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Abstract. In this paper we take up the problem of discussing C R manifolds of arbitrary CR
codimension. We closely follow the general method of N. Tanaka, while concentrating our attention
to the case of manifolds endowed with partial complex structures. This study required a deeper
understanding of the structure of the Levi—Tanaka agebras, which are the canonical prolongation
of pseudocomplex fundamental graded Lie algebras. These algebras enjoy special properties, the
understanding of which provided also a way to build up several different examples and points to a
rich field of investigations. Here we restrained further our consideration to the homogeneous models.
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Introduction

In aseries of papers ([12], [13], [14]) N. Tanaka developed a general method for
the study of geometrical structures associated to the datum of a vector distribution
on a differentiable manifold. One important application of its research was the
study of the automorphism group of a C'R hypersurface. Similar results were
later obtained by Chern and Moser in [4]. The main difficulty in the study of
this problem is that, although it has a quite natural formulation in terms of G-
structures, the classical methods do not apply because in general the group of
infinitesimal C'R automorphisms does not have a faithful representation into the
group of infinitessimal automorphisms of the frame bundle. By considering the
prolongation of a graded Lie algebra associated to the vector distribution and
building up a principal bundle canonically associated to it, Tanaka succeeded in
showing that in several casesthegroup of C' R automorphismsisafinitedimensiona
Lie group, whose dimension does not exceed that of the prolongation.

In this paper we take up the problem of discussing C'R manifolds of arbi-
trary C' R codimension. We closely follow the general method of N. Tanaka, while
concentrating our attention to the case of manifolds endowed with partial com-
plex structures. This study required a deeper understanding of the structure of
the Levi—Tanaka algebras, which are the canonical prolongations of pseudocom-

https://doi.org/10.1023/A:1000166119593 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000166119593

196 C. MEDORI AND M. NACINOVICH

plex fundamental graded Lie algebras. These algebras enjoy special properties, the
understanding of which provides also away to build up severa different examples
and pointsto arich field of investigations. Here we restrained further our consid-
eration to the homogeneous models, which are interesting for their relationship to
simpler objects already considered in quantum mechanics.

1. Preliminaries

1.1. PARTIAL COMPLEX STRUCTURES AND C'R MANIFOLDS

Let M be a smooth real manifold of dimension m, countable at infinity. Let n, &
be nonnegative integers with 2n + k£ = m. A partial almost complex structure of
type (n, k) on M is the pair consisting of a real vector subbundle HM of rank
2n of the tangent bundle "M and a smooth fiber preserving bundle isomorphism
J-HM — HM, with

J?=<ald HM — HM
such that
[(X,Y]<[JX,JY] e D(M,HM) VX,Y e I(M,HM). 1)

Herewe use I to indicate smooth sections of afiber bundle.
The triple M = (M,HM, J), where (HM,J) is a partia almost complex
structure of type (n, k) on M, isthen called an ailmost C'R manifold of type (n, k).
We say that the almost partial complex structure (H M, J) on M is a partial
complex structureif it isformally integrable, i.e. if

N(X,Y) = [JX,Y] +[X,JY] «J(X,Y] <[JX,JY]) =0 )

forevery X, Y € I'(M, HM). When (HM, J) is a partia complex structure of
type (n, k), we say that the triple M = (M, HM, J) is a CR manifold of type
(n, k).

The integrability conditions (1) and (2) can be expressed in another equival ent
formulation. Let

TYOM = {X <iJX | X € HM} and
TOM = {X +iJX|X € HM}

be the complex vector subbundles of the complexification CH M of H M, corre-
sponding to the eigenvalues: and < of J. Then (1) and (2) are equivalent to each
of the following

[D(M, TOM), T (M, T*°M)] ¢ T(M,TM),
[0(M, T M), T (M, T%M)] ¢ T(M,T%M).
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1.2. CR MAPS

Let M1 = (M1, HM3, J1) and My = (My, H My, J>) be two amost C' R mani-
folds, of type (n1, k1) and (ny, k) respectively. A differentiablemap f: My — M,
isaCR map if

(1) f«(HM1) C HM, and

(2) f*(Jle) = JZf*(Xm) Vz € My, VX, € H; M.
When M isC with the standard complex structure of a C' R manifold of type (1, 0),
aCR map from M to C iscalled aC' R function.

A differomorphism f: M; — M is caled a C'R diffeomorphism if f and
f~1: M, — M areboth C'R maps. Two C R diffeomorphic almost C' R manifolds
have necessarily the same type.

1.3. THE FORM OF LEVI-TANAKA

We begin by an easy proposition from linear algebra, that will be usefull in the
sequel.

PROPOSITION 1.1. Let V beareal vector space, of even dimension 2n, on which
a complex structure J € homg (V, V), with J? = <ld, is given. Then:

(1) For every alternating R-bilinear forma: V x V — R* suchthat a(Jv, Jw) =
a(v,w) for every v,w € V thereisa unique Hermitian formf:V x V' — C*
such that

Sf(v,w) = a(v,w) Yo,w € V.
Itisgiven by
f(v,w) = a(Jv,w) + vV&la(v,w) Yv,w eV

and is Hermitian symmetric for the real formR* of C*.
(2) Ifaandjareasin (1), A € hom¢(V, V) and B € homg (R*, R¥), thefollowing

are equivalent
a(Av, Aw) = Ba(v,w) Yv,w €V, ()
f(Av, Av) = Bj(v,v) Vv € V. (ii)
(3) If aand f areasin (1), A € homg(V, V), B € homg(R*, R¥), the following
are equivalent
a(Av,w) + a(v, Aw) = Ba(v,w) Yv,w €V, (iii)

f(Av,v) + (v, Av) = Bf(v,v) Yv e V. (iv)
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We note that (ii) and (iv) are respectively equivalent to
f(Av, Aw) = Bf(v,w) Yv,w €V, (ii")
f(Av, w) + f(v, Aw) = Bj(v,w) VYov,w €V, (iv")

for the complexification, still denoted by B, of thereal linear map B.

Letnow M = (M, HM, J) be an amost C R manifold of type (n, k), denote
by QM the quotient bundle TM/HM and let 7: TM — QM be the projection
onto the quotient. Given two sections X, Y € I'(M, HM) and apoint z € M, the
vaue 7([X,Y];) € Q.M only depends on the values X,,Y, at =z of X and Y.
Thus we obtain an aternating bilinear form

lo: HoM x H,M > (X,,Y,) = 7([X,Y],) € Q. M,
which is called the Levi—Tanaka form of M at z. Clearly the assignement M >
x — I, € A2(HM, QM) is smooth.
By condition (1) thisform is J-invariant

(S Xy, JY:) = (X4, V) Vo €M, VX, Y, € HyM.

By applying the proposition above, we obtain for every = € M aunique Hermitian
symmetric form f,, for the complex structure of H, M such that

(X2, Yy) = Sf(Xe, V) VX, Yy € Hy M.

Itisgiven by
Fo (X, V) = (T Xy, Vo) + VoLl (X, V)

and therefore smoothly dependson x. The corresponding Hermitian quadratic form
Hy M 3 Xy = f2(Xe, Xa) € QuM

is often referred to as the (vector valued) Levi form.

1.4. PSEUDOCONVEXITY AND PSEUDOCONCAVITY

Let M = (M,HM, J) be an dmost CR manifold of type (n, k). We define the
characteristic bundle of M as the smooth linear subbundle H°M/ of the cotangent
bundle T*M of M whose fiber HOM at the point z € M is the annihilator of
H, M CT,M

HOM = {¢, € TM | (X,, &) =0 VX, € H,M}.
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We define the (scalar) Levi format ¢, € HOM by
L‘(fan:v) = <fx(anXx)a £x> for X, € H,M.

Thisisarea valued hermitian form for the complex structure of H, M.

We say that M is g-pseudoconvexat = € M if wecanfind ¢, € H?M such that
the hermitian form L(¢,, - ) hasat least n <¢ positive eigenvalues.

We say that M is g-pseudoconcave at = € M if for every &, € HOM with
&, # 0the Hermitian form L(¢,, - ) hasat least ¢ negative eigenvalues.

Pseudoconvexity and pseudoconcavity are related to the local properties of the
C' R complexes (see for instance [10] and [8]).

2. Prolongations of fundamental graded Lie algebras
2.1. GRADED LIE ALGEBRAS

A graduation of aLie algebrag over afield K isadecomposition of g into a direct
sum of K-linear subspacesg = @, g, such that

{dingp<oo Vp € Z,

[0p,0q] C Optq VP,q EZ.

We say that g is of finite kind 1, for a nonnegativeinteger 1, if g, = 0forp < &u
and g_, # 0. Inthis case we call the dimension & of @, _1g, the codimension of
g.

