This
map is the sum Xa +Xb + Z of Xa = �a � ad(X) � �a, Xb = �b � ad(X) � �b,
and Z = �a � ad(X) � �b + �b � ad(X) � �a. Again by (5) we obtain Xa 2 gp(a)
and Xb 2 gp(b). It suffices therefore to show that Z = 0. This follows because
[Z; Y ] 2 gp�1(b) if Y 2 a�1 and [Z; Y ] 2 gp�1(a) if Y 2 b�1. Indeed, assuming
Y 2 a�1 we have for every U 2 m�1

gp�2(b) 3 [[Z; Y ]; U ] = [[Z; Y ]; �b(U)]

= [Z; [Y; �b(U)]] + [[Z; �b(U)]; Y ]

= [[Z; �b(U)]; Y ] 2 gp�2(a):

Hence we have [[Z; Y ]; U ] = 0 for all U 2 m�1. Because p > 0, g(m) is transitive
andm is nondegenerate, we obtain that [Z; Y ] = 0 for all Y 2 a�1. In the same way
we prove that [Z; Y ] = 0 for all Y 2 b�1 and this implies that Z = 0, completing
the proof of the proposition.

We note that in (iii) the assumption that m is nondegenerate is essential, as the
trivial example of an Abelian m = m�1 of complex dimension larger than one
shows.

Given a pseudocomplex graded Lie algebra g = �p>��gp with complex struc-
ture J : g�1 ! g�1, we consider its complexification gC = �p>��g

C

p . The com-
plexification of the partial complex structure J is a partial complex structure
Ĵ = id 
 J : gC�1 ! gC�1. In this way we obtain a new pseudocomplex graded
Lie algebra ĝ by considering gC as a graded real Lie algebra endowed with the
pseudocomplex structure Ĵ . We have the following:

Remark 3.4. A necessary and sufficient condition in order that ĝ be a Levi–
Tanaka algebra is that g is a Levi–Tanaka algebra.

Proof. First we note that m̂ = �p<0ĝp is fundamental (nondegenerate) if and
only if m = �p<0gp is fundamental (nondegenerate) and that ĝ is transitive if and
only if g is transitive. Next we consider the canonical pseudocomplex prolongation
a of m̂ and we prove by recurrence that the anti-C -linear part of the map gC�1 ! gCp�1
defined by any X 2 ap (for p > 0) is 0. This implies our contention.

3.2. PROPERTIES OF LEVI–TANAKA ALGEBRAS

LEMMA 3.5. Let m = ���6p<0gp be a pseudocomplex fundamental graded Lie
algebra and let g = �p>��gp be its canonical pseudocomplex prolongation, i.e.
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g is a Levi–Tanaka algebra. Assume that m is nondegenerate, so that g is finite
dimensional. Then:

(i) �g(gp; gq) = 0 if p+ q 6= 0 where �g is the Killing form of g;
(ii) there is a unique element E 2 g0 such that

[E;Xp] = pXp 8p 2 Z; 8Xp 2 gp:

Proof. (i) Indeed, ifXp 2 gp andYq 2 gq, then adg(Xp)�adg(Yq)(gh) � gh+p+q
and hence is nilpotent when p+ q 6= 0. Therefore

�g(Xp;Xq) = tr(adg(Xp) � adg(Xq)) = 0:

(ii) The R-linear map ~E : m! m defined by

~E(Xp) = pXp for p < 0 and Xp 2 gp

is a derivation of order zero of m, which commutes with J on g�1 and therefore
defines an element E 2 g0. We have to show that [E;Xp] = pXp when p > 0 and
Xp 2 gp. This is certainly true when p = 0, because ��1(E) commutes with all
endomorphisms in homR(g�1; g�1). Assuming it is true for some p > 0, we have
for Xp+1 2 gp+1 and Y�1 2 g�1

[[E;Xp+1]; Y�1] = [E; [Xp+1; Y�1]] + [Xp+1; [Y�1; E]]

= (p+ 1) [Xp+1; Y�1]:

Since g is transitive, this implies that [E;Xp+1] = (p+ 1)Xp+1.
If l is any subset of a Levi–Tanaka algebra g, we will use in the following the

notation lp for the set l \ gp of its elements that are homogeneous of degree p. We
say that l is graded if l = �p2Zlp.

COROLLARY 3.6. Every ideal of a finite dimensional Levi–Tanaka algebra is
graded.

Proof. Let X = X�� + X1�� + � � � + X� be an element of an ideal i of
g = ���6p6�gp, decomposed as a sum of its homogeneous components. Then
i contains all elements adg(E)`(X), where E is the element of g defined in the
previous lemma and ` is any positive integer. Therefore i contains

X�� + X1�� + � � � + X�

��X�� + (1� �)X1�� + � � � + �X�

� � �
(��)`X�� + (1 � �)`X1�� + � � � + �`X�
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from which it follows that the ideal i contains all the homogeneous components
of X .

COROLLARY 3.7. If g is a finite dimensional Levi–Tanaka algebra, then the
adjoint representation g 3 X ! adg(X) 2 gl(g) is faithful. In particular, all finite
dimensional Levi–Tanaka algebras have a trivial center.

Proof. Let X = X�� + � � �+X� be an element of g, decomposed into the sum
of its homogeneous components, such that adg(X) = 0. Let E be the element of
g0 defined in Lemma 3.5. From

adg(X)(E) = �
X

��6j6p

j Xj = 0

we deduce that Xj = 0 for every j 6= 0. Therefore X = X0 2 g0 and

adg(X0)(Y ) = ��1(X0)(Y ) = 0 8Y 2 g�1

implies that X0 = 0.
Using this corollary, we will often identify g with the Lie subalgebra of gl(g)

which is the image of g by the adjoint representation. We will call an element X
of g nilpotent (resp. semisimple) if adg(A) is nilpotent (resp. semisimple) as an
element of gl(g).

Let V be a vector space over a field K of characteristic 0 and a a Lie subalgebra
of glK(V ). We say that a is splittable if it contains the semisimple and nilpotent
component of each of its elements.

LEMMA 3.8. The Lie subalgebra g0 of the Levi–Tanaka algebra g = �p2Zgp,
considered as a Lie subalgebra of gl(m), is splittable, i.e. contains the semisimple
and nilpotent component of each of its elements.

Assume that m is nondegenerate, so that g is finite dimensional. Then:

(i) if S and N 2 g0 are the semisimple and nilpotent components of A 2 g0 as
endomorphisms of m, then adg(S) and adg(N) are respectively semisimple
and nilpotent in gl(g);

(ii) the algebra g is splittable as a Lie subalgebra of gl(g).

Proof. Every elementA 2 g0 defines a derivation of the fundamental Lie algebra
m. The semisimple component S and the nilpotent componentN of A in gl(m) are
still derivations of m (cf. [3] Ch. 7 Section 1 Proposition 4(ii)). Moreover, since S
and N are polynomials of A, we have S(gp) � gp and N(gp) � gp for all p < 0
and S and N define C -linear endomorphisms of g�1. This shows that S;N 2 g0.

Let us assume now that g be finite dimensional. First we note that the elements
of g0 are splittable as endomorphisms of g. This follows by the same argument
given above: if A 2 g0, then adg(A) is a 0-degree derivation of g which defines a
C -linear endomorphism of g�1. Then the semisimple and nilpotent components ~S
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and ~N of adg(A) in gl(g) are 0-degree derivations of g which define C -linear endo-
morphisms of g�1. Their restrictions to m are commuting semisimple and nilpotent
endomorphisms of m and thus are the semisimple and nilpotent components S and
N of the representation of A in gl(m). This shows that adg(S) and adg(N) are
still semisimple and nilpotent respectively. Indeed they coincide with ~S and ~N
because by the construction of the canonical prolongation 0-degree derivations of
m uniquely extend to 0-degree derivations of g. This proves (i).

To complete the proof, we observe that when g is finite dimensional the elements
of[p6=0gp are all nilpotent. It follows from (i) that g, considered as a Lie subalgebra
of gl(g), is generated by its semisimple and nilpotent elements. This implies that
adg(g) � gl(g) is splittable (see [3] Ch. VII Section 5 Theorem 1).

LEMMA 3.9. Let g = �p2Zgp be a finite dimensional Levi–Tanaka algebra. Then
we can find a Cartan subalgebra a of g containing the element E of Lemma 3.5
and contained in g0. Every Cartan subalgebra of the Lie algebra g0 is a Cartan
subalgebra of g and therefore g0 contains regular elements of g.

Proof. Let S denote the set of semisimple elements of g and T the set of all
commutative Lie subalgebras of g contained in S . Let T1 denote the set of maximal
(with respect to �) elements of T . Because g is splittable by Lemma 3.8, for every
t 2 T1 its centralizer Cg(t) = fX 2 g j [X; t] = 0g in g is a Cartan subalgebra of g
(see [3] Ch. VII Section 5 Proposition 6). The element E defined in Lemma 3.5 is
semisimple. Therefore it can be included in a Lie subalgebra t 2 T1. Let a denote
its centralizer in g. It is a Cartan subalgebra of g and, if X 2 a and X = �pXp is
its decomposition into the sum of its homogeneous components, we have

0 = [E;X] =
X
p6=0

pXp;

and hence X = X0 2 g0.
The last statement follows from [3] Ch. VII Section 3 Proposition 3.

LEMMA 3.10. Let m be a pseudocomplex fundamental graded Lie algebra of kind
2 and let g = �p>�2gp be its pseudocomplex canonical prolongation. Then there
is a unique element ~J 2 g0 such that

[ ~J;X] = JX 8X 2 g�1: (6)

Proof. When m is of kind 2, the elements of g0 can be identified to the space
of C -linear maps A: g�1 ! g�1 for which there is an R-linear map B: g�2 ! g�2

such that

[AX;Y ] + [X;AY ] = B([X;Y ]) 8X;Y 2 g�1:

From the definition of a pseudocomplex graded Lie algebra, this relation holds true
for A = J and B = 0.
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We will see below that the existence of such an element ~J is not guaranteed
when the kind � of m is greater than 2. We say in general that a pseudocomplex
graded Lie algebra g = �p>��gp has the (J) property if there is an element ~J 2 g0

for which (6) holds true. In this case we denote by Jp the representation �p( ~J) of
~J in gp. Note that J�1 = J is the complex structure of g�1.

LEMMA 3.11. Let g = �p>��gp be a canonical pseudocomplex prolongation of a
pseudocomplex fundamental graded Lie algebra m of kind � > 2. If g has the (J)
property, then:

(i) Jp defines a complex structure on gp for p = �3;�1; 1;
(ii) Jp = 0 for p = �2; 0.

When � = 2, and m is nondegenerate, Jp is a complex structure in gp for p odd
and 0 for p even.

Proof. The statement is certainly true when p = �2;�1; 0.
Let us consider the case p = �3. The elements [X;T ], for X 2 g�1 and

T 2 g�2 are a set of generators of g�3 because m is fundamental. Since ~J is a
0-degree derivation of m we have

J�3([X;T ]) = [ ~J; [X;T ]] = [J�1X;T ] + [X;J�2T ]

= [JX; T ] 8X 2 g�1; 8T 2 g�2:

Then we obtain

J2
�3([X;T ]) = J�3([JX; T ]) = [J2X;T ]

= �[X;T ] 8X 2 g�1; 8T 2 g�2;

from which we have

J2
�3Y = �Y 8Y 2 g�3

because this relation holds true on a set of generators of g�3.
In general, the argument above shows that, if p < 0 and Jp = 0, then Jp�1 is a

complex structure in gp�1.
Let us turn now to the case p = 1. Let X 2 g1. Then we have

0 = J0([X;Y ]) = [J1X;Y ] + [X;JY ] 8Y 2 g�1:

This yields

[J1X;Y ] = �[X;JY ] 8X 2 g1; 8Y 2 g�1:

Then we have

[J2
1X;Y ] = �[J1X;JY ] = [X;J2Y ]

= �[X;Y ] 8X 2 g1; 8Y 2 g�1:
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Since g is transitive, this shows that J1 is a complex structure in g1.
More in general, this argument shows that, if Jp = 0 for some p > 0, then Jp+1

is a complex structure in gp+1.
Let us turn now to the case where m is of kind 2. Then, assuming that Jp = 0

for some p > 0, we have

[Jp+2Xp+2; Y�2] = Jp[Xp+2; Y�2]� [Xp+2; J�2Y�2] = 0 8Xp+2 2 gp+2

for every Y�2 2 g�2. This implies that Jp+2Xp+2 2 hp+2, where h = fZ 2
g j [Z; g�2] = 0g. But we proved (see Theorem 3.1) that hp = 0 for p > 0 when m

is nondegenerate. Then we obtain by recurrence that gp = 0 for every p even.
By the previous remarks, this gives the proof of the lemma.

Remark 3.12. Assume that Jq is a complex structure for some q > 1. Let
X 2 gq+1 and Y 2 g�1. Then we obtain

�[X;Y ] = J2
q [X;Y ] = [J2

q+1X;Y ] + 2[Jq+1X;JY ]� [X;Y ]:

From this we derive

[J2
q+1X;Y ] = �2[Jq+1X;JY ] 8X 2 gq+1; 8Y 2 g�1:

Applying this equality we obtain

[J3
q+1X;Y ] = �2[J2

q+1X;JY ]

= �4[Jq+1X;Y ] 8X 2 gq+1; 8Y 2 g�1:

Because g is transitive, we have

J3
q+1 + 4Jq+1 = 0:

We obtain the analogous equation for Jp�1 if we assume that p 6 �3 and Jp is a
complex structure in gp.

Remark 3.13. Since [ ~J;A] = 0 for every A 2 g0, the linear endomorphism
�p(A) is C -linear in gp whenever Jp defines a complex structure in gp.

Remark 3.14. From the lemma above we obtain that dimRg�3 must be even
when g has the (J) property. In particular we cannot expect (J) to hold for the
Levi–Tanaka algebras of a CR manifold M of type (1,2) in which the vector fields
in �(M;HM) generate the Lie algebra of tangent vector fields to M .

3.3. SEMISIMPLE PROLONGATIONS

We first recall a lemma on the structure of semisimple graded Lie algebras. See for
instance [15].
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LEMMA 3.15. Let s = ���6p6�sp be a finite dimensional semisimple graded Lie
algebra over R and let �s be its Killing form. Then:

(i) s contains a unique element E 2 s0 such that

[E;Xp] = pXp 8 � � 6 p 6 �; 8Xp 2 sp;

(ii) �s(sp; sq) = 0 for p+ q 6= 0;
(iii) � = � and the Killing form defines a duality pairing between sp and s�p: in

particular

dimR sp = dimR s�p for 0 6 p 6 �;

(iv) g0 is a reductive Lie algebra, i.e. decomposes into the direct sum of a commu-
tative and a semisimple ideal;

(v) if � > 0, then s is of the noncompact type.

Proof. (i) The linear operator T : s ! s defined by T (Xp) = pXp for p 2 Z

and Xp 2 sp is a derivation of order zero of s and hence, because s is semisimple,
defines an element E of s0.

(ii) If Xp 2 sp and Yq 2 sq with p+ q 6= 0, then the linear operator adg(Xp) �
adg(Yq): s! s is nilpotent because adg(Xp) � adg(Yq)(sh) � sh+p+q.

(iii) is a consequence of (2), because �s is nondegenerate on s.
Statement (iv) follows because the restriction to s0 of Killing form �s, which is

nondegenerate by (iii), is the invariant bilinear form in s0 induced by the adjoint
representation. Then we apply [3] Ch. I Section 6 Proposition 5(d). The last state-
ment is a trivial remark, as by (iii) the Witt index of the Killing form is larger or
equal to dimR���6p<0 sp.

LEMMA 3.16. Let s = ���6p6�sp be a semisimple graded Lie algebra over R.
Then a necessary and sufficient condition in order that s be transitive is that

[X; s�1] 6= 0 8X 2 s0;X 6= 0: (7)

Proof. The condition (7) is trivially necessary. Let us prove sufficiency. First we
show that, for X 2 s,

[X; s�1] = 0 ) [X; sp] = 0 8p < 0:

This follows by recurrence: indeed [sp; s�1] = sp�1 for p < 0 because m is
fundamental; then

[X; sp�1] = [[X; sp]; s�1] + [sp; [X; sp�1]]

shows that [X; sp�1] = 0 when [X; sp] = [X; s�1] = 0.
Let now X be a nonzero element of sq for some q > 0. Since m is fundamental,

it suffices to show that there is Y 2 sp for some p < 0 such that [X;Y ] 6= 0. By
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Lemma 3.15 (iii) there is U 2 s�q such that ads(U) � ads(X) 6= 0. Then we can
find p 2 Z and a homogeneous Z 2 sp, such that

ads(U) � ads(X)(Z) = [U; [X;Z]] 6= 0:

Since we obtain in particular [X;Z] 6= 0, if p < 0 we have finished. Assume now
that p = 0. Then

[U; [X;Z]] = [[U;X]; Z] + [X; [U;Z]] 6= 0

and the Lie product of X by either U or [U;Z], both belonging to s�q, is different
from zero. If finally p > 0, we use again Lemma 3.15 (iii): since [X;Z] 2 sp+q is
different from zero, we can find V 2 s�(p+q) such that

0 6= �s([X;Z]; V ) = ��s(Z; [X;V ])

and [X;V ] 6= 0 with V 2 s�(p+q) and �(p+ q) < 0. The proof is complete.
If g is a Lie algebra, we define by recurrence [X] = X for every elementX 2 g

and [X1;X2; : : : ;Xk] = [X1; [X2; : : : ;Xk]] for everyX1; : : : ;Xk 2 gwhenk > 1.
For a � g denote by a(k) the linear span of [X1; : : : ;Xk] for X1; : : : ;Xk 2 a.

LEMMA 3.17. Let s = ���6p6�sp be a simple graded Lie algebra over R.

Then m = ���6p<0sp is fundamental if and only if s
(�)
�1 6= 0 (i.e. there exist

X1; : : : ;X� 2 s�1 such that [X1; : : : ;X�] 6= 0). In this case s is nondegenerate
and transitive if and only if � > 2.

Proof. In the proof we shall use the following:

CLAIM 3.18. For every element X of a graded Lie algebra g = �p2Zgp the
elements of the ideal i(X) generated by X are linear combinations of X and
elements of the form [Zk; : : : ; Z1;X] with Zi homogeneous and degZk > � � � >
degZ1.

(This claim can be easily obtained using induction and Jacobi’s identity.) Suppose
there exist X1; : : : ;X� 2 s�1 such that [X�; : : : ;X1] 6= 0. Then we have that
Yj = [Xj ; : : : ;X1] 6= 0 for 1 < j 6 � and the ideals i(Yj) generated by the Yj’s are
not zero. Because s is simple, they coincide with s and i(Yj)�p = i(Yj)\s�p = s�p.

We will prove, by recurrence, that s�q = s
(q)
�1 for 1 < q 6 �. If q = �, then it

follows from the claim that s�� = i(Y�)�� is generated by elements of the form

[Zk; : : : ; Z1; Y�] with Zi 2 s0 for every i. Because s
(�)
�1 is invariant under the

adjoint action of g0, we conclude that s�1 = i(Y�)�� = s
(�)
�1 . Assume now that

q < � and s�p = s
(p)
�1 for q < p 6 �. We want to prove that s�q = s

(q)
�1. By

the claim s�q = i(Yq)�q is generated by linear combinations of Yq and elements
of the form [Zk; : : : ; Z1; Yq] with Zi homogeneous, degZk > � � � > degZ1 and
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�k
1 degZi = 0. It suffices to prove that they all belong to s

(q)
�1. If degZk = 0,

then Z1; : : : ; Zk 2 s0 and therefore [Zk; : : : ; Z1; Yq] 2 s
(q)
�1. If degZk > 0, then

[Zk; : : : ; Z1; Yq] is a linear combination of elements of the form [Zk; Ur; : : : ; U1]
with Uj 2 s�1 and r = q + degZk. By repeated application of the formula
[V; Vs; : : : ; V1] = �s

i=1[Vs; : : : ; Vi+1; [V; Vi]; Vi�1; : : : ; V1], we can show that the

commutator [Zk; Ur; : : : ; U1] belongs to s
(q)
�1.

The converse is obvious.
Suppose now that m is fundamental. Assume � > 2. First we show that s

is nondegenerate. If s was degenerate then we could find X 2 s�1 such that
[X;m] = 0 and the ideal i(X) generated by such an X would be different from
zero, hence equal to s. On the other hand, using the claim above we obtain that
s�� = i(X)�� = 0 and this gives a contradiction.

Next we show that s is transitive. Let a be equal to fA 2 s0j[A;m] = 0g. By
Lemma 3.16, it suffices to prove that a is zero. Assume that A 2 a. If X 2 s0, then
[[A;X]; Z] = [[A;Z];X] + [A; [X;Z]] = 0 for every Z 2 m, so that [a; s0] � a. If
X 2 s is homogeneous of positive degree, then we have

0 = �s([A;Z];X) = ��s(Z; [A;X]) 8Z 2 m

and, by Lemma 3.15, we obtain [A;X] = 0. It follows that a is an ideal of s. Since
it is contained in s0 and s is simple with � > 2, we have a = 0.

The converse is obvious, as � is always greater than or equal to 2 for a nonde-
generate fundamental graded Lie algebra.

Remark 3.19. If s is the Levi–Tanaka algebra at a point x of a CR manifold,
the condition in the previous lemma means that the highest order Levi form is not
identically zero at x (cf. [11]).

LEMMA 3.20. Let g = �gp be a semisimple transitive prolongation of a funda-
mental graded Lie algebra m = �p<0gp. Then g0 = [g�1; g1].

Proof. Setting hp = gp for p 6= 0 and h0 = [g�1; g1], we obtain an ideal
h = �p2Zhp of g. Then g = a� h for an ideal a � g. As in the proof of Lemma 3.6
it can be proved that each ideal of g, in particular a, is graded. Therefore a � g0.
Since [a; g�1] � a�1 = 0, we have a = 0 because g is transitive.

We have

THEOREM 3.21. Let m be a fundamental graded Lie algebra and let s be a
semisimple transitive prolongation of m. If g is a finite dimensional transitive
prolongation of m containing s, then g coincides with s.

In particular, if m is also pseudocomplex and nondegenerate and if s is a
semisimple transitive pseudocomplex prolongation, then s is isomorphic to the
canonical pseudocomplex prolongation of m.
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Proof. Assume that s is a transitive semisimple prolongation of m. In this case
we can consider s as a subalgebra of g. If g is semisimple, then g and s coincide.
Indeed, by (iii) in Lemma 3.15, gp is equal to sp for p 6= 0 (because they have the
same dimension as vector spaces) and, by the lemma above, g coincides with s.

Let us prove now that g is semisimple. We already know that g is finite dimen-
sional. Then it suffices to show that its radical r is 0. By Corollary 3.6, r is a graded
ideal of g. We have r \ s = 0 because s is semisimple and hence ���6p<0rp = 0
because���6p<0gp � s.

Let us show by recurrence that rp = 0 also when p > 0. For p = 0 we have
[r0; g�1] � r�1 = 0 and hence r0 = 0 because g is transitive. Assuming rp = 0 for
some p > 0, we deduce that also rp+1 = 0 from the transitivity of g and the fact
that [rp+1; g�1] � rp = 0.

The following is a criterion for the simplicity of the prolongation, which is close
to one which was stated in [12].

THEOREM 3.22. Let g be the canonical pseudocomplex prolongation of a nonde-
generate pseudocomplex fundamental graded Lie algebra m and assume that ��1

is irreducible and g1 6= 0. Then g is simple.
Proof. Let r be the radical of g. We want to show that r = 0. We consider two

cases.

(a) Assume r�1 = 0.
In this case, we claim that rp = 0 for p > �1. Indeed, we argue by recurrence

on p > �1. We have r�1 = 0 by assumption. If rp = 0 for some p > �1, we
have [rp+1; g�1] � rp = 0 and hence rp+1 = 0 because g is transitive. This shows
that r � n = ���6p<�1gp. Let s be a Levi subalgebra of g: s is semisimple and
g = s� r. We have s ' g=r and, since r�1 = 0, for every X 2 g�1 the subalgebra
s contains an element of the form X + Z with Z 2 n. Since

[X1 + Z1; [: : : ; [X��1 + Z��1;X� + Z�] : : :]]

= [X1; [: : : ; [X��1;X�] : : :]]

if X1;X2; : : : ;X� 2 g�1 and Z1; Z2; : : : ; Z� 2 n, we obtain g�� � s because m is
fundamental.

Repeating a similar argument we deduce that also g1��; : : : ; g�2 are contained
in s and then g = s and r = 0.