Wenotethat g = @,00p, 8+ = D,~09p and go are Lie subalgebras of g.
Moreover, for every p € Z the map

Pp-90 — homK(GpaGp)
defined by
pp(Xo)(Xp) = [Xo,X,] for Xo € go, Xp € gp 3

isalinear representation of the Lie algebragg in g,.
A graded Lie algebra g is said to be:

(1) fundamental if g, = O for p > O and [gp,g-1] = gp—1 fOr p < 0, i.e. g_1
generatesg;

(2) nondegenerateif [X,g_1] #0when0 # X € g_1;

(3) irreducible (respectively completely reducible) if the representation p_; of go
ing_1 isirreducible (resp. completely reducible);

(4) transitive if [X,g_1] # Owhenp > 0and 0 # X € g,. In this case the
representation p_1 of go in g_1 isfaithful.
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A graded Lie algebrag over R is said to be pseudocomplex if a complex structure
Jig_1— g1, JP=<ld, |
isgivenon g_1 in such away that
[X,Y]=[JX,JY] VXY €g_1. 4

2.2. FUNDAMENTAL GRADED LIE ALGEBRAS ASSOCIATED TO VECTOR
DISTRIBUTIONS

Graded Lie algebras were considered by Tanaka in [12] in order to investigate
canonical forms of vector distributions and C R manifolds. We rehearse here the
relevant construction.
Let D C TM bearank r linear subbundle of the tangent bundle of a smooth

differentiable manifold M of dimension m. We set

D_,=T(M,D)
and define by recurrence

Dy = [Dpy1,D_1]+Dp1 for p < &l
Then we have an increasing sequence of £ (M )-modules of vector fields

D,.CD,C---C P(M,TM).
For every x € M and p < Owe set

(Dp), = { Xz € TM | X € Dp}.

Note that:

() [Dp, Dyl CDpyq Vp,q <O
(i) ifp,g<0,X €Dy,Y €Dy, f,gec&(M),then

[fX,9Y] & fg[X,Y] € Dpigia

Let us definethen, for every fixed x € M,

gp(z) = Po)a for p < &1
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By conditions (i) and (ii), the commutator of vector fieldsin D, and D,, composed
with the projection onto the quotient (D,,14), — gp+¢(z), defineson

a(z) = P op(x),

p<0

the structure of areal fundamental graded Lie algebra.
We say that D is regular if, for every p < 0, D, is a vector distribution of
constantrank in M, i.eif

dimg g,(z) = dimgg,(y) Vp <0, Vz,ye M.
In this casethere is asmallest positive integer 1 such that
D,=D_, Vp<&u

and D_,, is the smallest formally integrable vector distribution in M containing
D_1 = I'(M, D). By the classical Frobenius Theorem M is locally foliated by
integral leavesof D_,.

In particular we can apply the construction aboveto the linear vector subbundle
HM of TM for agiven amost CR manifold M = (M, HM, J). We say that M
is contact regular if HM isregular.

We shall denote by m(z) the fundamental graded Lie algebraassociated to H M
a the point z € M. It is pseudocomplex with respect to the complex structure .J
on H,M = m_1(z). We note that m(z) is nondegenerate if and only if the Levi
form is nondegenerate at .

A CR diffeomorphism induces isomorphisms of the pseudocomplex funda-
mental graded Lie algebras associated to the partial almost complex structures
at the corresponding points. In particular the algebras m(z) are pseudoconformal
invariants of the C'R manifolds.

The fundamental graded Lie algebra m(x) takes into account also the higher
order Levi forms (see [11]). However, for the study of the local C' R invariants of
M, it is convenient to extend m(z) to a graded Lie algebra g(z), via a canonical
prolongation. This g(x) will be called the Levi—Tanaka algebra of M at .

2.3. CANONICAL PROLONGATIONS OF FUNDAMENTAL GRADED LIE ALGEBRAS

Givenafinitedimensional graded Liealgebraa = @©_,<p<,a,, Wesay that agraded

Liealgebrab = @©_,<pb, isaprolongation of a if there is a monomorphism of

graded Lie algebrasa — b inducing anisomorphismof aonto b, = ®_,<p<bp.
In [13] the following theorem is proved:

THEOREM 2.1. Letm = _ ., .om, beafundamental graded Lie algebra over
R. Then we can construct a graded Lie algebra g = @, _,, g, Unique up to
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isomor phisms, which is maximal between the transitive graded Lie algebras g for
which thereis a graded Lie algebrasisomorphism

g = @ gp —> m.

—p<p<0

Such atransitive graded Lie algebra g will be called the canonical prolongation of
m.
Let m be afundamental graded Lie algebra of kind n» and let m be its canonical
prolongation, given by the theorem above. Wefix aLie subalgebragg of the algebra
mp of al derivations of degree O of m. Then we define the canonical prolongation

of m & gg setting by recurrence

gp = {Xp €y | [Xp,0-1] Cop-1}-

This is a graded Lie subalgebra of m and hence a transitive graded Lie algebra,
maximal between the graded Lie algebras a which are transitive and satisfy

mgo~aco =P, asgradedLieagebras.

p<0

When m is apseudocomplex fundamental graded Lie algebra, we say that aprolon-
gationa = @, ,a, of m ispseudocomplexif the elements of ag definederivations
of degree O of m which are C-linear on m_4 for the complex structure induced by
J.

If we define gg to be the space of al degree O derivations of a pseudocomplex
fundamental graded Lie algebram which are C-linear onm_ 1, wecall the canonical
prolongation of m & go the canonical pseudocomplex prolongation of m.

A graded Lie algebrag = @, g, such that:

(i) m=®_,<p<ogp isafundamental pseudocomplex Lie algebra;
(ii) g isthe canonica pseudocomplex prolongation of m;

will be called a Levi—Tanaka algebra.

In particular, when m = m(z) is the pseudocomplex fundamental graded Lie
algebraassociatedto apoint z € M of anamost C R manifoldM = (M, HM, J),
its canonical pseudocomplex prolongation g(z) is called the Levi—Tanaka algebra
of M at z.

We note that C' R diffeomorphisms induce isomorphisms of the Levi—Tanaka
algebras at corrisponding points. In particular the Levi—Tanaka algebras, modulo
isomorphisms, are pseudoconformal invariants.

2.4. FINITENESS OF THE CANONICAL PROLONGATION

A useful criterion for the finiteness of transitive prolongations was given by Serre
(cf. [5] and [13]).
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THEOREM 2.2. Let g = @, .9, be a transitive prolongation of a fundamental
graded Lie algebra of kind ;, and let

H(g) ={X €g|[X,)Y]=0 VY € ®pc_19p}-

Then g isfinite dimensional if and only if H(g) isfinite dimensional.

3. Levi-Tanakaalgebras

3.1. CANONICAL PSEUDOCOMPLEX PROLONGATIONS

The finiteness criterion given in the previous section yields in the pseudocomplex
case:

THEOREM 3.1. Let m = @_,<p<—1m, be a pseudocomplex fundamental graded
Lie algebra. The canonical pseudocomplex prolongation g = @,>_,g, Of m is
finite dimensional if and only if m is nondegenerate, i.e.

{X €g-1][X,9-1] =0} =0.
A necessary and sufficient condition in order that g be finite dimensional is that
{Xen|[X,Y]=0 VY € ®pc 19y} =0.

Proof. Let n = &,«_1g, and let h denote the graded Lie subalgebraof g defined
by b = {X € g|[X,n] = O}.

Theconditionisnecessary: assumethatthereisO # X € g_j suchthat[X,Y] =
OforeveryY € g_;. Let ¢’ ; bea J-invariant subspace of g_; complementary to
the subspace g” ; generated by X and JX. ThenwedefineYp € ho = hNgo C go
by

[Yo,Z] =0 for Zeg ,®n,
{ Yo, Z] =2 for Zeg",.
We note that Y; € o and that also the element Y5, defined by
[Yo,Z]=0 for Zeg ,@n,
{ Yo, Z]=JZ for Zeg",
belongs to ho C go. By recurrence we can define sequences {Y,},o, (Y, }pso0,
with0 #Y),,Y), € b, C g, by setting, forp > 1,
Yy, Z] =0 for Zeg ;@n,
[Yp, X] = Y1,
Yy, IX] =Yy 1,
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[Y,,Z]=0 for Zecg ,@n,
[YM;hX] = YMijla
[?}h JX] =&Y,

This showsthat g isinfinite dimensional.
Conversely, when m is nondegenerate, h; = 0 and the criterion applies. Indeed,
let us consider the Hermitian symmetric C ® go-valued form

(X|Y) =[JX,Y]|+v<lX,Y] for XY €g.1.
Then ho is contained in the space of A € hom¢(g_1, g—1) such that
(AX]Y)+ (X|AY)=0 VX,Y €g 1.

Let £ € h; and denote by B:g_1 — go the corresponding R-linear map. Then we
have

B(X)Y = B(Y)X VX,Y €g_4,
{ (B(X)Y|Z)+ (Y|B(X)Z) =0 VX,Y,Z€cg_1.
Since B(X) € ho for X € g_1, we obtain
(B(X)Y|2) = (B(Y)X|Z) = &(X|B(Y)Z) = «(X|B(2)Y)
= (B(2)X]Y) = (B(X)Z]Y) = «(Z|B(X)Y)
= «(B(X)Y|Z) VX,Y,Z € g_1.
This shows that
R(B(X)Y|Z)=0 VX,Y,Z€g_1

and hence B = 0, which gives¢ = 0. The proof is complete.