(b) Assume r�1 6= 0.
Since r�1 is a ��1(g0)-invariant subspace of g�1 and by assumption ��1 is

irreducible, we have in this case r�1 = g�1. Let r(0) = r and define recursively the
ideals r(`) = [r(`�1); r(`�1)] for ` > 0. We have r(`) = 0 for ` > 0 and sufficiently
large because r is a solvable ideal of g. Then there is a smallest positive integer
h such that r(h)�1 = 0, while r

(h�1)
�1 6= 0. We note that r(h�1) is an ideal of g, in

particular r(h�1)
�1 is a ��1(g0)-invariant subspace of g�1. Therefore r

(h�1)
�1 = g�1.
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On the other hand, arguing as in (a), we prove that r(h) � n. Therefore we have

[r(h�1)
p ; g�1] = [r(h�1)

p ; r
(h�1)
�1 ] � r

(h)
p�1 = 0 for p > 0

and this implies that r(h�1)
p = 0 by the transitivity of g. This gives a contradiction,

because

r
(h�1)
0 � [r

(h�1)
�1 ; g1] = [g�1; g1] 6= 0:

This shows that r�1 = 0 and then r = 0 by (a).
Therefore g is semisimple. It is simple, because if it was the direct sum of two

semisimple ideals s0 and s00, then each of the subspaces s0�1 and s00�1 would be
��1(g0)-invariant. One of these, say s0�1 is then equal to g�1 and the other is 0
by the irreducibility of ��1. But, since m is fundamental, s0 is then a semisimple
pseudocomplex prolongation ofm and therefore coincides with g. This gives s00 = 0
and completes the proof of the theorem.

Remark 3.23. Vice versa, when g is semisimple, then the representation ��1

is completely reducible. Indeed, g0 is reductive. Then its radical r(g0) is equal
to its center z(g0) and therefore is contained in every Cartan subalgebra h of g

which is contained in g0. Hence its elements are semisimple together with their
��1 representation. Then ��1 is completely reducible (cf. [3] Ch. I Section 6
Theorem 4).

3.4. SOLVABLE PROLONGATIONS

We consider in this subsection criteria for the solvability of the canonical pseudo-
complex prolongation.

Let m = ���6p<0gp be a pseudocomplex fundamental Lie algebra. We denote
by f the Hermitian symmetric form f: g�1 � g�1 ! C 
 g�2 such that

[X;Y ] = =f(X;Y ) for X;Y 2 g�1:

Let g��2 be the dual space of g�2 and, for every � 2 g��2 denote by f� the Hermitian
symmetric form

g�1 � g�1 3 (X;Y )! f�(X;Y ) = hf(X;Y ); �i 2 C :

Then we have the following:

THEOREM 3.24. Let m be a pseudocomplex fundamental Lie algebra of kind 2
and let g = �p>�2gp be its canonical pseudocomplex prolongation. Assume that

(i) dimRg�2 > 2;
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(ii) there is � 2 g��2 such that the Hermitian symmetric form f� is nondegenerate;
(iii) ��2(g0) = f� Idg

�2 j� 2 Rg:
Then gp = 0 for all p > 1.
Moreover g is solvable if and only if g0 is solvable.

Proof. Let us prove that under the assumptions (i), (ii), (iii) we have g1 = 0. By
the transitivity of g this implies that gp = 0 for p > 0.

Let V 2 g1 and denote by A: g�1 ! g0 and B: g�2 ! g�1 the corresponding
R-linear homomorphisms. Then the following equations are satisfied(

��1(A(X))Y � ��1(A(Y ))X = B([X;Y ]) 8X;Y 2 g�1;

[B(T );X] = ��2(A(X))T 8T 2 g�2; 8X 2 g�1:
(8)

By assumption (ii) we can find a basis �1; : : : ; �k of g��2 such that f�j is nonde-
generate for j = 1; : : : ; k. We take the dual basis T1; : : : ; Tk of g�2 defined by the
condition that

hTj ; �hi = �hj for 1 6 j; h 6 k:

Then the second equation in (8) yields, by assumption (iii):

f�h(B(Tj);X) = 0 8X 2 g�1 for h 6= j

and hence B(T1) = � � � = B(Tk) = 0. This shows that, with h = fX 2
g j [X; g�2] = 0g, we have V 2 h \ g1 = h1. But h1 = 0 by Theorem 3.1.
Therefore V = 0 and this shows that g1 = 0.

In this case we have [a; a]0 = [a0; a0] for every ideal a of g and then it is clear
that g is solvable if and only if g0 is solvable. The proof is complete.

In the following we will assume that g is a finite dimensional Levi–Tanaka
algebra and denote by S the set of all semisimple elements of g and by b the set of
all nilpotent elements of g.

LEMMA 3.25. Assume that g is solvable. Then the set b of its nilpotent elements is
the maximal nilpotent ideal of g.

Let T be the set of commutative Lie subalgebras of g contained in S and T1 the
subset of maximal elements of T . Then for every t 2 T1 we have a decomposition
of g into a semidirect sum

g = t� b:

We can find a regular element X0 2 S \ g0 such that the centralizer

Cg(X0) = fY 2 g j [X0; Y ] = 0g

is a Cartan subalgebra of g containing E and contained in g0.
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Proof. The fact that b is an ideal of g follows from [3] Ch. I Section 5 Corollary 7
to Theorem 1. The above decomposition is in [3] Ch. VII Section 5 Corollary 2 to
Proposition 6.

The last statement then follows from [3] Ch. VII Section 2 Theorem 1(iv).
Indeed (cf. [3] Ch. I Section 5 Corollary 7 to Theorem 1) any Cartan subalgebra a

of g contains a regular element A of g. Then, taking a Cartan subalgebra a � g0,
we find a regular element A 2 g0. Its semisimple component S belongs to g0 by
Lemma 3.8. Since adgS has the same characteristic polynomial as adgA, it follows
thatS is a regular element of g. MoreoverE andS commute and thus the centralizer
of S is a Cartan subalgebra of g containing E and hence contained in g0.

COROLLARY 3.26. Assume that g is solvable and that all elements of g0 are
semisimple. Then gp = 0 for every p > 1.

Proof. We have �p6=0gp � b. Therefore, if X1 2 g1, then

[X1; Y�1] 2 [g1; g�1] = [b1; b�1] � b0 = 0 8Y�1 2 g�1:

This shows that g1 = 0 and hence gp = 0 for all p > 1 because g is transitive.

3.5. GRADED LEVI–MALČEV DECOMPOSITION FOR LEVI–TANAKA ALGEBRAS

We turn in this subsection to the general case. First we prove

THEOREM 3.27. Let g = ���6p6�gp be a finite dimensional Levi–Tanaka alge-
bra. Then we can find a pseudocomplex semisimple graded Lie subalgebra s of g
such that

g = r� s;

where r denotes the radical of g.
Proof. As usual we denote by S the set of all semisimple elements of g and by r

the radical of g. Being an ideal of g, the radical r is graded. By Lemma 3.9 we can
find a Cartan subalgebra a of g which is contained in g0. Then, since g is splittable,

t = a \ S

is a maximal commutative Lie subalgebra of g0 and

a = fX 2 g j [X; t] = 0g:

Next we note that a\ r is a Cartan subalgebra of r and that r is also splittable. Then

t0 = a \ r \ S
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is a maximal commutative Lie subalgebra of r0 and we have

a \ r = fX 2 r j [X; t] = 0g

= fX 2 r j [X; t0] = 0g:
Let b be the ideal of r of nilpotent elements of r. Then r = t0 � b.

We define the subalgebra z of g by setting

z = fX 2 g j [X; t0] = 0g:

We note that z = ���6p6�zp is a pseudocomplex graded Lie subalgebra of g.
We denote by rad(z) its radical. Then we have:

(i) rad(z) = a \ r = z \ r � z0;
(ii) rad(z) is a nilpotent ideal in z;
(iii) [rad(z); zp] = 0 for p 6= 0;
(iv) every Levi subalgebra of z is a Levi subalgebra of g.

To prove (i) and (iv) we use [3] Ch. VII Section 5 Proposition 7: for every Levi
subalgebraL of z we have a direct sum decomposition g = L�t0�b, with r = t0�b.
This implies (iv). Moreover, g = z+r. Hence z=z \ r ' g=r, from which (i) follows.
Now (ii) is a consequence of the fact that rad(z) is contained in the nilpotent Lie
algebra a and (iii) of the fact that the ideal rad(z) is contained in z0.

We claim that z contains a graded pseudocomplex Levi subalgebra. This result,
giving the proof of the theorem, follows from the lemma below.

LEMMA 3.28. Let g = ���6p6�gp be a finite dimensional graded Lie algebra,
whose radical r is contained in g0. Then g contains a graded Levi subalgebra
s = ���6p6�sp. If g is pseudocomplex, then also s is pseudocomplex.

Proof. We argue by induction on the order of solvability of r, i.e. the smallest
nonnegative integer h such that r(h) = 0 (by r(h) we indicate the hth term of the
derived series of r). If h = 0, this means that r = 0 and then g is semisimple and
there is nothing to prove.

Assume now that h > 0 and that the statement of the theorem is true for
graded Lie algebras with the radical composed of homogeneous terms of degree
0 and order of solvability lesser than h. Let L be a Levi subalgebra of g and set
L0 = L\ g0. Set qp = gp for p 6= 0 and q0 = L0 � r(1). We claim that q = �qp is a
Lie subalgebra of g with radical r(1).

To prove the first asset, it suffices to show that q contains the Lie product [X;Y ]
of every pair of homogeneous elements X 2 qp and Y 2 qq. This is obviously true
when p + q 6= 0 because in this case [qp; qq] � [gp; gq] � gp+q = qp+q. It is also
obvious when p = q = 0 because L0 is a Lie subalgebra of g0 and therefore also
L� r(1), because r(1) is an ideal in g.

Then we only need to consider the case where q = �p 6= 0. We can find
~X; ~Y 2 L such that ~X �X; ~Y � Y 2 r. Then we obtain
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[ ~X; ~Y ] = [X;Y ] + [ ~X �X;Y ] + [X; ~Y � Y ] + [ ~X �X; ~Y � Y ]

= [X;Y ] + [ ~X �X; ~Y � Y ] 2 L0

because [r; g`] = 0 if ` 6= 0. Therefore

[X;Y ] = [ ~X; ~Y ]� [ ~X �X; ~Y � Y ] 2 L0 � r(1):

To show that r(1) is the radical of q, we observe that q=r(1) is isomorphic to g=r.
Indeed the map q ! g=r induced by the projection is clearly surjective and its
kernel is given by q \ r = r(1). From this isomorphism it also follows that every

Levi subalgebra of q is also a Levi subalgebra of g. Since r(1)
(h�1)

= r(h) = 0, by
the inductive assumption q contains a graded Levi subalgebra s = �sp, which is
also a graded Levi subalgebra of g. We note that sp = gp for p 6= 0 and therefore s

is pseudocomplex when g is pseudocomplex.
We give now a refinement of the theorem above:

THEOREM 3.29. Let g = �p2Zgp be a finite dimensional Levi–Tanaka algebra
and let L be a pseudocomplex graded Levi subalgebra of g. Then

a = fX 2 L0 j [X;L�1] = 0g � b = fX 2L j [(X)L \ L�2] = 0g

(where (X)L denotes the ideal of L generated by X) are ideals of L and there is a
Levi–Tanaka semisimple graded subalgebra s of g such that

L = b� s:

Proof. First we note that a is an ideal in L. Indeed the subalgebra m0 = �p<0Lp
of m = �p<0gp is fundamental and therefore we obtain [X;m0] = 0 for all X 2 a.
Next we show that [a;Lp] = 0 for p > 0. Indeed, if [X;Y ] 6= 0 for some X 2 a

and some Y 2 Lp, there is Z 2 L�p such that �L([X;Y ]; Z) 6= 0, �L being the
Killing form of the semisimple Lie algebra L. But then

�L([X;Y ]; Z) = ��L(Y; [X;Z]) = 0

gives a contradiction. Finally the fact that [a;L0] � a follows because

[[X;Y ]; Z] = [[X;Z]; Y ] + [X; [Y;Z]] = 0

8X 2 a; Y 2 L0; Z 2 L�1:

We note that the graded semisimple Lie algebraLcontains an elementEL 2 L0 such
that [EL;X] = pX for each p 2 Z and X 2 Lp. Thus every ideal of L is graded.
We write b as the direct sum of a and a graded semisimple ideal b0 of L. We note
that b and hence b0 are pseudocomplex by Claim 3.18. If s = fX 2L j [X; b] = 0g
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is the complement ideal of b in L, one verifies that it is pseudocomplex because,
for X 2 s�1 it is clear that [JX; b0] = [JX; b�1] = 0, while [JX; b1] = 0
because [JX; b1] � a \ b00 = 0. The conclusion follows from Lemma 3.17 and
Theorem 3.21.