The subspaces g, = g, (m) of acanonical pseudocomplex prolongation g(m) =
®_<pp(m) of apseudocomplex fundamental graded Liealgebram = @ _,,<p<om,
can be defined inductively by

(m, if p<O,
{A € Der(m,m) | A(m;) Cm; V5 <O0;
gp(m) = ¢ A(JX) = JA(X) VX em_4} ifp=0, (5)

{A € Der(m, ®ncpan(m)) |
( A(mj) C gprj(m) Vj <O} if p >0,
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where Der(m, V') indicates the space of derivations of the Lie algebram which take
valuesin aleft m-module V. Thisis indeed the characterization of the canonical
prolongation givenin[12]. Inthefollowing wewill usetheseidentificationswithout
mentioning whenever it will simplify our arguments.

PROPOSITION 3.2. Assume that m = h @ n is the semidirect sum of a graded
pseudocomplexideal h and of a graded pseudocomplex subalgebran. Then

(i) if m isfundamental, then n is also fundamental;

(it) if m is fundamental and pseudocomplex, then there is a natural pseudocom-
plex graded Lie algebras homomorphism g(m) — g(n) from the canonical
pseudocomplex prolongation g(m) of m into the canonical pseudocomplex
prolongation g(n) of n which makes the diagram

in which the top horizontal arrow is the projection associated to the direct
sumdecompositionm = b & n and the vertical arrowsare the inclusion maps,
commute.

Proof. Statement (i) is a consequence of the fact that h is an ideal. We use
formula(5) to definethe subspacesof the canonical prolongationsof n and m. Then,
if 7:m — nisthe pseudocomplex graded L ie algebrahomomorphism associated to
the direct sum decomposition g = h @ n, we defineinductively m,: g, (m) — g,(n)
by setting

mp(X) = m(X) VX € my = gp(m) if p<O;
mp(A)(X) = mp1i([A, X]) VX €nj, j <0, VA€ gy(m) if p>0.

The direct sum of the 7,’s yields the desired homomorphism.
We also have:

PROPOSITION 3.3. Assume that the pseudocomplex graded Lie algebra m =
®_<p<om, isthedirect sumof two pseudocomplexgradedidealsa = ®_,<p<o0ap
and b = @, <p<obyp. Then:

(i) misfundamental if and only if a and b are both fundamental;
(if) m isnondegenerateif and only if a and b are both nondegenerate;
(iti) if m isfundamental and nondegenerate, its canonical pseudocomplex prolon-
gation g(m) isisomorphic to the direct sum of the canonical pseudocomplex
prolongations g(a) and g(b) of a and b respectively.
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Proof. Statements (i) and (ii) are trivial, as [a,b] = 0. To prove (iii), we note
first that we have an inclusion map: g(a) @ g(b) < g(m). To prove that this map
is an isomorphism, we argue by contradiction. If it was not the case, there is a
smallest integer p such that g, (a) @ g,(b) # gp(m). Clearly p > 0. Denote by
and , the projections of @, g5, (m) ONtO B« g (a) and Sy, «pan (b) respectively.
By (5) each element X of g,(m) is defined by the restriction of ad(X') to m. This
map isthesum X, + X, + Z of X, = m,0ad(X) o m,, Xy = 7, 0 &d(X) o 7,
and Z = m, o ad(X) o m, + 7, 0 @d(X) o 7,. Again by (5) we obtain X, € gp(a)
and X, € g,(b). It suffices therefore to show that Z = 0. This follows because
[Z,Y] € gp—1(b) if Y € a_1and [Z,Y] € gp—1(a) if Y € b_4. Indeed, assuming
Y €a_jwehaveforeveryU € m_q

gp-2(b) 3 [[Z, Y], U] = [[Z,Y],m (U)]
= [2,[Y, 7 (O)]] + [[Z, m (U)], Y]
= [[Z,m(U)], Y] € gp—2(a).

Hencewehave[[Z,Y],U] = Oforal U € m_;. Becausep > 0, g(m) istransitive
and m isnondegenerate, weobtainthat[Z, Y] = Oforal Y € a_;. Inthe sameway
we provethat [Z,Y] = Oforall Y € b_1 and thisimpliesthat Z = 0, completing
the proof of the proposition.

We note that in (iii) the assumption that m is nondegenerate is essential, as the
trivial example of an Abelian m = m_; of complex dimension larger than one
shows.

Given a pseudocomplex graded Lie algebrag = @, g, With complex struc-
ture J:g 1 — g 1, we consider its complexification g© = @, ,.g;. The com-
plexification of the partial complex structure J is a partial complex structure
J =id® J:g%; — ¢%,. In this way we obtain a new pseudocomplex graded
Lie algebra g by considering g© as a graded real Lie algebra endowed with the
pseudocomplex structure .J. We have the following:

Remark 3.4. A necessary and sufficient condition in order that § be a Levi—
Tanakaalgebraisthat g is aLevi—Tanakaalgebra.

Proof. First we note that m = ®,<0g, is fundamental (nondegenerate) if and
only if m = @,<0g, is fundamental (nondegenerate) and that g is transitive if and
only if g istransitive. Next we consider the canonical pseudocomplex prolongation
a of m and we prove by recurrencethat the anti-C-linear part of themap g, — g ;
defined by any X € a, (for p > 0) is 0. Thisimplies our contention.

3.2. PROPERTIES OF LEVI-TANAKA ALGEBRAS

LEMMA 35. Let m = @©_,<p<08, be a pseudocomplex fundamental graded Lie
algebraand let g = @, _,g, beits canonical pseudocomplex prolongation, i.e.
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g is a Levi—Tanaka algebra. Assume that m is nondegenerate, so that g is finite
dimensional. Then:

(i) Kg(gp,9q) = 0if p+ ¢ # Owhere k, istheKilling formof g;
(ii) thereisaunique element £ € gg such that

[E,X,| =pX, VpeZ,VX,E€ g,

Proof. (i) Indeed, if X, € g, andY, € g,,thenad,(X,)oad;(Yy)(9n) C ghtptq
and henceis nilpotent when p + ¢ # 0. Therefore

kg (Xp, Xg) = tr(adg (X)) o ady (X)) = 0.

(i) The R-linear map E : m — m defined by

E(X,) =pX, for p<0 and X, €y,

is a derivation of order zero of m, which commutes with J on g_; and therefore
defines an element £ € go. We have to show that [E, X,)] = pX, whenp > 0 and
X, € gp. Thisis certainly true when p = 0, because p_1(£) commutes with all
endomorphismsin homg(g_1, g—1). Assuming it is true for some p > 0, we have
for Xp11 €EgprrandY_1 € g1

[[Ev XP+1]7 Y,]_] = [Ev [XPJrlv Yfl]] + [XPJrlv [Y,]_, E]]
= (p + 1) [Xp+1, Y_l].

Since g istransitive, thisimpliesthat [E, X,11] = (p + 1) Xp41.

If 1isany subset of a Levi—Tanaka algebra g, we will use in the following the
notation [, for the set [ N g,, of its elements that are homogeneous of degree p. We
say thet [isgraded if [ = @,czlp.

COROLLARY 3.6. Every ideal of a finite dimensional Levi—Tanaka algebra is
graded.

Proof. Let X = X_, + X1, + --- + X, be an element of an ideal i of
g = ®_u<p<r8p, decomposed as a sum of its homogeneous components. Then
i contains all elements ad,(E)*(X), where E is the element of g defined in the
previous lemmaand £ is any positive integer. Therefore i contains

X, + X1—u + -+ X,
euX_, + lewXi—, + -+ vX,

(ew)'X_, + Qen)'Xi, + - + X,
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from which it follows that the ideal i contains all the homogeneous components
of X.

COROLLARY 3.7. If g is a finite dimensional Levi—Tanaka algebra, then the
adjoint representationg > X — ad,(X) € gl(g) isfaithful. In particular, all finite
dimensional Levi—Tanaka algebras have atrivial center.

Proof. Let X = X_,, +--- + X, bean element of g, decomposed into the sum
of its homogeneous components, such that ad, (X)) = 0. Let E be the element of
go defined in Lemma 3.5. From

ady(X)(B) =& Y jX;=0

—u<I<p

we deducethat X; = O for every j # 0. Therefore X = Xg € go and
ady (Xo)(Y) = p-1(Xo)(Y) =0 VY €91

impliesthat X = 0.

Using this corollary, we will often identify g with the Lie subalgebra of gi(g)
which is the image of g by the adjoint representation. We will call an element X
of g nilpotent (resp. semisimple) if ad,(A) is nilpotent (resp. semisimple) as an
element of gl(g).