A finite dimensional Levi–Tanaka algebra g = ���6p6�gp with a graded Levi
subalgebra L contained in g�1 � g0 � g1 will be called weakly solvable and almost
solvable if L � g0.

COROLLARY 3.30. Let g = �pgp be a finite dimensional Levi–Tanaka algebra
with radical r. The following statements are equivalent:

(i) g is semisimple;

(ii) r�1 = 0;

(iii) �p<0rp = 0.

Proof. Clearly (i)) (iii)) (ii). Let g = r�L be a graded Levi–Malčev decom-
position. Let L = b� s be the decomposition given in Theorem 3.29. If r�1 = 0,
then we have s�1 = g�1 and therefore m = �p<0gp = �p<0sp because m is
nondegenerate. Since s is transitive, we have g = s by Theorem 3.21. This shows
that (ii)) (i). The proof is complete.

COROLLARY 3.31. Let g = ���6p6�gp be a finite dimensional Levi–Tanaka
algebra. If the representation ��1 of g0 in g�1 is irreducible, then g is either simple
or almost solvable.

More precisely, it is simple when g1 6= 0 and almost solvable when g1 = 0.
Proof. By Theorem 3.22, if g is not simple, then g1 = 0 and so g is almost

solvable.

COROLLARY 3.32. Let g = ���6p6�gp be a finite dimensional Levi–Tanaka
algebra. If the representation ��2 of g0 in g�2 is irreducible, then g is either simple
or weakly solvable.

Proof. Using Theorem 3.27 and Theorem 3.29 we obtain the decomposition
g = s� (r� b) where s is a semisimple Levi–Tanaka algebra, r is the radical of g
and b a semisimple Lie algebra contained in g�1 � g0 � g1. By the assumption, we
have either g�2 = r�2 or g�2 = s�2. In the first case, we get s = 0 because s is a
Levi–Tanaka algebra by Theorem 3.29, and so g is weakly solvable. In the second
case, we obtain r�1 = 0 because m = �p<0gp is nondegenerate, and hence g

semisimple by Corollary 3.30. It is a sum of simple graded ideals by Corollary 3.6,
which are not included in g0 by Lemma 3.16. Since m = �p<0gp is fundamental,
these ideals have a nonzero component in g�1 and, since g is nondegenerate, they
have also a nonzero component in g�2, which is an invariant subspace of g�2 for
��2. Since it is irreducible, we have that g has to be simple.

COROLLARY 3.33. Let g be a finite dimensional Levi–Tanakaalgebra with radical
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r = �p2Zrp. If the representation ��1 of g0 in g�1 is completely reducible, then
r1 = 0.

Proof. Indeed in this case r0 is an Abelian algebra whose elements are semisim-
ple (see [3] Ch. VII Section 5 Proposition 7 (i)). But [X;Y ] is a nilpotent element
of r0 for every X 2 r1 and every Y 2 g�1, because r1 is contained in the maximal
nilpotent ideal of the adjoint representation of g. Therefore [X;Y ] = 0 for every
X 2 r1 and every Y 2 g�1 and hence r1 = 0.

3.6. PROPERTIES OF SEMISIMPLE LEVI–TANAKA ALGEBRAS

In this subsection we investigate some structural properties of semisimple Levi–
Tanaka algebras.

LEMMA 3.34. Let g = �pgp be a semisimple Levi–Tanaka algebra. Then there is
a unique complex structure J1 in g1 such that:

(i) �1(g0) is a real subalgebra of the algebra glC (g1) of endomorphisms of g1

which are C -linear for the complex structure defined by J1;

(ii) [J1X;Y ] = �[X;JY ] 8X 2 g1; Y 2 g�1;

(iii) �g(J1X;Y ) = ��g(X;JY ) 8X 2 g1; Y 2 g�1;

where �g denotes the Killing form of g.

Proof. Since the Killing form is nondegenerate, we can use (iii) to define
J1: g1 ! g1. The proof of (i) and (ii) is then straightforward.

In the following we will write for simplicity JX instead of J1X for X 2 g1.
By an easy computation we obtain:

LEMMA 3.35. Let g = ��6p6�gp be a semisimple Levi–Tanaka algebra and let J
be the complex structure on g1 defined in the previous lemma. Then we obtain:

(1) [JX; JY ] = [X;Y ] 8X;Y 2 g1;

(2) J [X;Y ] = [X;JY ] 8X 2 g�2; Y 2 g1;

(3) J [X;Y ] = [X;JY ] 8X 2 g2; Y 2 g�1.

Let us fix a Cartan subalgebra h of g contained in g0 (cf. Lemma 3.9). Then
hC = C 
R h is a Cartan subalgebra of the complexification gC = C 
R g of g.
Setting gCp = C 
R gp, gC = �pg

C

p is a graded complex Lie algebra and hC � gC0 .
We denote by R � homC (h

C ; C ) the set of nonzero roots of hC . Assuming that
g is semisimple, gC is also semisimple and, denoting for every � 2 R

g� = fX 2 gC j [H;X] = �(H)X 8H 2 hC g; (9)
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we have that g� is a 1-dimensional complex subspace of gC and

gC = hC �
M
�2R

g�:

LEMMA 3.36. For every � 2 R, we have �(E) 2 Z, where E is the element
considered in Lemma 3:5, and g� � gC�(E)

.

When �(E) = �1, all vectors of g� are either of the form X +
p
�1JX , or of

the form X �
p
�1JX with X 2 gC�(E)

.

Proof. We have g� included in gCp for a certain p 2 Z because all subspaces gCp
are invariant under ad

gC
(gC0 ). As E 2 h � g0, from (9) with H = E it follows that

p = �(E).
The second statement is a consequence of the fact that for every A 2 gC0 , the

representation ~��1(A) of A in gC�1 commutes with the complexification of the
operator J . Therefore, if X+

p
�1Y 2 g� for some � 2 R with �(E) = �1, also

JX + iJY 2 g�. But g� has dimension 1 and this implies that Y = �JX .
We introduce the notation

g
(0;1)
�1 = fX +

p
�1JX jX 2 g�1g; g

(0;1)
1 = fX +

p
�1JX jX 2 g1g;

g
(1;0)
�1 = fX �

p
�1JX jX 2 g�1g; g

(1:0)
1 = fX �

p
�1JX jX 2 g1g:

We note that g(0;1)�1 � g
(0;1)
1 and g

(1;0)
�1 � g

(1;0)
1 are commutative Lie subalgebras of

gC . This yields:

Remark 3.37. If � 2 R with �(E) = �1, then

g� � g
(0;1)
�1 =) g�� � g

(1;0)
1 and g� � g

(1;0)
�1 =) g�� � g

(0;1)
1 :

We define an involution on homC (h
C ; C ) by associating to any C -linear functional

� on hC the unique C -linear functional �� on hC such that

��(H) = �(H) 8H 2 h:

LEMMA 3.38. Let g = �gp be a semisimple Levi–Tanaka algebra, h a Cartan
subalgebra of g contained in g0 and R � homC (h

C ; C ) the set of nonzero roots of
gC with respect to hC . Then �� 2 R for every � 2 R.

Proof. We consider first the case of a root � 2 R with �(E) = �1. Assume

that g� � g
(0;1)
�1 and let ~X� = X� +

p
�1JX� be a basis of g�. For every H 2 h

we obtain

[H;X� �
p
�1JX�] = [H;X� +

p
�1JX�] = ��(H)(X� �

p
�1JX�);

where we have used complex conjugation in gC with respect to the real form g. By
C -linearity this equality extends to H 2 hC , showing that �� 2 R and that g�� is the
conjugated of g� with respect to the real form g.
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The case g� � g
(1;0)
�1 is analogous.

Next we note that mC = �p<0g
C

p is a complex fundamental graded Lie algebra
and therefore all roots � with �(E) < �1 can be decomposed as

� = �1 + � � � + ���(E)

with �i(E) = �1 and, for generators ~X�1 ; : : : ;
~X�
��(E)

of g�1 ; : : : ; g���(E) , g� is
generated by

[ ~X�1 ; [: : : ;
~X�
��(E)

] : : :]:

Using conjugation in gC with respect to the real form g we obtain that also

�� = ��1 + � � � + ����(E)

is a root.
To conclude the proof of the lemma, we need only to consider the case where

� 2 R and �(E) = 0. Since gC is transitive, there exists � 2 R with �(E) = �1
such that � + � 2 R. Then �� + �� 2 R and again we conclude by complex
conjugation with respect to g that

[g��+
��; g�

�� ] = g�� 6= 0:

The proof is complete.

PROPOSITION 3.39. If the complexification gC of a Levi–Tanaka algebra g is
simple, then g is a simple Lie algebra of type A`, or D`, or E6.

Proof. Indeed the conjugation map�! �� on the roots, described in the previous
lemma, permits to define an order two automorphism of the complex Lie algebra
gC , which is different from the identity. This defines an automorphism of a Weyl
chamber. Hence the result follows from the classification of the automorphisms of
simple complex Lie algebras (cf. [H], Ch. X).

We turn now to the Cartan decomposition of semisimple Levi–Tanaka
algebras.

LEMMA 3.40. Let g = �gp be a semisimple Levi–Tanaka algebra, h a Cartan
subalgebra of g contained in g0 andR the root system of gC with respect to hC . Then
R admits a basis B = f�1; : : : ; �`g with �i(E) 2 f�1; 0g for every i = 1; : : : ; `.

Proof. We note that R� = f� 2 R j�(E) < 0g and R+ = f� 2 R j�(E) >
0g generate two disjoint convex cones in homC (h

C ; C ) considered as a real vector
space. Then we can find a real linear functional 
: homC (h

C ; C ) ! R which is
different from 0 on every � 2 R and is positive on R� and negative on R+. A
basis B consisting of all simple roots contained in f� j 
(�) > 0g satisfies the
conditions of the statement.
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PROPOSITION 3.41. A semisimple Levi–Tanaka algebra g = ���6p6�gp admits
a Cartan decomposition

g = k� p;

where:

(i) k is a Lie subalgebra of g of the compact type on which the Killing form �g is
negative definite;

(ii) k = �06p6�kjpj with kj0j = k \ g0 and kjpj � g�p � gp for p > 0;
(iii) p is the orthogonal complement of k with respect to the Killing form �g of g

and �g is positive definite on p;
(iv) p = �06p6�pjpj with pj0j = p \ g0 and pjpj � g�p � gp for p > 1;
(v) the natural projections kjpj ! g�p and pjpj ! g�p are isomorphisms for

p > 0;
(vi) the associated Cartan involution �: g ! g such that k is the set of fixed point

of �; �(X) = �X for X 2 p, and for which

g� g 3 (X;Y )! ��g(X; �(Y )) 2 R

is a positive definite real symmetric form, has the properties

�(gp) = g�p for � � 6 p 6 �;

g�1 3 X ! �(X) 2 g1 and g1 3 X ! �(X) 2 g�1

are C -linear for the complex structures of g�1 and g1 defined by J .

Proof. Let h be a Cartan subalgebra of g contained in g0 and let hC be the
corresponding Cartan subalgebra of the complexification gC of g. Let R be the set
of nonzero roots of gC with respect to hC and H�, for � 2 R the element of hC

such that

�
gC
(H;H�) = �(H) 8H 2 hC :

The form �
gC

is positive definite on the real subspace hR of hC generated by the
H�’s.

For each � 2 R we can choose a basis ~X� of g� in such a way that

[ ~X�; ~X��] = H�; �
gC
( ~X�; ~X��) = 1:

According to Lemma 3.36 and Remark 3.37, we can split the set of roots � with
�(E) = �1 into two disjoint subsets, the first R0;1 consisting of roots � for
which ~X� = X� +

p
�1JX�, the second R1;0 consisting of roots � for which

~X� = X� �
p
�1JX� with X� 2 g�1.
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Then we obtain a compact form u by

u = ��
p=0ujpj;

where

uj0j =
p
�1 hR

M X
�(E)=0

(R( ~X� � ~X��)�
p
�1R( ~X� + ~X��));

uj1j =
M

�2R0;1

(R(X� �X�� +
p
�1J(X� +X��))

�
p
�1R(X� +X�� +

p
�1J(X� �X��)));

ujpj =
M

�(E)=�p

(R( ~X� � ~X��)�
p
�1R( ~X� + ~X��)) for p > 0:

Let us denote by � : gC ! gC the complex conjugation in gC with respect to the real
form u and by �: gC ! gC the complex conjugation in gC with respect to the real
form g. We set8<:

gCj0j = gC0 ;

gCjpj = gC�p � gCp for p > 0:

Then we have

�(gCjpj) = �(gCjpj) = gCjpj for p = 0; : : : ; �:

Moreover we note that J defines an antiinvolution on uj1j and therefore, by C -
linearity, also on

p
�1uj1j. From this we derive that

�J � � � J = �; i:e: J � � = � � J on gCj1j:

Obviously the conjugation � commutes with J on gCj1j. This property is therefore

shared by the composed C -linear automorphisma = ��� of gC . This is a selfadjoint
map for the Hermitian scalar product

B� : gC � gC 3 (X;Y )! ��
gC
(X; �Y ) 2 C

and therefore a2 is selfadjoint and positive definite for B� . We denote by � the
positive selfadjoint fourth root ofa2. This is still an automorphism of the Lie algebra
gC such that �(u) is a compact form of gC that is invariant under �. Moreover, by
the construction,

�(gCjpj) = gCjpj and � � J = J � � on gCj1j:
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A Cartan decomposition of g is obtained by setting k = �(u)\g and p =
p
�1�(u)\

g. Then the Cartan involution � on g is defined by��� ���1 and therefore commutes
with J on g�1 � g1.