Let V' beavector space over afield K of characteristic 0 and a aLie subalgebra
of glx (V). We say that a is splittable if it contains the semisimple and nilpotent
component of each of its elements.

LEMMA 3.8. The Lie subalgebra go of the Levi—Tanaka algebra g = @,czg,,
considered as a Lie subalgebra of gi(m), is splittable, i.e. contains the semisimple
and nilpotent component of each of its elements.

Assume that m is nondegenerate, so that g is finite dimensional. Then:

() if Sand N € gp are the semisimple and nilpotent components of A € gg as
endomor phisms of m, then ad,(S) and ad, (V) are respectively semisimple
and nilpotent in gl(g);

(ii) the algebra g is splittable as a Lie subalgebra of gi(g).

Proof. Every element A € go definesaderivation of thefundamental Lie algebra
m. The semisimple component .S and the nilpotent component N of A in gi(m) are
still derivations of m (cf. [3] Ch. 7 Section 1 Proposition 4(ii)). Moreover, since S
and N are polynomials of A, we have S(g,) C g, and N(gp,) C g, foralp <0
and S and N define C-linear endomorphismsof g_1. Thisshowsthat S, N € go.

L et us assume now that g be finite dimensional. First we note that the elements
of go are splittable as endomorphisms of g. This follows by the same argument
given above: if A € go, then ad,(A) is aO-degree derivation of g which definesa
C-linear endomorphism of g_1. Then the semisimple and nilpotent components S
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and N of ad,(A) in gl(g) are 0-degree derivations of g which define C-linear endo-
morphismsof g_1. Thelr restrictions to m are commuting semisimple and nil potent
endomorphismsof m and thus are the semisimple and nilpotent components .S and
N of the representation of A in gl(m). This shows that ad,(.S) and ad,(N) are
still semisimple and nilpotent respectively. Indeed they coincide with S and N
because by the construction of the canonical prolongation 0-degree derivations of
m uniquely extend to O-degree derivations of g. This proves (i).

To completethe proof, we observethat when g isfinite dimensional the elements
of Up09, areall nilpotent. It followsfrom (i) that g, considered asa L ie subalgebra
of gl(g), is generated by its semisimple and nilpotent elements. This implies that
ad,(g) C gl(g) issplittable (see [3] Ch. VII Section 5 Theorem 1).

LEMMA 3.9. Let g = @20, beafinite dimensional Levi—Tanaka algebra. Then
we can find a Cartan subalgebra a of g containing the element £ of Lemma 3.5
and contained in go. Every Cartan subalgebra of the Lie algebra gg is a Cartan
subalgebra of g and therefore go contains regular elements of g.

Proof. Let S denote the set of semisimple elements of g and 7 the set of al
commutative Lie subalgebrasof g containedin S. Let 71 denote the set of maximal
(with respect to C) elements of 7. Because g is splittable by Lemma 3.8, for every
t € Ty itscentralizer Cy(t) = {X € g|[X,t| = 0} in g isaCartan subalgebraof g
(see[3] Ch. VII Section 5 Proposition 6). The element E definedin Lemma3.5is
semisimple. Therefore it can be included in aLie subalgebrat € 77. Let a denote
its centralizer in g. It is a Cartan subalgebraof g and, if X € aand X = ¥, X, is
its decomposition into the sum of its homogeneous components, we have

0=[E,X]=> pX,,
p#0
and hence X = Xg € go.
The last statement follows from [3] Ch. V11 Section 3 Proposition 3.

LEMMA 3.10. Let m be a pseudocomplex fundamental graded Lie algebra of kind
2 and let g = @,>_2g, be its pseudocomplex canonical prolongation. Then there
isa unique element J € go such that

[J,X]=JX VX eg_i. (6)

Proof. When m is of kind 2, the elements of go can be identified to the space
of C-linear maps A:g_1 — g_1 for which thereisan R-linear map B:g_» — g_»
such that

[AX,Y]+ [X,AY] = B([X,Y]) VX,Y €g_1.

From the definition of a pseudocomplex graded Lie algebra, thisrelation holdstrue
forA=Jand B =0.
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We will see below that the existence of such an element J is not guaranteed
when the kind 1 of m is greater than 2. We say in general that a pseudocomplex
graded Liealgebrag = @, g9, hasthe (J) property if thereisan element J € go

for which (6) holds true. In this case we denote by .J,, the representation p,(.J) of
Jing,. Notethat J_; = J isthe complex structure of g_;.

LEMMA 3.11. Letg = @®,>_ 9, beacanonical pseudocomplex prolongation of a
pseudocomplex fundamental graded Lie algebra m of kind i > 2. If g hasthe (J)
property, then:

(i) J, definesa complex structureon g, for p = <3, <1, 1,
(ii) J, = 0for p = «2,0.

When 1, = 2, and m is nondegenerate, J,, is a complex structure in g, for p odd
and O for p even.

Proof. The statement is certainly true whenp = <2, <1, 0.

Let us consider the case p = <3. The elements [X, T, for X € g_1 and
T € g_, are a set of generators of g_3 because m is fundamental. Since J is a
O-degree derivation of m we have

T_a([X,T]) = [1,[X, 7)) = [J1X,T] + [X, JoT]
= [JX,T] VX €g 1, VT €g_».
Then we obtain
J25([X,T)) = Ja([JX,T]) = [J?X,T]
= <X, T] VX €g_1,VT €g_o,
from which we have
J2Y =&Y VY €g_3

because this relation holds true on a set of generators of g_s.

In general, the argument above showsthat, if p < Oand .J, = 0, then J,_; isa
complex structure in g,_1.

Let usturn now tothecasep = 1. Let X € g1. Then we have

0=Jo([X,Y]) = [J1X,Y] +[X,JY] VY €g 1.
Thisyields
[1X,Y] = <[X,JY] VX €gp, VY €g_1.
Then we have
[J2X,Y] = €[J1X,JY] = [X, J?Y]
= <X,)Y] VX €g1,VY €g1.
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Since g istransitive, this showsthat J; isacomplex structurein g;.

Morein general, this argument showsthat, if .J, = 0 for somep > 0, then J,, 1
isacomplex structurein g, 1.

Let us turn now to the case where m is of kind 2. Then, assuming that .J, = 0
for somep > 0, we have

[Jp+2Xpi2, Yoo = Jp[Xpy2, Yoo| ©[Xpy2, J2V_2] =0 VX0 € gpio

for every Y_, € g . This implies that J,,2X,12 € hyi2, Where h = {Z €
a|[Z,g-2] = 0}. But we proved (see Theorem 3.1) that h, = O for p > O whenm
is nondegenerate. Then we obtain by recurrence that g, = O for every p even.

By the previous remarks, this gives the proof of the lemma.

Remark 3.12. Assume that J, is a complex structure for some ¢ > 1. Let
X € ggr1andY € g_1. Thenweobtain

S[X,Y] = JX,Y] = [J21X, Y]+ 2[J441X, JY] [X,Y].
From this we derive
[J2,1X, Y] = €2[J41X, JY] VX € ggi1, VY € g1
Applying this equality we obtain
[JqSJrlXa Y] = (:)2[J§+1X, JY]
= A[J1X,Y] VX egyp1, VY €91

Because g istransitive, we have

Joi1+4Jg41=0.

We obtain the analogous equation for J,,_1 if we assumethat p < <3 and J, isa
complex structurein g,,.

Remark 3.13. Since [.J, A] = O for every A € go, the linear endomorphism
pp(A) isC-linear in g, whenever .J,, defines a complex structurein g,,.

Remark 3.14. From the lemma above we obtain that dimpg_3 must be even
when g has the (J) property. In particular we cannot expect (/) to hold for the
Levi—-Tanakaalgebrasof aC' R manifold M of type (1,2) in which the vector fields
in'(M, HM) generate the Lie algebra of tangent vector fieldsto M.

3.3. SEMISIMPLE PROLONGATIONS

Wefirst recall alemmaon the structure of semisimple graded Lie algebras. Seefor
instance[15].
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LEMMA 3.15. Let s = ©_,<p<,5p beafinite dimensional semisimple graded Lie
algebraover R and let x, beits Killing form. Then:

(i) s containsa unique element £ € so such that
[E,Xp|=pX, Veu<p<r, VX, € sy

(ii) Ks(sp,84) =0 for p+q#0;
(iii) v = p and the Killing form defines a duality pairing betweens, and s_,: in
particular

dimgs, =dimgs_, for0<p < p;

(iv) go isareductiveLie algebra, i.e. decomposesinto the direct sum of a commu-
tative and a semisimple ideal;
(v) if u > 0, then s is of the noncompact type.

Proof. (i) The linear operator T7:s — s defined by T'(X,) = pX, forp € Z
and X, € s, isaderivation of order zero of s and hence, because s is semisimple,
definesan element E of sq.

(ii) If X}, € s, and Yy, € s, with p 4- ¢ # 0, then the linear operator ad, (X)) o
ad,(Y,):s — s isnilpotent because ad, (X)) o ady(Yy,)(s5) C $htptq-

(iii) is a consequence of (2), because x, is nondegenerate on s.

Statement (iv) follows because the restriction to sq of Killing form «,, whichis
nondegenerate by (iii), is the invariant bilinear form in s induced by the adjoint
representation. Then we apply [3] Ch. | Section 6 Proposition 5(d). The last state-
ment is atrivial remark, as by (iii) the Witt index of the Killing form is larger or
equal to dimg ®_,<p<0 5p-

LEMMA 3.16. Let s = ©_,<p<u5p be a semisimple graded Lie algebra over R.
Then a necessary and sufficient condition in order that s be transitive is that

[X,s 1] #0 VX €59, X #0. (7)

Proof. The condition (7) istrivially necessary. L et us prove sufficiency. First we
show that, for X € s,

[X,s_1] =0=[X,s,] =0 Vp<O.

This follows by recurrence: indeed [s,,s_1] = s,-1 for p < 0 because m is
fundamental; then

[Xv 517*1] = [[Xv 517]75*1] + [5177 [Xv 517*1]]
showsthat [ X, s, 1] = 0when [X,s,] = [X,s_1] =0.

Let now X be anonzero element of s, for some g > 0. Since m is fundamental,
it suffices to show that thereis Y € s, for somep < O such that [X,Y] # 0. By
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Lemma 3.15 (iii) thereisU € s_, such that ad, (U) o ad,(X) # 0. Then we can
find p € Z and ahomogeneous Z € s, such that

ad,(U) o ad,(X)(Z) = [U,[X, Z]] # 0.

Since we obtain in particular [ X, Z] # 0, if p < 0 we have finished. Assume now
that p = 0. Then

[Uv [X, Z]] = [[UvX]’Z] + [X, [U’Z” #0

and the Lie product of X by either U or [U, Z], both belonging to s, is different
from zero. If finaly p > 0, we use again Lemma 3.15 (iii): since [ X, Z] € s, iS
different from zero, wecanfind V- € s_, ;) such that

0# ko ([X, Z],V) = ©k4(Z,[X, V])

and [X, V] #OwithV € s_(,,4) and <(p + ¢) < 0. The proof is complete.

If gisaLieagebra, we defineby recurrence [ X] = X for every element X € g
and [Xl,Xz, - ,Xk] = [Xl, [Xz, - ,Xk]]foreveryXl, ..., X, € gwhenk > 1.
For a C g denote by a(¥) the linear span of [ X1, ..., X}] for X1,..., X} € a.

LEMMA 3.17. Let s = ®_,<p<usp e a simple graded Lie algebra over R.

Then m = @_,cp<0s, is fundamental if and only if s # 0 (i.e. there exist
Xi,...,X, € s_gsuchthat [Xy,...,X,] # 0). Inthis case s is nondegenerate
and transitiveif and only if 1 > 2.

Proof. In the proof we shall use the following:

CLAIM 3.18. For every element X of a graded Lie algebra g = ®pczg, the
elements of the ideal i(X') generated by X are linear combinations of X and
elements of the form [Zy, . .., Z1, X | with Z; homogeneousand deg Z;, > --- >

deg Z;.

(This claim can be easily obtained using induction and Jacobi’s identity.) Suppose
there exist X4q,...,X, € s_q such that [X,,..., X1] # 0. Then we have that
Y; = [Xj,...,X1] # 0forl < j < pandtheideasi(Y;) generated by theY;'sare
not zero. Becauses issimple, they coincidewiths andi(Y;)_, = i(Y;)Ns_p, = s_,.
We will prove, by recurrence, that s_, = 5&"} forl < g < p. If ¢ = p, then it
follows from the claim that s, = i(Y},) ,, is generated by elements of the form
(Zk,...,Z21,Y,] with Z; € sq for every i. Because 5(_“1) is invariant under the

adjoint action of go, we conclude that s 1 = i(Y,)_, = 5(_”1) Assume now that

g <pads_, = 5&”{ for ¢ < p < p. We want to prove that s_, = 5(2 By

the clams_, = i(Y,)_, is generated by linear combinations of Y, and elements
of the form [Z, ..., Z1,Y,] with Z; homogeneous, deg Z, > --- > degZ; and
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>k degZ; = 0. It suffices to prove that they all belong to 5(_(11 If degZ, = 0O,

then Zy,..., Z; € so and therefore [Z,...,Z1,Y,] € 5(2 If degZ, > O, then
(Zk, ..., Z1,Y,] isalinear combination of elements of the form [Z, U,,. .., Ui]
with U; € s_; and r = ¢ + deg Z;,. By repeated application of the formula
WV, Vs,...,Va] = E24[Vs, ..., Vigr, [V, V3], Viea, ..., Vi), we can show that the
commutator [Z, U,, ..., U;] belongsto 5(2

The converseis obvious.

Suppose now that m is fundamental. Assume p > 2. First we show that s
is nondegenerate. If s was degenerate then we could find X € s_; such that
[X,m] = 0 and the ideal i(X) generated by such an X would be different from
zero, hence equal to s. On the other hand, using the claim above we obtain that
s, = i(X)_, = Oandthis gives a contradiction.

Next we show that s is transitive. Let a be equal to {A € so|[4, m] = 0}. By
Lemma3.16, it sufficesto provethat a is zero. Assumethat A € a. If X € sq, then
[A,X],Z] =[[A, Z], X] + [A,[X, Z]] = Ofor every Z € m, sothat [a, s0] C a. If
X € s ishomogeneous of positive degree, then we have

0= r([A, 2], X) = ero(Z,[A, X]) VZEm

and, by Lemma3.15, we obtain [A, X| = 0. It followsthat a isan ideal of s. Since
itiscontainedin sp and s issimplewith 1 > 2, we havea = 0.

The converseis obvious, as i is always greater than or equal to 2 for a nonde-
generate fundamental graded Lie algebra.

Remark 3.19. If s is the Levi—-Tanaka algebra at a point z of a C' R manifold,
the condition in the previous lemma means that the highest order Levi form is not
identically zero at x (cf. [11]).

LEMMA 3.20. Let g = &g, be a semisimple transitive prolongation of a funda-
mental graded Lie algebram = @®,<og,. Thengo = [g_1, g1].

Proof. Setting h, = g, for p # 0 and ho = [g_1, 91|, we obtain an ideal
h = ®pezhp Of g. Theng = a @ hh for anideal a C g. Asin the proof of Lemma 3.6
it can be proved that each ideal of g, in particular a, is graded. Thereforea C go.
Since [a,g_1] C a_1 = 0, we have a = 0 because g is transitive.

We have

THEOREM 3.21. Let m be a fundamental graded Lie algebra and let s be a
semisimple transitive prolongation of m. If g is a finite dimensional transitive
prolongation of m containing s, then g coincides with s.

In particular, if m is also pseudocomplex and nondegenerate and if s is a
semisimple transitive pseudocomplex prolongation, then s is isomorphic to the
canonical pseudocomplex prolongation of m.
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Proof. Assume that s is a transitive semisimple prolongation of m. In this case
we can consider s as a subalgebraof g. If g is semisimple, then g and s coincide.
Indeed, by (iii) in Lemma3.15, g, isequal to s, for p # 0 (because they have the
same dimension as vector spaces) and, by the lemma above, g coincides with s.

Let us prove now that g is semisimple. We already know that g isfinite dimen-
sional. Thenit sufficesto show that itsradical © is0. By Corollary 3.6, r isagraded
ideal of g. We haver Ns = 0 because s is semisimple and hence ©_,<,<otp = 0
because D —_pu<p<ogp C s.

Let us show by recurrence that v, = 0 also whenp > 0. For p = 0 we have
[t0, g—1] C v—1 = O and hencerg = 0 because g is transitive. Assuming r,, = O for
somep > 0, we deduce that also ¢, 1 = 0 from the transitivity of g and the fact
that [v,11,9-1] Ct, = 0.

Thefollowing isacriterion for the simplicity of the prolongation, whichisclose
to one which was stated in [12].

THEOREM 3.22. Let g be the canonical pseudocomplex prolongation of a nonde-
generate pseudocomplex fundamental graded Lie algebra m and assumethat p_;
isirreducible and g; # 0. Then g issimple.

Proof. Let v be the radical of g. We want to show that + = 0. We consider two
cases.

(@) Assumer_1 = 0.

In this case, we claim that v, = O for p > <. Indeed, we argue by recurrence
onp > <1. We have t_; = 0 by assumption. If t, = 0 for somep > <1, we
have [t,;1,9-1] C t, = 0 and hencer,, 1 = 0 because g is transitive. This shows
that ¢ C n = ®_,<p<—_10,. L€t s be aLevi subalgebra of g: s is semisimple and
g=s®r. Wehaves ~ g/v and, sincer_; = O, for every X € g_1 the subalgebra
s contains an element of the form X + 7 with Z € n. Since

[Xl + 71, [ . [Xu—l + ZM—LXIL + ZM] .. ]]
=[Xq, [, [ X1, Xu] -]
if X1, Xo,...,X, €91and 21, 2>,...,7Z, € n,weobtaing_, C s becausem is
fundamental.
Repeating a similar argument we deduce that also g;,, . . ., g_» are contained

insandtheng =sandx = 0.