We note that the positive definite symmetric real form

g� g 3 (X;Y )! g(X;Y ) = ��g(X; �(Y ))

satisfies

g(JX; Y ) = �g(X;JY ) for X;Y 2 g�1

and therefore is on g�1 and g1 the real part of a Hermitian scalar product for the
respective complex structures.

4. Homogeneous CR manifolds

4.1. STANDARD HOMOGENEOUS CR MANIFOLDS

Let g = �p2Zgp be a finite dimensional Levi–Tanaka algebra. In this section we
construct homogeneous CR manifolds M = (M;HM;J) having at each point
x 2M a Levi–Tanaka algebra g(x) isomorphic to g and such that the group of CR
automorphisms of M is a Lie group with Lie algebra isomorphic to g.

Let us set

m = �p<0gp and g+ = �p>0gp:

We denote by G a connected and simply connected Lie group with Lie algebra g.
We note that g+ is a Lie subalgebra of g and therefore generates a connected Lie
subgroup G+ of G.

LEMMA 4.1. G+ is a closed subgroup of G.
Proof. Let

Ad: G ! GL(g)

denote the adjoint representation of G. Then

H = fg 2 G jAd(g)(g+) = g+g

is a closed subgroup of G and hence a Lie subgroup of G. Clearly the Lie algebra
of H is g+ and then G+, being the connected component of the identity in H, is
closed in G.

We identify g to the Lie algebra of left invariant vector fields on G. For �� 6
p 6 0 we set g(p) = �q>pgq and denote by ~g(p) the vector distribution generated by
g(p). For g 2 G, we denote by Lg andRg respectively the left and right translations
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with respect to g.

LEMMA 4.2. For every �� 6 p 6 0 the vector distribution ~g(p) is invariant with
respect to left translations by elements of G and right translations by elements of
G+.

Proof. The invariance under (Lg)� for g 2 G is obvious. For X 2 g and g 2 G,
we have

(Rg�1)�(X) = Ad(g)(X):

Since

adg(Y )(X) = [Y;X] 2 g(p) 8X 2 g(p); Y 2 g+;

the Lie algebra of the Lie subgroup Aof the elements g 2 G such that (Rg)�(g(p)) �
g(p) contains g+. Hence G+ � A because G+ is connected.

Using these lemmas we obtain:

THEOREM 4.3. The homogeneous space M = G=G+ is a simply connected real
analytic manifold. We can endowM by a naturalCR structure, in such a way that
G acts on M as a group of CR automorphisms and the Levi–Tanaka algebra g(x)
of M at every point x of M is isomorphic to g.

Proof. Since G+ is a closed subgroup of G, the homogeneous space M =
G=G+ is a real analytic manifold, on which the elements of G define real analytic
diffeomorphisms. Moreover,M is simply connected because G is simply connected
and G+ is connected.

Let us describe the CR structure of M . We denote by �: G ! M the natural
projection, and by G �M 3 (g; x) ! g � x 2 M the left action of G on M . Let
~g�1, ~g+ = ~g(0) and ~g(�1) denote the vector distribution generated respectively by
g�1, g+ and g(�1) = �p>�1gp. They are all invariant by left translations and ~g+ is

the vertical distribution of the G+-principal bundle G �!M .
Let o = �(e) be the image of the identity of G in M and HoM = ��((~g�1)e).

If h 2 G+, we have

��((~g�1)h) = HoM:

Indeed, since � �Rh�1 = � for h 2 G+, we obtain

��((~g�1)h) = ��((~g(�1))h) = �� � (Rh�1)�((~g(�1))h)

= ��((~g(�1))e) = ��((~g�1)e) = HoM:

This implies that

H�(g)M = g�HoM
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is well defined at all points of M and is invariant by the action of G on M .
If X�

x is in HxM and g 2 G is such that x = g � o, then we can find a unique
X 2 g�1 such thatX�

x = g���(Xe). We want to define the partial complex structure
JM of M in such a way that

JMX�
x = g���(JXe):

This would imply also thatM 3 x! g �x 2M is a CR diffeomorphism for every
g 2 G.

To this aim, we only need to show that the definition is consistent, i.e. that, if 
 is
another element of G such that 
 �o = x and Y 2 g�1 is such that 
���(Ye) = X�

x ,
then


���(JYe) = g���(JXe):

We note that 
�1g 2 G+ and thus we are reduced to show that

��(Ad(h)(JXe)) = ��(JYe) (10)

ifh 2 G+;X; Y 2 ~g�1, andY�Ad(h)X 2 ~g+. LetH = �p>0Hp 2 g+, expressed
as a sum of its homogeneous components. Then we have Ad(exp(tH))X �
Ad(exp(tH0))X 2 g+ for X 2 g�1 and t 2 R. This shows that (10) holds
for the elements of G+ which are of the form exp(H) for H 2 g+ and therefore
for all h 2 G+ because G+ is connected.

To show that the Levi–Tanaka algebra g(x) of M at every point x 2 M is
isomorphic to g, it suffices to note that by construction m(o) is isomorphic to m

and hence g(o) ' g: the general statement follows because G operates on M as a
group of CR diffeomorphisms.

The G-homogeneous CR manifold obtained in Theorem 4.3 will be denoted
by Mg and called the standard (homogeneous) CR manifold associated to the
Levi–Tanaka algebra g. We have

THEOREM 4.4. Let � be the kernel of the representation of G as a group of
CR automorphisms of the standard CR manifold Mg. Then � is the discrete
subgroup Z(G) \ G+, where Z(G) denotes the center of G, and G=� is the
connected component of the identity in the group of CR automorphisms of Mg.

If N is another connected G-homogeneous CR manifold with the same Levi–
Tanaka algebra g, then there is a CR covering map M ! N commuting to the
action of G.

Proof. We note that � =
T
g2G(gG+g

�1) is a closed normal subgroup of G
contained in G+. Its Lie algebra is an ideal contained in g+ and then is null because
g is transitive. This shows that � is a normal discrete subgroup of the connected
Lie group G and hence is contained in its center. So we have � = Z(G) \ G+.
Vive versa every element of Z(G) \G+ is obviously in the kernel �.
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To show that G is the component of the identity in the group of CR automor-
phisms of M we essentially follow [13]; the proof in the case of homogeneous
manifolds is actually simpler.

(a) Let us denote by A the connected subgroup of G with Lie algebram. If � is the
Maurer–Cartan form of G, then the Maurer–Cartan form � of A is the pullback of �
to A. The natural projection �: G ! G=G+ =M induces a diffeomorphism of an
open neighborhood Ue of e in A onto an open neighborhood Uo of o = �(e) in M .
Let ~� = (�jUe)�� and set ~�p = (�jUe)��p, where � = �p<0�

p is the decomposition
of � according to the graduation of the fundamental algebra m. We note that we
obtain the equations

d~�p = �1
2

X
r+s=p

[~�r; ~�s] for p < 0:

(b) Let X be a vector field defined on an open neighborhood of o in M .
We can as well assume that X is defined on Uo. We want to take X as the
infinitesimal generator of a 1-parameter family of local CR diffeomorphisms on
M . If �X(t) is the local 1-parameter group defined byX , this condition means that
d�X(t):TxM ! T�X(t)(x)M induces, by passing to the quotient, an isomorphism
of pseudocomplex fundamental graded Lie algebras

dd�X(t):m(x)! m(�X(t)x)

for x in a small neighborhood of o and t in a small neighborhood of 0. In particular,
using the identification of m(x) to m for all x 2 Uo, the differential at o of the map
m! m induced by the diagram

m - m

m(x)
? dd�X(t)

- m(�X(t)x)
?

gives a map f 0:Uo ! g0.
Let us set, for p < 0; fp(x) = ~�p(Xx) 2 gp. Then the definition of f 0 can be

rewritten by

dfp(x) =
�1X
r=p

[fp�r(x); ~�r]mod ~�p�1; : : : ; ~��� for p < 0:

Indeed, we have for every Y 2 X(M)

(LX ~�p)(Y ) = X(~�p(Y ))� ~�p[X;Y ] =
d
dt
(�X(t)

� ~�p)(Y )jt=0

= [f 0(x); ~�p](Y )mod ~�p�1; : : : ; ~��� for p < 0:
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Hence we deduce that

dfp(x) = d(~�p(X)) = d(Xc ~�p) = LX ~�p �Xc d~�p

= LX ~�p +Xc
0@1

2

X
r+s=p

[~�r; ~�s]

1A
= [f0(x); ~�p] +

X
r+s=p

[f r(x); ~�s]mod ~�p�1; : : : ; ~���:

Then we can define fp also for p > 0 in such a way that

dfp =
X
r<0

[fp�r(x); ~�r] 8p 2 Z:

We have already constructed fp for p 6 0. Now we note that these equations yield

df 0(x) =
X
r<0

[f�r(x); ~�r];

df 1(x) =
X
r<0

[f 1�r(x); ~�r];

� � �

which is a completely integrable system (see [13]).
(c) Let us denote by ~Xo the Lie algebra of germs at o of infinitesimal generators

of 1-parameter groups of local CR diffeomorphisms. By Lemma 6.4 in [13], we
have

f
p
[X;Y ]

= �
X

r+s=p

[f rX ; f
s
Y ] 8p 2 Z 8X;Y 2 ~Xo;

where for Z 2 ~Xo we used fpZ for the set of functions associated to Z as in (b).
The map ~Xo 3 X ! �fpX(0) 2 g is therefore an anti-homomorphism of Lie

algebras and is injective by Lemma 6.3 in [13]. But this map is trivially surjective
and therefore is an anti-isomorphism. This proves the first statement.

To prove the last statement of the theorem, it suffices to note that N �= G=Q for
a closed subgroup Q of G whose Lie algebra is isomorphic to g+. Indeed from (a),
(b), (c) above we deduce thatM andN are locallyCR diffeomorphic and therefore
the Lie algebras of the stabilizer of a point in the group of localCR automorphisms
of M and N (respectively) are isomorphic.

The following theorem is a slight extension of a result in [13]:

THEOREM 4.5 If the Levi–Tanaka algebra g is semisimple, then the standard
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homogeneous CR manifold Mg is compact.

The proof of this theorem relies on the following

LEMMA 4.6. Let g = �p2Zgp be a finite dimensional semisimple Levi–Tanaka
algebra and let

g = k� p

be a Cartan decomposition of g, where k is a maximal Lie subalgebra of g on which
the Killing form �g is negative defined. Then, for g+ = �p>0gp, we have

g = k+ g+:

Proof. Let d = dimR g0 and m = dimRm where m = �p<0gp. The Killing
form �g is nondegenerate on g0 and therefore its restriction to g0 has a signature
(�+; ��) with �+ + �� = d. Since m is totally isotropic, the Killing form �g has
signature (�+ +m;�� +m). Given a Cartan decomposition g = k+ p, we claim
that k \ g+ is a Lie subalgebra of dimension �� of g. Indeed, if X = �p>0Xp is a
nonzero vector in k \ g+ decomposed into its homogeneous components, then

0 > �g(X;X) = �g(X0;X0)

shows that the natural projection k\g+ ! g0 is injective and its image is a subspace
of g0 on which �g is negative definite. This shows that dimR k \ g+ 6 ��. On the
other hand, the projection k ! g=g+, having kernel k\ g+, is necessarily surjective
and therefore has rank m and ��-dimensional kernel. In particular we obtain that
g = k+ g+.