(b) Assumer_; # 0.

Since v_1 is a p_1(go)-invariant subspace of g1 and by assumption p_1 is
irreducible, we havein thiscaser_; = g_1. Let t(9 = v and define recursively the
idealst(® = [(*=D (*=D] for £ > 0. We have t() = 0 for £ > 0 and sufficiently
large because ¢ is a solvable ideal of g. Then there is a smallest positive integer
h such that ") = 0, while ", % 0. We note that «(*~D is an ideal of g, in

particular t(fl_l) isap_1(go)-invariant subspace of g_;. Thereforet(fl_l) =g_1.
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On the other hand, arguing asin (a), we provethat t(*) ¢ n. Therefore we have

(Y g_g] = [P0,V =0 for p>0
and thisimplies that r;(,h_” = 0 by the transitivity of g. This givesa contradiction,
because

' P o ", g1] = [9-1,81] # 0.

Thisshowsthat t_1; = 0 and thent = 0 by (a).

Therefore g is semisimple. It is simple, because if it was the direct sum of two
semisimple ideals s’ and s”, then each of the subspaces s’ ; and s” ; would be
p—1(go)-invariant. One of these, say s’ ; is then equal to g_; and the other is O
by the irreducibility of p_;. But, since m is fundamental, s’ is then a semisimple
pseudocomplex prolongation of m and therefore coincideswith g. Thisgivess” = 0
and completes the proof of the theorem.

Remark 3.23. Vice versa, when g is semisimple, then the representation p_;
is completely reducible. Indeed, go is reductive. Then its radical t(go) is equal
to its center 3(go) and therefore is contained in every Cartan subalgebrah of g
which is contained in go. Hence its elements are semisimple together with their
p—1 representation. Then p_1 is completely reducible (cf. [3] Ch. | Section 6
Theorem 4).

3.4. SOLVABLE PROLONGATIONS

We consider in this subsection criteria for the solvability of the canonical pseudo-
complex prolongation.

Letm = @_,<p<08p be apseudocomplex fundamental Lie algebra. We denote
by § the Hermitian symmetric formf:g_; x g_1 — C ® g_» such that

[X,Y]=Sf(X,Y) for X, Y €g_1.

Letg* , bethe dual spaceof g_, and, for every £ € g* , denote by f, the Hermitian
symmetric form

g-1xg-12 (X,Y) = (X, Y) = (f(X,Y), {) e C.
Then we have the following:

THEOREM 3.24. Let m be a pseudocomplex fundamental Lie algebra of kind 2
and let g = @, _2g, beits canonical pseudocomplex prolongation. Assume that

(i) dimgg_2 > 2;
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(i) thereis & € g* , such that the Hermitian symmetric form f, is nondegenerate;
(iif) p—2(go) = {Ald,_, | A € R}.

Theng, = Oforallp > 1.

Moreover g is solvableif and only if gg is solvable.

Proof. Let us prove that under the assumptions (i), (ii), (iii) we haveg; = 0. By
the transitivity of g thisimpliesthat g, = 0 for p > 0.

LetV € g1 anddenoteby A:g_1 — go and B:g_» — g_1 the corresponding
R-linear homomorphisms. Then the following equations are satisfied

{ p1(A(X))Y ©p_1(A(V)X = B(IX,Y]) VXY € gy, o

[B(T), X] = p—2(A(X))T VT €g VXEg

By assumption (i) we can find abasis ¢%,..., ¢¥ of g*, such that j; is nonde-
generatefor j = 1,..., k. Wetakethe dual basis T3, ..., T} of g_» defined by the
condition that

(Ty, &"y =6} for 1< h<k
Then the second equation in (8) yields, by assumption (iii):
fen(B(Tj),X) =0 VX €g1 forh#j

and hence B(T1) = --- = B(Ty;) = 0. This shows that, with h = {X €
g|[X,9-2] = 0}, wehave V € hNgy = h1. But h1 = 0 by Theorem 3.1.
Therefore V' = 0 and this showsthat g; = 0.

In this case we have [a, a]o = [ao, ag] for every ideal a of g and then it is clear
that g is solvableif and only if go is solvable. The proof is complete.

In the following we will assume that g is a finite dimensional Levi—Tanaka
algebraand denote by S the set of all semisimple elements of g and by b the set of
al nilpotent elements of g.

LEMMA 3.25. Assumethat g is solvable. Then the set b of its nilpotent elementsis
the maximal nilpotent ideal of g.

Let 7 be the set of commutative Lie subalgebrasof g contained in S and 77 the
subset of maximal elements of 7. Then for every t € 71 we have a decomposition
of g into a semidirect sum

g=tDb.
We can find a regular element Xg € S N go such that the centralizer
Cy(Xo) ={Y € g|[Xo,Y] =0}

isa Cartan subalgebra of g containing £ and contained in go.
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Proof. Thefact that b isan ideal of g followsfrom [3] Ch. | Section 5 Corollary 7
to Theorem 1. The above decompositionisin [3] Ch. VII Section 5 Corollary 2 to
Proposition 6.

The last statement then follows from [3] Ch. VII Section 2 Theorem 1(iv).
Indeed (cf. [3] Ch. | Section 5 Corollary 7 to Theorem 1) any Cartan subalgebraa
of g contains a regular element A of g. Then, taking a Cartan subalgebraa C go,
we find aregular element A € gg. Its semisimple component S belongs to gg by
Lemma3.8. Since ad, S has the same characteristic polynomial asad, A, it follows
that S isaregular element of g. Moreover E and S commute and thusthe centralizer
of S is aCartan subalgebra of g containing E and hence contained in gg.

COROLLARY 3.26. Assume that g is solvable and that all elements of gg are
semisimple. Then g, = Ofor everyp > 1.
Proof. We have @, o9, C b. Therefore, if X, € g1, then

[X1,Y 1] € [g1,0 1] = [b1,b 1] Cbo=0 VY 1€q 1.
This showsthat g; = 0 and hence g, = Ofor al p > 1 because g is transitive.
3.5. GRADED LEVI-MALCEV DECOMPOSITION FOR LEVI-TANAKA ALGEBRAS
We turn in this subsection to the general case. First we prove
THEOREM 3.27. Let g = ®_,<p<,9p be afinite dimensional Levi—Tanaka alge-
bra. Then we can find a pseudocomplex semisimple graded Lie subalgebra s of g
such that

g=1tDs,
wherer denotesthe radical of g.

Proof. As usual we denote by S the set of all semisimple elements of g and by «
theradical of g. Being an ideal of g, theradical ¢ is graded. By Lemma 3.9 we can
find a Cartan subalgebraa of g which is contained in go. Then, since g is splittable,

t=ans
isamaximal commutative Lie subalgebraof go and
a={X €g|[X,{] =0}
Next we notethat a N+ isa Cartan subalgebraof + and that « isalso splittable. Then

t=anetnNS
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isamaximal commutative Lie subalgebra of v and we have
aNe = {X er|[X,{] =0}
= {X e¢|[X,{] =0}

Let b betheideal of « of nilpotent elements of . Thent = ¢’ @ b.
We define the subalgebra ; of g by setting

3=1{X eg|[X,{]=0}.

We note that ; = @©_,<p<.3p 1S @ pseudocomplex graded Lie subalgebra of g.
We denote by rad(;) itsradical. Then we have:

() rad(3) =ane=3NtC 30;
(i) rad(;) isanilpotent ideal in 3;
(iii) [rad(3),35] =0 for p #0;
(iv) every Levi subalgebraof 3 isalevi subalgebraof g.

To prove (i) and (iv) we use [3] Ch. VII Section 5 Proposition 7: for every Levi
subalgebra ¢ of 3 we haveadirect sum decompositiong = @t @b, withe = ' Db.
Thisimplies(iv). Moreover, g = 3+t. Hence; /3 Nt ~ g/r, fromwhich (i) follows.
Now (ii) is a consequence of the fact that rad(3) is contained in the nilpotent Lie
algebraa and (iii) of the fact that the ideal rad(3) is contained in jo.

We claim that ; contains a graded pseudocomplex Levi subalgebra. This result,
giving the proof of the theorem, follows from the lemma bel ow.

LEMMA 3.28. Let g = @_,<p<v8p be afinite dimensional graded Lie algebra,
whose radical « is contained in go. Then g contains a graded Levi subalgebra
s = ®_,<p<usp- If g is pseudocomplex, then also s is pseudocompl ex.

Proof. We argue by induction on the order of solvability of t, i.e. the smallest
nonnegative integer 4 such that (") = 0 (by (" we indicate the hth term of the
derived series of ¢). If & = 0, this meansthat + = 0 and then g is semisimple and
there is nothing to prove.