Proof (of Theorem 4:5). Let G be a connected and simply connected Lie group
with Lie algebra g and let G+ and K be the connected Lie subgroups of Ghaving Lie
algebras g+ and k respectively, with k the direct summand in a Cartan decomposition
of g. Then K is a compact subgroup of G. We consider the map K !Mg = G=G+

induced by the restriction of the natural projection. Its image is compact and hence
closed. On the other hand, the decomposition g = k+ g+ shows that this map is a
submersion and then open. Therefore, since Mg is connected, this map is onto and
Mg is compact.

Denote by K0 the connected Lie subgroup of G having Lie algebra k \ g+.
(Note that k \ g+ � g0 if we use a Cartan decomposition with the properties of
Proposition 3.41.) Then the natural map K=K0 !Mg is a diffeomorphism because
is a connected covering of a simply connected manifold.

4.2. CANONICAL IMMERSIONS OF STANDARD CR MANIFOLDS

Let g = �p2Zgp be a finite dimensional Levi–Tanaka algebra and gC = C 
R g be
its complexification. We denote by GC a connected and simply connected Lie group
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having Lie algebra gC and by GR the connected Lie subgroup of GC having Lie
algebra g. This is a closed Lie subgroup of GC , as GR is the connected component
of the identity of the closed subgroup of GC

fg 2 GC jAdGC (g)(g) = gg;

where AdGC : GC ! GLC (gC ) is the adjoint representation. We also use the notation
gC+ = C 
R g+ for the complexification of the Lie subalgebra g+ = �p>0gp and
GR

+ for the connected Lie subgroup of GR having Lie algebra g+.

LEMMA 4.7. Let g(0;1)�1 = fX +
p
�1JX jX 2 g�1g. Then q = g

(0;1)
�1 � gC+ is a

complex Lie subalgebra of gC .
Proof. First we remark that g

(0;1)
�1 is a complex subspace of gC . Indeed, for

X 2 g�1 we have
p
�1(X +

p
�1JX) = (�JX) +

p
�1J(�JX) and JX 2 g�1:

Moreover

[X +
p
�1JX; Y +

p
�1JY ] = 0 8X;Y 2 g�1

and [C 
R g0; g
(0;1)
�1 ] � g

(0;1)
�1 because g

(0;1)
�1 is a complex subspace of gC and the

elements of ��1(g0) commute with J on g�1. Finally, it is obvious that [C 
R

gp; g
(0;1)
�1 ] � C 
R gp�1 � q for p > 0.

Let Q be the connected complex Lie subgroup of GC corresponding to the Lie
subalgebra q.

LEMMA 4.8. Q is a closed Lie subgroup of GC .
Proof. We consider the adjoint representation AdGC: GC ! GLC (g

C ). Then

H = fg 2 GC jAdGC (g)(q) = qg

is a closed subgroup of GC and Q is the connected component of the identity
of H.

THEOREM 4.9. The GC -homogeneous space M̂ C

g = GC =Q is a complex manifold.
The GR-homogeneous space MR

g = GR=GR

+ is a differentiable manifold with a
unique CR structure which makes the covering map

Mg !MR

g

defined by the commutative diagram

G - GR

Mg

?

- MR

g

?
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a local CR diffeomorphism.
The composition G ! GR! GC induces a CR immersion

Mg ! M̂ C

g ;

whose image M C

g is a locally closed CR submanifold of M̂ C

g .

Proof. M̂ C

g is a connected smooth complex manifold because Q is a closed sub-
group of GC . Analogously MR

g is a connected real analytic CR manifold because
GR

+ is a closed subgroup of GR.
The group G is a covering of GR and MR

g is G-homogeneous by the action

G�MR

g 3 (g; x)! p(g) � x 2MR

g ;

where p: G ! GR is the covering map.
We consider the orbit M C

g in M̂ C

g of the image o of the identity of GC in

M̂ C

g with respect to the closed subgroup GR. Since g+ is the Lie algebra of the
stabilizer in GR of o, we obtain an immersion MR

g ! M̂ C

g which is a surjective

local diffeomorphism onto the orbit M C

g . Let �: GR! M̂ C

g denote the map

g ! g � o:

We note that for the elementsX of g�1 we obtain, by the definition of q, ��(JX) =p
�1��(X) and therefore the map MR

g ! M̂ C

g is a CR immersion.
Let A and ~A be the connected Lie subgroups of GC having Lie algebras m and

l = g�1 � (�p<�1g
C

p) respectively. We fix convex open neighborhoods U0 of 0 in
gC and V0 of 0 in l such that the exponential maps

exp:U0 ! Ue � GC ; exp:V0 ! Ve � ~A;

exp:U0 \ g! Ue \GR

be diffeomorphisms. We can assume that V0 = U0 \ l, so that Ve = Ue \ ~A. If
a 2 GR \ ~A \ Ue, we have a = exp(Z) = exp(X +

p
�1Y ) with Z 2 g \ U0,

X 2 m, Y 2 �p<�1gp and Z;X +
p
�1Y 2 U0. By the injectivity of the

exponential on U0, we obtain Z = X +
p
�1Y , hence Y = 0 and Z 2 m. This

shows that GR \ ~A \ Ue = A \ Ue. Moreover, A \ Ue is closed and connected in
~A \ Ue. We note now that the projection �: GC ! M C

g induces a diffeomorphism

of a neighborhood W � Ve of e in ~A onto a neighborhood Wo of o = �(e) in M̂ C

g

and, since Q\ ~A\Ve = feg, we have (�jWo
)�1(MR

g ) = Ve \GR. This shows that

Wo \MR

g is closed in Wo. Since MR

g is homogeneous, it is locally closed in M̂ C

g .

We call M̂ C

g the standard (homogeneous) complex manifold associated to g and

the map Mg ! M̂ C

g the canonical immersion of Mg.
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THEOREM 4.10. Il g is semisimple, then the standard homogeneous complex
manifold M̂ C

g associated to g is compact.
Proof. Let �: g ! g be the Cartan involution found in Proposition 3.41 and let

g = k � p be the corresponding Cartan decomposition. Then u = k �
p
�1p is a

compact form of the complexification gC of g. We set

u(1;0) = fX �
p
�1JX + �(X) +

p
�1J�(X) jX 2 g�1g;

u(0;1) = fX +
p
�1JX + �(X)�

p
�1J�(X) jX 2 g�1g;

up = u \ (gC�p + gC p) for p > 0:

Next we define the real Lie subalgebra h of gC by

h = u \ q = u0 � u(0;1):

Let U denote the connected Lie subgroup of GC having Lie algebra u and H the
connected Lie subgroup of GC having Lie algebra h. The group U is compact and
hence closed in GC , and also H is compact, being the connected component of the
identity in the intersection U \Q.

Consider the commutative diagram

U - GC

U=H

?

- GC =Q:

?

Since u+ q = gC , the map U ! GC =Q is a submersion and therefore is open. It is
also closed, being a continuous map from a compact space into a Hausdorff space.
Since M̂ C

g = GC =Q is connected, this map is surjective and therefore U=H ! GC =Q

is a covering map. Since GC =Q is simply connected, this map is a diffeomorphism.
This proves the theorem.

PROPOSITION 4.11. If the component g1 of g is null, then the manifold M C

g is

embedded in M̂ C

g as a closed submanifold and euclidean.

Proof. By Lemma 3.18.4 of [16], M C

g is closed in M̂ C

g and simply connected
and, by Lemma 3.18.11 of [16], it is also euclidean. Indeed, m is an ideal in g and
therefore the map m� g0 3 (X;Y )! exp(X)exp(Y ) 2 G is a diffeomorphism.

4.3. CANONICAL PROJECTIVE IMMERSIONS OF STANDARD CR MANIFOLDS

The problem of finding an immersion of the standard homogeneous CR manifold
Mg into a complex projective space is equivalent, by Theorem 4.4, to the one
of finding, given a Levi–Tanaka algebra g, G-homogeneous CR submanifolds of
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complex projective spaces having at each point a Levi–Tanaka algebra isomorphic
to g.

Our construction is akin to the one used in [1]. We use the complexification
of the adjoint representation AdGC : GC ! GLC (g

C ) and denote by GP

C
and GP

respectively the image AdGC (G
C ) and AdGC (G

R). They are Lie subgroups of
GLC (g

C ). We also set QP and GP

+ for the connected Lie subgroups of GP

C
having

Lie algebra equal respectively to the Lie subalgebra q defined in Lemma 4.7 and to
g+.

We consider the Grassmannian Gr`(gC ) of complex subspaces of gC having
dimension ` equal to the complex dimension of q. The orbits M̂P

g and MP

g of q by
the action of GP

C
and GPare respectively a GP

C
-homogeneous complex manifold and

a GR-homogeneous CR submanifold (and therefore GC and G-homogeneous). In
this way we obtain aCR submanifold of a projective manifold having the prescribed
Levi–Tanaka algebra g at each point.

We take up now the question of the existence of a closed embedding into a
projective space in the case where the Levi–Tanaka algebra is semisimple.

We recall that a Borel subalgebra b of a Lie algebra g is a maximal solvable Lie
subalgebra of g and a Lie subalgebra q of g is said to be parabolic if it contains
a Borel subalgebra. Accordingly, a connected Lie subgroup B (resp. Q) of a Lie
group G is a Borel (resp. parabolic) subgroup if its Lie algebra b (resp. q) is Borel
(resp. parabolic). In particular a Borel subgroup of G is a maximal connected
solvable subgroup of G.

LEMMA 4.12. Let g = �p2Zgp be a finite dimensional Levi–Tanaka algebra. Then
the following facts are equivalent:

(i) g is semisimple;

(ii) g+ = �p>0gp is parabolic;

(iii) q = g
(0;1)
�1 � gC+ is a parabolic Lie subalgebra of gC .

Proof. (i), (ii). Let E be the element of g0 described in Lemma 3.5. Then
�p>0gp � R � E is a solvable Lie subalgebra of g and hencefore is contained in
a Borel subalgebra b. If r is the radical of g, then r � b. By Corollary 3.30, r is
contained in g+ if and only if g is semisimple and r = 0. The condition is therefore
necessary.

To prove sufficiency, we first note that the representation �: b! gl(g) obtained
by restriction from the adjoint representation is faithful. Then, by the criterion of
Cartan, �(b), and thus b, is solvable if and only if [b; b] is orthogonal to b with
respect to the Killing form �g of g. Assume by contradiction that b contains an
element X = �pXp with homogeneous component Xq 6= 0 for some q < 0.
Since g was assumed to be semisimple, we can find Y�q 2 g�q � b such that
�g(Xq; Y�q) 6= 0. Then we obtain
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�g([E;X]; Y�q) = q �g(Xq; Y�q) 6= 0;

which contradicts the Cartan criterion.
(i), (iii). If r is the radical of g, then C 
R r is the radical of gC . Clearly, if

X 2 r�1, then X �
p
�1JX belongs to the radical of gC and therefore, if q is

parabolic, the radical of g is contained in g+. The proof is complete.

THEOREM 4.13. A necessary and sufficient condition in order that M̂P

g be compact
is that g is semisimple.

If g is semisimple, thenMP

g ! M̂P

g is a closed embedding ofMP

g into a compact
projective complex manifold.

Proof. The first part of the statement is a consequence of Lemma 4.12 and of
[2] (Theorem 11.1 and Corollary 11.2) because GP

C
is an algebraic group.

The second part follows because MP

g is compact when g is semisimple because
it is the quotient of Mg with respect to the action of a discrete subgroup of G.

We call M̂P

g the standard (homogeneous) projective manifold associated to the

Levi–Tanaka algebra g and the map Mg ! MP

g ! M̂P

g the canonical projective
immersion of Mg.

THEOREM 4.14. Let g be a finite dimensional Levi–Tanaka algebra. Then a
necessary and sufficient condition in order that M̂ C

g be compact is that g be
semisimple.

Proof. We already proved that M̂ C

g is compact when g is semisimple. When g

is not semisimple, then M̂P

g is not compact and hence also M̂ C

g is not compact,

because it is a covering space of M̂P

g .

Remark 4.15. It follows from [6] that, when g is semisimple, the standard
homogeneous projective manifold MP

g associated to a semisimple Levi–Tanaka
algebra g = ���6p6�gp with dimC g�1 = n and dimR n = dimR �p<�1 gp = k,
has a CR embedding in the space C P[2n+(3=2)k] .

Remark 4.16. Every Borel subalgebra b of g is splittable. Indeed the splittable
envelope of a solvable subalgebra of g is still solvable and therefore the splittable
envelope of b is equal to b by maximality.

5. Examples

Let m = ���6p<0mp be a pseudocomplex fundamental graded Lie algebra. By
Proposition 1.1 the alternating map

m�1 � m�1 3 (X;Y )! [X;Y ] 2 m�2;

uniquely defines a Hermitian symmetric form

f:m�1 � m�1 3 (X;Y )! f(X;Y ) 2 C 
Rm�2
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such that

[X;Y ] = =f(X;Y ) 8X;Y 2 m�1:

We consider the natural map

�:m��2 3 � ! f� 2 Hs(m�1)

from the dual space m��2 of m�2 to the real linear space Hs(m�1) of Hermitian
symmetric forms on m�1, which is given by

f�(X;Y ) = hf(X;Y ); �i 8� 2 m��2; 8X;Y 2 m�1:

Viceversa, given a finite dimensional C -linear space V and a linear subspace L
of the space Hs(V ) of Hermitian symmetric forms on V , there is a pseudocomplex
fundamental graded Lie algebra m = m�2 � m�1 of kind 2 such that

m�1 = V and �(m��2) = L:

This algebra is unique up to isomorphisms and can be described by setting

m�2 = L�; [m�2;m�2] = [m�2;m�1] = 0

and defining the Lie product [X;Y ] of two elements X;Y 2 m�1 = V as the
R-linear functional on L

[X;Y ]:L 3 h! =h(X;Y ) 2 R:

We say that m is of type (n; k) where n = dimC V and k = dimRL.
The group GLC (V ) of C -linear automorphisms of V acts on the space H(V ) of

the Hermitian forms on V by

GLC (V )� H(V ) 3 (a; h)! a � h 2 H(V );

where

a � h(X;Y ) = h(a�1(X); a�1(Y ))

8a 2 GLC (V ); 8h 2 H(V ); 8X;Y 2 V:

Clearly Hs(V ) is stable under this action of GLC (V ). Moreover, GLC (V ) trans-
forms k-dimensional subspaces of Hs(V ) into k-dimensional subspaces of Hs(V ).
We denote by Hsk(V ) the Grassmannian of k-dimensional subspaces of Hs(V )
and by Ok(Hs(V )) the space of orbits of Hsk(V ) for the action of the linear group
GLC (V ).
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PROPOSITION 5.1. Let n; k be positive integers, with 1 6 k 6 n2 and let V be a
complex vector space of dimension n. There is a 1-to-1 correspondence between
pseudocomplex fundamental graded Lie algebras of kind 2 and type (n; k) modulo
isomorphisms and the orbits in Ok(Hs(V )).

Proof. Letm = m�2�m�1 be a pseudocomplex fundamental graded Lie algebra.
Let a 2 GLC (m�1) and b 2 GLR(m�2). Then we obtain another isomorphic
fundamental graded Lie algebra ~m = ~m�2 � ~m�1 by setting ~m�1 = m�1 as C -
linear spaces and ~m�2 = m�2 as R-linear spaces and defining the Lie product
by

[~m�1; ~m�2]
0 = [~m�2; ~m�2]

0 = 0

and

[X;Y ]0 = b([a(X); a(Y )]) 8X;Y 2 m�1 = ~m�1:

The isomorphism �: ~m! m is given by

~m�1 3 X ! a(X) 2 m�1 and ~m�2 3 T ! b�1(T ) 2 m�2:

Indeed the equation �([X;Y ]0) = [�(X); �(Y )] reduces then to the definition of
the Lie product in ~m.

By this remark, the statement of the proposition becomes clear.
Using this proposition, we can parametrize pseudocomplex fundamental graded

Lie algebras of kind 2 and type (n; k) modulo isomorphisms by fixing a complex
n-dimensional vector space V and a point L in one of the orbits of Ok(Hs(V )). We
will denote by m(L) the corresponding pseudocomplex fundamental graded Lie
algebra and by g(L) its canonical pseudocomplex prolongation.

Let PHs(V ) denote the projective (n2� 1)-dimensional space corresponding to
the linear space Hs. The action of GLC (V ) defines, by passing to the quotient, an
action on PHs(V ). Let us denote by C the image in PHs(V ) of the cone of positive
definite Hermitian symmetric forms on V . This is a convex body in PHs(V ). The
corresponding Hilbert distance in C is given by

d([h1]; [h2]) = sup
16i;j6n

log
�i

�j
;

where [h1] and [h2] are the points of C corresponding to two positive definite
Hermitian symmetric forms h1; h2 on V and �1; : : : ; �n are the eigenvalues of h2

with respect to h1 (i.e., denoting still by h1 and h2 the anti-C -linear maps V ! V �

corresponding to the formsh1 andh2, the eigenvalues of the C linear endomorphism
h�1

1 � h2 of V ). The group GLC (V ) operates on C. Its image in its representation
in the group of permutations of C is the connected component of the identity in the
Lie group of isometries of the Hilbert metric.
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We devote the rest of this section mostly to the study of the canonical pseudo-
complex prolongations in the kind 2 case. In the following we will denote by V an
n dimensional complex space and use L for a k-dimensional real linear subspace
of Hs(V ) and PL for its projective image in PHs(V ).

5.1. LEVI–TANAKA ALGEBRAS OF KIND 2 ISOMORPHIC TO su(p+m; q +m)

Let m; p; q be nonnegative integers with m > 0 and ` = p + q > 0. With It
denoting the t� t identity matrix, we set

Ip;q =

 
Ip 0

0 �Iq

!
:

We consider the Hermitian symmetric matrix

Q =

0B@ 0 0 Im

0 Ip;q 0

Im 0 0

1CA :

The Lie algebra g of matrices A in sl(`+ 2m; C ) satisfying

A�Q+QA = 0

is isomorphic to su(p + m; q + m), so it is simple. Its elements are null-trace
matrices of the form0B@ a11 �a�23Ip;q a13

a21 a22 a23

a31 �a�21Ip;q �a�11

1CA
with blocks a13; a31 2 u(m) and a22 2 u(p; q). We obtain a structure of Levi–
Tanaka algebra of type (`m;m2) by defining the elements E and ~J by

E =

0B@ Im 0 0

0 0 0

0 0 �Im

1CA and ~J =

p
�1

`+ 2m

0B@�`Im 0 0

0 2mI` 0

0 0 �`Im

1CA :

This case generalizes the case of CR hypersurfaces, i.e. of type (n; 1), with nonde-
generate Levi form, that was fully discussed in [14] and [4] and corresponds to the
choicem = 1. We note that the space of orbits of O1(Hs(V )) contains only finitely
many elements. In order that the canonical pseudocomplex prolongation be finite
dimensional, it is necessary and sufficient to start from PL = f[h]g with h nonde-
generate, i.e. of signature (p; q) with p+ q = n. In this case g(L) is isomorphic to
the simple Lie algebra su(p+ 1; q + 1).
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5.2. LEVI-TANAKA ALGEBRAS OF KIND 2 ISOMORPHIC TO sl(n; C )

Let n > 3 and let us fix two positive integers m; ` with 2m + ` = n. We write a
matrix A 2 sl(n; C ) in the form

0B@ a11 a12 a13

a21 a22 a23

a31 a32 a33

1CA with

8>>>>>><>>>>>>:

a11; a13; a31; a33 2 gl(m; C )

a12; a32 m� ` complex matrices

a21; a23 `�m complex matrices

a22 2 gl(`; C )

tr(a11) + tr(a22) + tr(a33) = 0:

We graduate the Lie algebra sl(n; C ) by setting

gp =

8><>:
0B@ a11 a12 a13

a21 a22 a23

a31 a32 a33

1CA j aij = 0 for j � i 6= p

9>=>; :

The elements E and ~J are like in the previous example. We denote this pseudo-
complex graded Lie algebra by sl(2m+ `; C ).

We consider the 2`m-dimensional complex vector space V of pairs of ` �m
complex matrices and the map

g�1 3

0B@ 0 0 0

a21 0 0

0 a32 0

1CA! (a21; a
�
32) 2 V;

where a�32 denotes the conjugated transpose of a32. This map is C -linear for the
complex structure of g�1 and the canonical complex structure of V . Identifying the
space of m�m complex matrices to a 2m2-dimensional real space, we obtain the
Levi–Tanaka form on V

=f((v1; v2); (w1; w2)) = v�2w1 � w�2v1:

It is convenient to represent g�2 as the direct sum of two copies of the Hermitian
symmetric m � m matrices. We obtain a (vector-valued) Levi form that can be
written as

V 3
 
v1

v2

!
!

0BBBBB@
(v�1 ; v

�
2)

 
0

p
�1I`

�
p
�1I` 0

! 
v1

v2

!

(v�1 ; v
�
2)

 
0 I`

I` 0

! 
v1

v2

!
1CCCCCA2Hs(C

m )2
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and therefore sl(2m + `; C ) is the Levi–Tanaka algebra of a CR manifold M of
type (2`m; 2m2) which is `-pseudoconcave. It is also m`-pseudoconvex.

Note that the algebra considered in this example can be obtained by considering
the complexification of the algebra in the previous one, where ` = p+ q.

Remark 5.2. The simple algebra sl(n; C ) admits at least one structure of Levi–
Tanaka algebra of kind � for 1 < � < n. Moreover, there exist several nonequiva-
lent structures for the same � if 1 < � < n� 1.

Indeed, given a partition (n0; : : : ; n�) of n, i.e. positive integers nj with 0 6
j 6 � such that ��

j=0nj = n, we consider

E = 1
2 diag(�In0 ; : : : ; (�� 2j)Inj ; : : : ;��In�) + cEIn;

~J =

p
�1
2

diag(In0 ; : : : ; (�1)jInj ; : : : ; (�1)�In�) +
p
�1c ~JIn;

where cE ; c ~J 2 R are such that E; ~J 2 sl(n; C ) and diag(a0; : : : ; a�) denotes the
block-diagonal matrix of entries a0; : : : ; a�. If we denote by gp the eigenspace of
the adjoint representation of sl(n; C ) of the element E associated to the eigenvalue
�� 6 p 6 �, then g = ���6p6�gp, with the pseudocomplex structure on g�1

given by the adjoint representation of the element ~J , is a Levi–Tanaka algebra of
kind �.

We note that if in addition nj = n��j for every 0 6 j 6 �, denoting by

Q =

0BB@
In�

. . .
In0

1CCA ;

we have that the algebra

fA 2 sl(n; C ) jA�Q+QA = 0g;

with the graduation and the pseudocomplex structure similarly defined, is a Levi–
Tanaka algebra of kind �. If in addition � is even, we may take in the definition of
Q the matrix Ip;q instead of I�=2. These algebras are all isomorphic to su(p; q) for
suitable p and q.

5.3. LEVI–TANAKA ALGEBRA OF KIND 2 ISOMORPHIC TO so(n+ 2; n)

Let V be a complex linear space of dimension n > 2 and let W be a totally
real subspace of V of real dimension n. We consider the n(n� 1)=2 dimensional
subspace L of Hs(V ) of Hermitian symmetric forms h such that h(X;X) = 0 for
all X 2W .
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In a basis e1; : : : ; en of V contained in W , the matrices associated to the ele-
ments ofL are of the form

p
�1A for a matrix A 2 so(n). We call such a subspace

L of Hs(V ) a skew subspace of Hs(V ). Clearly, all skew subspaces of Hs(V )
belong to the same orbit under the action of GLC (V ) and therefore define isomor-
phic pseudocomplex fundamental graded Lie algebras m(L).

PROPOSITION 5.3. The canonical pseudocomplex prolongation of a pseudocom-
plex fundamental graded Lie algebra m(L) associated to a skew subspace L of
Hs(V ) is a simple graded Lie algebra, isomorphic to the Lie algebra so(n+ 2; n).