Assume now that A > 0 and that the statement of the theorem is true for
graded Lie algebras with the radical composed of homogeneous terms of degree
0 and order of solvability lesser than 4. Let £ be a Levi subalgebra of g and set
L0 =LNgo. Setq, =g, forp #0andgo = Lo ® . Weclamthat g = @q, isa
Lie subalgebraof g with radical +(¥).

To provethefirst asset, it sufficesto show that q containsthe Lie product [ X, Y]
of every pair of homogeneouselements X € q, andY € g,. Thisisobviously true
when p + ¢ # 0 because in this case [q,, q4] C [9p, 8] C gprg = dp+q- ItisasO
obvious when p = ¢ = 0 because £¢ is aLie subalgebra of go and therefore also
2@, becauser isanideal in g.

_ Then we only need to consider the case where ¢ = <p # 0. We can find
X,Y € £suchthat X & X,Y &Y € . Thenweabtain
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[X,Y] = [X,Y]+[X X, Y]+ [X,Y Y]+ [X &X,Y Y]
= [X,Y]+[X ©X,Y &Y] € £
because [r, g¢] = 0if £ # 0. Therefore

[(X,Y]=[X,V]e[X ©X,Y V] € go .

To show that (%) is the radical of g, we observe that q/t(Y) is isomorphic to g/x.
Indeed the map q — g/¢ induced by the projection is clearly surjective and its
kernel is given by ¢ Nt = (M. From this isomorphism it also follows that every
Levi subalgebraof q isalso aLevi subalgebraof g. Since+®" ™ — () — 0, by
the inductive assumption q contains a graded Levi subalgebras = @s,, which is
also agraded Levi subalgebraof g. We notethat s, = g, for p # 0 and therefore s
is pseudocomplex when g is pseudocomplex.
We give now arefinement of the theorem above:

THEOREM 3.29. Let g = ®pczg, be a finite dimensional Levi—Tanaka algebra
and let £ be a pseudocomplex graded Levi subalgebra of g. Then

a={X€eg|[X,e1] =0} Cb={Xeg|[(X)eNE 7] =0}

(where (X')¢ denotestheideal of £ generated by X') areidealsof £ and thereisa
Levi—Tanaka semisimple graded subalgebra s of g such that

L=0bDs.

Proof. First we note that a isanideal in £. Indeed the subalgebram’ = &, 08,
of m = ®,<0g, isfundamental and therefore we obtain [ X, m'] = Oforal X € a.
Next we show that [a, £,] = 0for p > 0. Indeed, if [X,Y] # 0 for some X € a
andsomeY € &,, thereis Z € £, suchthat ko ([X,Y], Z) # 0O, k. being the
Killing form of the semisimple Lie algebra £. But then

K’E([Xa Y]a Z) = <:»{il(yva [Xa Z]) =0
gives a contradiction. Finally the fact that [a, £o] C a follows because

[[X,Y],Z] = [[X’ Z]’Y] + [X, [Y’ Z” =0
VX€aY ey Zcl 1.
We notethat thegraded semisimpleLiealgebra £ containsanelement £ € £ such
that [Ee, X] = pX foreachp € Z and X € £,. Thus every ideal of £ is graded.

We write b as the direct sum of a and a graded semisimple ideal o’ of £. We note
that b and hence b’ are pseudocomplex by Claim 3.18. If s = {X € £| [X, b] = 0}
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is the complement ideal of b in £, one verifies that it is pseudocomplex because,
for X € s_pitisclear that [JX,bg] = [JX,b_1] = O, while [JX,b1] = O
because [JX, b1] C a N by = 0. The conclusion follows from Lemma3.17 and
Theorem 3.21.

A finite dimensiona Levi-Tanakaalgebrag = @©_,<p<,9p With agraded Levi
subalgebra £ containedin g_1 @ go D g1 Will be called weakly solvable and almost
solvableif £ C go.

COROLLARY 3.30. Let g = @,g, be a finite dimensional Levi—Tanaka algebra
with radical «. The following statements are equivalent:

(i) gissemisimple;
(ii) t—1 =0;
(iii) ®p<orp = 0.
Proof. Clearly (i) = (iii) = (ii). Let g = + & £ be agraded Levi—-Mal Cev decom-
position. Let £ = b @ s be the decompoasition given in Theorem 3.29. If t_; = 0,
then we have s_; = g_; and therefore m = @p08) = Dp<os, because m is

nondegenerate. Since s is transitive, we have g = s by Theorem 3.21. This shows
that (ii) = (i). The proof is complete.

COROLLARY 331 Let g = ©_,<p<r8p be a finite dimensional Levi—Tanaka
algebra. If therepresentation p_1 of gg ing_j isirreducible, then g is either ssimple
or almost solvable.
More precisely, it issimple when g; # 0 and almost solvable when g; = 0.
Proof. By Theorem 3.22, if g is not simple, then g1 = 0 and so g is amost
solvable.

COROLLARY 3.32. Let g = @_,<p<r8p be afinite dimensional Levi—Tanaka
algebra. If therepresentation p_» of gg ing_» isirreducible, then g is either smple
or weakly solvable.

Proof. Using Theorem 3.27 and Theorem 3.29 we obtain the decomposition
g =1s5® (v ® b) wheres isasemisimple Levi-Tanakaalgebra, « is the radical of g
and b asemisimple Lie algebracontaineding 1 @ go @ g1. By the assumption, we
haveeitherg » =t o 0rg o = s ». Inthefirst case, weget s = O becauses isa
Levi—Tanakaalgebra by Theorem 3.29, and so g is weakly solvable. In the second
case, we obtain t_1; = 0 because m = ®,<0g, IS nondegenerate, and hence g
semisimple by Corollary 3.30. It isasum of simple graded ideals by Corollary 3.6,
which are not included in gg by Lemma 3.16. Since m = &,og, is fundamental,
these ideals have a nonzero component in g_1 and, since g is nondegenerate, they
have also a nonzero component in g_», which is an invariant subspace of g_» for
p_2. Sinceit isirreducible, we havethat g hasto be simple.

COROLLARY 3.33. Let g beafinite dimensional Levi—Tanakaalgebrawith radical
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v = @peztp. If the representation p_1 of go in g_1 is completely reducible, then
vy = 0.

Proof. Indeed in this case g is an Abelian algebrawhose elements are semisim-
ple (see[3] Ch. VII Section 5 Proposition 7 (i)). But [ X, Y] isanilpotent element
of vp for every X € v1 andevery Y € g_1, becauser; is contained in the maximal
nilpotent ideal of the adjoint representation of g. Therefore [ X, Y] = O for every
X evpandevery Y € g_1 and hencer; = 0.

3.6. PROPERTIES OF SEMISIMPLE LEVI-TANAKA ALGEBRAS

In this subsection we investigate some structural properties of semisimple Levi—
Tanaka algebras.

LEMMA 3.34. Let g = @,g, be a semisimple Levi—Tanaka algebra. Then thereis
a unique complex structure J; in g1 such that:

(i) p1(go) is a real subalgebra of the algebra glc-(g1) of endomorphisms of g1
which are C-linear for the complex structure defined by J;;

(“) [J1X7 Y] = <:>[X7 JY] VX € 91, Y €g-1;
(”I) EE(J].X’Y) :<:>K’Q((X3JY) VXEglaYEg—la

where x, denotesthe Killing formof g.

Proof. Since the Killing form is nondegenerate, we can use (iii) to define
J1:g1 — g1. The proof of (i) and (ii) is then straightforward.

In the following we will write for smplicity J X instead of J1 X for X € ¢;.

By an easy computation we obtain:

LEMMA 3.35. Let g = @,<p<ugp beasemisimple Levi—Tanaka algebra and let .J
be the complex structure on g, defined in the previous lemma. Then we obtain:

) [JX, JY] = [XaY] VX,Y € g1;
() JIX,Y] = [X,]Y] VX €g oY €
@ JIX.¥] = [X.JY] VX € g Veqn

Let us fix a Cartan subalgebra h of g contained in go (cf. Lemma 3.9). Then
h® = C ®g b is a Cartan subalgebra of the complexification ¢¢ = C ®g g of g.
Setting g, = C ®r gy, 8° = D0, isagraded complex Lie algebraand h© C gg.

We denote by R C homc(h©, C) the set of nonzero roots of h©. Assuming that
g issemisimple, g€ is also semisimple and, denoting for every o € R

0" ={X €¢°|[H,X] =a(H)X VH€}, (9)
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we have that g® is a 1-dimensional complex subspace of g* and

g(C — h(C @ @ ga.
aER
LEMMA 3.36. For every a € R, we have «(E) € Z, where E is the element
considered in Lemma 3.5, and g* C g, 1.

When a(E) = +1, all vectorsof g* areeither of theform X + /<1 X, or of
theform X /17X with X € g 4.

Proof. We have g* included in gg for acertain p € 7 because al subspaces gg
areinvariant under adg@(gg). AsSE € b C go, from (9) with H = F it follows that
p=a(E).