Proof. We consider on the real vector space R2n+2 the symmetric bilinear form
of signature (n+ 2; n) defined by the Hermitian symmetric matrix

Q =

0B@ 0 0 In

0 I2 0

In 0 0

1CA ;

where I` is the identity `� ` matrix. Then so(n+ 2; n) is identified to the space of
matrices of the form

0B@ � � 


� " �t�

� �t� �t�

1CA where

8>>>>>><>>>>>>:

� 2 gl(n;R)

� is a 2� n real matrix

� is an� 2 real matrix


; � 2 so(n)

" 2 so(2;R):

We denote by g the Lie algebra of (2n+ 2)� (2n+ 2)matrices defined above. We
consider the element E 2 g

E =

0B@ In 0 0

0 02 0

0 0 �In

1CA :

Then adg(E) is semisimple with eigenvalues�2; �1; 0; 1; 2 and we denote by gp
the eigenspace corresponding to its integral eigenvalues �2 6 p 6 2. In this way
g = g�2 � g�1 � g0 � g1 � g2 has the structure of a simple graded Lie algebra. We
note that

g0 =

8><>:
0B@ � 0 0

0 " 0

0 0 �t�

1CA j� 2 gl(n;R); " 2 so(2)

9>=>;
and

g�1 =

8><>:
0B@ 0 0 0

� 0 0

0 �t� 0

1CA j� is a 2� nmatrix

9>=>; :
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Let

j =

 
0 �1

1 0

!

and consider

~J =

0B@ 0 0 0

0 j 0

0 0 0

1CA 2 g0:

We have ��1( ~J)
2
= �Idjg

�1 and [��1( ~J)X; ��1( ~J)Y ] = [X;Y ] for everyX;Y 2
g�1, therefore ��1( ~J) defines a complex structure in g�1. If we associate to the
matrix � parametrizing g�1 the element Z 2 C

n obtained by adding to its first rowp
�1 times its second row, the way the element

X0 =

0B@ � 0 0

0 " 0

0 0 �t�

1CA 2 g0

acts on g�1 can be described by

��1(X0)(Z) = ��Z +
p
�1� Z

if

" =

 
0 ��
� 0

!
:

It is clear then that [X0; g�1] 6= 0 if X0 2 g0 is different from zero. Moreover, the
matrices of the form �t
�
t�, for �; 
 varying in the space of n� 2 real matrices,
are a basis of so(n) as a real vector space and the bilinear form (�; 
)! �t
�
t� is
nondegenerate. Then g�2�g�1 is a nondegenerate fundamental graded Lie algebra.
By Lemma 3.16, it follows that g is transitive. From jtj = I2 we obtain also that
g�2 � g�1 is pseudocomplex. By Theorem 3.21, it is sufficient then to establish an
isomorphism between the pseudocomplex fundamental graded Lie algebras m(L)
and g�2 � g�1.

To this aim we choose a basis e1; : : : ; en of V contained in W and associate to
every vector v 2 V the n� 2 real matrix � whose first column is the real and the
second the immaginary part of the components of v in this basis. The identification
of g�2 and L� is the standard identification of the dual of real alternating forms on
W with the real alternating forms on W �. The proof is complete.
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5.4. LEVI–TANAKA ALGEBRAS OF TYPE (n; 2) WITH n > 1

Let m = �p>�2gp be a fundamental graded Lie algebra of type (n; 2). Assume
that m is nondegenerate so that its canonical pseudocomplex prolongation is finite
dimensional. The structure of m can be given by a real 2-dimensional subspace L
of Hermitian symmetric forms on a complex vector space V with dimCV = n.
Assume that there exists a nondegenerate form belonging to L and let L1 and L2

be a basis of L with L1 nondegenerate. By Theorem 4.5.19 of [7] we can choose
a basis of V such that L1 and L2 are represented by two matrices in the diagonal
form with `i � `i blocks Ai, respectively Bi, where

Ai = "i

0B@ 0 1

�..

1 0

1CA ; Bi = "i

0BBBBBB@
0 �i

. . . 1
. . . . . .

�i 1 0

1CCCCCCA ;

with �i 2 R and "i = �1, for 1 6 i 6 r, and 2`i � 2`i blocks

Ai =

0B@ 0 1

�..

1 0

1CA ; Bi =

0BBBBBBBBBBBBBBBBBBB@

�i

. . . 1
. . . . . .

�i 1

��i

. . . 1
. . . . . .

��i 1

1CCCCCCCCCCCCCCCCCCCA
with �i 2 C n R, for r + 1 6 i 6 r + s.

We assume that `i = 1 for every 1 6 i 6 r + s. The case s = 0 and �1 =
� � � = �n is not possible because L has dimension 2. In the case s = 0 with
�1 = � � � = �p 6= �p+1 = � � � = �p+q, the algebra m is the direct sum of two
ideals and g is isomorphic to su(p+1; 1)�su(q+1; 1) (see Proposition 3.3). When
r = 0; n is even and if �1 = � � � = �n=2, then g is isomorphic to sl(2 + n=2; C )
as in example in 5.2 (using Theorem 3.21). In all other cases with n > 3 it can be
proved that ��2(g0) = R Idg

�2 and so, by Theorem 3.24, we have that gp = 0 for
every p > 0.

Whenn > 3 and all `i’s are equal to 1 and the�i’s are distinct, the corresponding
standard homogeneousCR manifolds are euclidean and are parametrized, modulo
CR diffeomorphisms, by a moduli space of real dimension n � 3. This space is

https://doi.org/10.1023/A:1000166119593 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000166119593


246 C. MEDORI AND M. NACINOVICH

indeed the quotient of the set ofn-tuple of distinct points of C P1 , symmetrical for the
involution defined by RP1 � C P

1 , under the action of the group of automorphisms
of C P1 which leave invariant the Poincaré half-plane. This has been shown in [9]
for the case n > 7 and in general by one of the authors in his laurea dissertation
(1991).

For n = 2, assuming again that the `i’s are equal to 1, we obtain Levi–Tanaka
algebras isomorphic either to su(2; 1) � su(2; 1) (the pseudoconvex case) or to
sl(3; C ) (the 1-pseudoconcave case).

We consider a case where `i 6= 1 in the example below, that completes the
description of all Levi–Tanaka algebras of type (2,2) and kind � = 2.

5.5. THE WEAKLY PSEUDOCONCAVE LEVI–TANAKA ALGEBRA OF TYPE (2; 2)

LetL be the linear subspace of Hs(C
2 ) generated by the Hermitian forms associated

to the matrices 
1 0

0 0

!
and

�
0 1
1 0

�
:

To compute the Levi–Tanaka algebra g(L) we first introduce some notation. We
denote by T2C the unitary associative C -algebra of lower triangular 2� 2 matrices
with complex coefficients. We consider on T2C the two antilinear maps T2C 3
�! �� 2 T2C and T2C 3 �! ~� 2 T2C associating to the matrix

� =

 
�11 0

�21 �22

!

the matrices

�� =

 
��11 0

��21 ��22

!
; ~� =

 
��22 0

��21 ��11

!
:

Then we define the two subrings of T2C

N2C =

( 
z1 0

z2 z1

!
j z1; z2 2 C

)
= f� 2 T2C j �� = ~�g;

N2R =

( 
t1 0

t2 t1

!
j t1; t2 2 R

)
= f� 2 T2C j� = �� = ~�g:

Remark 5.4. We have:
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(1) �� = ���� 8�; � 2 T2C ;

(2) f�� = ~� ~� 8�; � 2 T2C ;

(3) �� = �� 8�; � 2 N2C ;

(4) if �; � 2 T2C and �� = �� 8� 2 N2R, then � = � 2 N2C .

PROPOSITION 5.5. The Levi–Tanaka algebra g(L) is isomorphic to the subalgebra
of gl(6; C ) of matrices of the form0BB@

� � �

� �
p
�1��

� �
p
�1�� �~�

1CCA ; (11)

where �; � 2 N2R, �; � 2 N2C , and

� =

 
a+

p
�1b 0

c d+
p
�1b

!
;

� =

0@ a�d
2 � 2

p
�1b 0

�2
p
�1=c d�a

2 � 2
p
�1b

1A ; (12)

with a; b; d 2 R and c 2 C .
We note that ~� = �� and that � + � � ~� is a diagonal 2 � 2 matrix with 0

trace.
The operators E; ~J 2 g0(L) are described by the matrices

E =

0BB@
I2 0 0

0 02 0

0 0 �I2

1CCA and ~J =

0BBB@
�
p
�1
3 I2 0 0

0 2
p
�1

3 I2 0

0 0 �
p
�1
3 I2

1CCCA :

We have

g�2(L) =

8><>:
0B@ 0 0 0

0 0 0

� 0 0

1CA j � 2 N2R

9>=>; ' R
2 ;

g�1(L) =

8>><>>:
0BB@

0 0 0
� 0 0

0 �
p
�1�� 0

1CCA j � 2 N2C

9>>=>>; ' C
2 ;
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g0(L) =

8><>:
0B@ � 0 0

0 � 0

0 0 �~�

1CA j�; � as in (12)

9>=>; ;

g1(L) =

8>><>>:
0BB@

0 � 0

0 0
p
�1�

0 0 0

1CCA j � 2 N2C

9>>=>>; ' C
2 ;

g2(L) =

8><>:
0B@ 0 0 �

0 0 0

0 0 0

1CA j� 2 N2R

9>=>; ' R
2 :

The Levi–Tanaka algebra g(L) admits a graded Levi–Malčev decomposition g(L) =
s� r with s ' su(1; 2) and r 6= 0.

Proof. Using the previous remark, one easily checks by direct computation
that the matrix algebra defined above is a pseudocomplex prolongation of the
fundamental pseudocomplex Lie algebra m(L). We define r as the set of matrices
as in (11) with

� =

 
0 0

t 0

!
; t 2 R; � =

�
0 0
s 0

�
; s 2 R;

� =

 
0 0

z 0

!
; z 2 C ; � =

 
0 0

w 0

!
; w 2 C ;

� =

 
a 0

c �a

!
and � =

 
a 0

�2
p
�1=c �a

!
for a 2 R; c 2 C :

It is easy to verify that r is an ideal of g(L).
Next we denote by s the set of matrices of the form (11) with

� =

 
t 0

0 t

!
; t 2 R; � =

�
s 0
0 s

�
; s 2 R;

� =

 
z 0

0 z

!
; z 2 C ; � =

�
w 0
0 w

�
; w 2 C ;

� =

 
a+

p
�1b 0

0 a+
p
�1b

!
and � =

 �2
p
�1b 0

0 �2
p
�1b

!
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for a; b 2 R. We observe that s is a Lie subalgebra of g(L) which is semisimple
being isomorphic to su(1; 2). To prove that the algebra g(L) defined above is the
Levi–Tanaka algebra of the second kind associated to L, we have to show that
it is a maximal prolongation. First we remark that the canonical pseudocomplex
prolongation of m(L) is not semisimple because g0(L) is not reductive (and g0(L)
is the degree 0 component of the canonical pseudocomplex prolongation). By the
graded Levi–Malčev decomposition and the fact that the canonical prolongation
is semisimple when the radical has no degree �1-component, we deduce that s
is the semisimple part of the canonical pseudocomplex prolongation. Knowing
that a prolongation of g(L) would be a prolongation of its radical, we conclude
by an explicit computation that the g(L) we constructed is indeed the canonical
pseudocomplex prolongation of m(L).

5.6. FINITE DIMENSIONAL LEVI–TANAKA ALGEBRAS g = �p2Zgp WITH
dimRg�1 = 2

Let m = ���6p<0gp be a pseudocomplex fundamental graded Lie algebra with
n = 1

2 dimRg�1 = 1 and let g = �p>��gp be its canonical pseudocomplex
prolongation. Suppose that m is nondegenerate. This is equivalent to � > 2 and, by
Theorem 3.1, to g finite dimensional. Note that dimRg0 6 2. We will prove that g is
either solvable with gp = 0 for every p > 0, or simple and isomorphic to su(2; 1)
with the graduation given in example in 5.1. Indeed, since ��2 is irreducible, if g
is not simple, then, by Corollary 3.32, g is almost solvable, i.e. g = r � s where r

is the radical of g and s is a semisimple subalgebra contained in g0. If dimRg0 = 1,
using that [g1; g�1] = [r1; r�1] � g0, we obtain that g has to be solvable. By
the Corollary 3.26, g1 = 0. If dimRg0 = 2, then ��1 is irreducible, hence, by
Corollary 3.31, g1 = 0 and, since g0 is Abelian, g is solvable.

Let us assume now that g is simple. Then the complexification gC = C 
R g of
g is a semisimple complex Lie algebra and a Levi–Tanaka algebra. By Lemma 3.9,
gC has a Cartan subalgebra hC contained in gC0 = C 
R g0 and then its rank
` = dimC h

C is less than or equal to dimC g
C

0 6 2. By the classification of simple
complex Lie algebras we have that gC is isomorphic to one of the following:
so(5; C ), sl(2; C ), sl(2; C ) � sl(2; C ), sl(3; C ) or the exceptional Lie algebra G2.
Since dimC g

C = dimRg > 7, and using Proposition 3.39, we obtain that gC is
isomorphic to sl(3; C ). This implies � = 2 and dimRg�2 = 1. These two conditions
characterize a fundamental graded Lie algebra m whose prolongation is isomorphic
to su(2; 1) (cf. example in 5.1). In conclusion, we proved that a Levi–Tanaka algebra
g = �p2Zgp with n = 1

2 dimRg�1 = 1 is either solvable with gp = 0 for every
p > 0, or isomorphic to su(2; 1).
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