The second statement is a consequence of the fact that for every A € g, the
representation p11(A) of A in g5, commutes with the complexification of the
operator J. Therefore, if X 4+ /1Y € g* for somea € R witha(FE) = +1, aso
JX +1JY € g®. But g® hasdimension 1 and thisimpliesthat Y = +J X.

We introduce the notation

dOV = (X +VElIX | X eg1}, oY ={X +VElIX|X € g},

o8 = (X oVeliX | X ega), oY = {X &eVElIX | X € g}

We note that g(_oil) ® g(lo’l) and g(_lio) ® g§1’°> are commutative Lie subalgebras of

g®. Thisyields:

Remark 3.37. If « € R with a(E) = <1, then

e cd =g ce? ad ¢y =g
We define an involution on homc(h©, C) by associating to any C-linear functional
« on K the unique C-linear functional & on h© such that

a(H) =a(H) VH €b.

LEMMA 3.38. Let g = ®g, be a semissmple Levi—Tanaka algebra, h a Cartan
subalgebra of g contained in go and R C homg(h©, C) the set of nonzero roots of
a© with respect to h©. Then a € R for every o € R.

Proof. We consider first the case of aroot @ € R with a(E) = <1. Assume
that g C g(_o’ll) andlet X, = X, + v<1J X, beabasisof g*. For every H €
we obtain

[H, X, &VElJX,] = [H, X + VELIX,] = a(H) (X, oVellX,),

where we have used complex conjugation in g& with respect to the real form g. By
C-linearity this equality extendsto H € 4, showing that @ € R and that g® isthe
conjugated of g* with respect to the real form g.

https://doi.org/10.1023/A:1000166119593 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000166119593

224 C. MEDORI AND M. NACINOVICH
Thecase g™ C g(_1,10) is analogous.
Next we note that m© = @p<ogg is a complex fundamental graded Lie algebra
and therefore all roots « with a(E') < <1 can be decomposed as

Oz:Oél-f—"'-f—Ol,a(E)

with o;(E) = <1 and, for generators X, ..., Xa_, , Of g°,..., g% =@, g% is
generated by
[X'al, [... ’Xa—a(E)] o]

Using conjugation in g© with respect to the real form g we obtain that also
=01+ +0_qgnp)

isaroot.

To conclude the proof of the lemma, we need only to consider the case where
a € R and a(E) = 0. Since g° istransitive, there exists 8 € R with 8(E) = <1
such that « + 3 € R. Then @ + B € R and again we conclude by complex
conjugation with respect to g that

07,077 =" £ 0.
The proof is complete.

PROPOSITION 3.39. If the complexification g© of a Levi-Tanaka algebra g is
simple, then g isa simple Lie algebra of type Ay, or Dy, or Fg.

Proof. Indeed the conjugation map « — & ontheroots, describedintheprevious
lemma, permits to define an order two automorphism of the complex Lie algebra
g%, which is different from the identity. This defines an automorphism of a Weyl
chamber. Hence the result follows from the classification of the automorphisms of
simple complex Lie algebras (cf. [H], Ch. X).

We turn now to the Cartan decomposition of semisimple Levi—Tanaka
algebras.

LEMMA 3.40. Let g = ®g, be a semisimple Levi—Tanaka algebra, h a Cartan
subalgebraof g containedin go and R theroot systemof g© with respectto h<. Then
R admitsabasis B = {«1,...,a,} with o, (E) € {<1,0} for everyi =1,... 2.

Proof. Wenotethat R~ = {a € R|a(F) <0} andR" = {a € R|a(E) >
0} generate two disjoint convex conesin home(h“, C) considered as areal vector
space. Then we can find a real linear functional y: hom¢(h®,C) — R which is
different from O on every o € R and is positive on R~ and negative on R . A
basis B consisting of al simple roots contained in {a|y(a) > 0} satisfies the
conditions of the statement.
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PROPOSITION 3.41. A semisimple Levi—Tanaka algebrag = @ _,<p<,0, admits
a Cartan decomposition

g==tdp,

where:

(i) tisaLiesubalgebraof g of the compact type on which the Killing form «,, is
negative definite;

(i) e = Docp<ubip| with o) =EtNgo and Ep Ca—pDap for p > O;

(iii) p is the orthogonal complement of ¢ with respect to the Killing form «, of g
and x, is positive definite on p;

(iv) p= Do<p<uPip| with plo =pMNdo and Pp Co—pDygp forp > 1;

(v) the natural projections ¢, — g+, and p, — g4, are isomorphisms for
p>0;

(vi) the associated Cartan involution 6: g — g such that ¢ is the set of fixed point
of #,0(X) = <X for X € p, and for which

gx g2 (X,)Y) = &ry(X,0(Y)) eR
is a positive definite real symmetric form, has the properties
O(gp) =g-p for Sp<p<y,
012X —»0(X)egr and g13X - 0(X)€g
are C-linear for the complex structuresof g1 and g1 defined by J.

Proof. Let h be a Cartan subalgebra of g contained in go and let h© be the
corresponding Cartan subalgebra of the complexification g© of g. Let R be the set
of nonzero roots of g© with respect to h© and H,,, for a € R the element of H©
such that

kyc(H, Ho) = (H) VH €p".

Theform ¢ is positive definite on the real subspace h® of h© generated by the
H,’'s.
For each o € R we can choose abasis X, of g* in such away that

[Xaa)?—a] = H,, ch()?aaX—a) =1

According to Lemma 3.36 and Remark 3.37, we can split the set of roots « with
a(E) = +1 into two disjoint subsets, the first Rg 1 consisting of roots « for
which X,, = X,, + V&1 X, the second Ry consisting of roots « for which
X, = X, oV/E1lJ X, with X, € gi1.
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Then we obtain a compact form u by
T
u= EBp:Ou‘P"
where

o = \/g-hREB Z (]R(Xa @X—a) ©® \/Q]R(Xa +X—a))a
a(E)=0

uy = P RXe X o+ Vell(Xe+ X 0))
a€Ro1

OVEIR(X,, + X_o + VELI (X, ©X_40))),

up = P (R(X, &X_o) & VEIR(X, + X)) for p>0.
a(E)=—p

Let usdenoteby 7: g¢ — g© the complex conjugationin g& with respect to the real
form v and by o: ¢ — ¢© the complex conjugation in g© with respect to the real
form g. We set

{9%| =%
c _ .C C
o, =05, @0, forp > 0.
Thenwe have
7(g)) = olap) =g forp=0,....p.

Moreover we note that J defines an antiinvolution on vy, and therefore, by C-
linearity, also on v/« y). From this we derive that

JoroJ=71, ie Jor=70J Ongﬁ‘.

Obviously the conjugation & commutes with J on g]cl‘. This property is therefore

shared by the composed C-linear automorphisma = o o7 of g. Thisisaselfadjoint
map for the Hermitian scalar product

Brigxg" 3 (X,Y) = erc(X,7Y) €C

and therefore a? is selfadjoint and positive definite for B,. We denote by ¢ the
positive selfadjoint fourth root of a2. Thisisstill an automorphism of the Liealgebra
g such that ¢(u) is a compact form of ¢° that isinvariant under o. Moreover, by
the construction,

¢(a),) =g}, ad ¢oJ=Jo¢ ongpy.
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A Cartan decomposition of gisobtained by settingt = ¢(u)Ngandp = v/<1p(u)N
g. Thenthe Cartaninvolution 6 on g isdefined by ¢o7o¢ ! and therefore commutes
with Jong_1 ® g;.

We note that the positive definite symmetric real form

ax g3 (X,)Y) = g(X,Y) =erg(X,0(Y))
satisfies
g(JX,Y) = eg(X,JY) forX,Y € g1

and therefore ison g_1 and g; the real part of a Hermitian scalar product for the
respective complex structures.

4. Homogeneous C' R manifolds
4.1. STANDARD HOMOGENEOUS C'R MANIFOLDS

Let g = Dpezg, be afinite dimensional Levi—Tanaka algebra. In this section we
construct homogeneous C R manifolds M = (M, HM, J) having at each point
x € M alevi-Tanakaalgebrag(xz) isomorphic to g and such that the group of CR
automorphisms of M isaLie group with Lie algebraisomorphic to g.

Let usset

m = Sp<odp and g+ = Sp>08p-

We denote by G a connected and simply connected Lie group with Lie algebrag.
We note that g, isaLie subalgebra of g and therefore generates a connected Lie
subgroup G of G.

LEMMA 4.1. G, isaclosed subgroup of G.
Proof. Let

Ad:G — GL(g)

denote the adjoint representation of G. Then

H={g€G|Ad(9)(g+) = a+}

isa closed subgroup of G and hence aLie subgroup of G. Clearly the Lie algebra
of H is g, and then G, being the connected component of the identity in H, is
closedin G.

We identify g to the Lie algebra of left invariant vector fields on G. For <u <
p < Owesetg(,) = Dyxp8, and denoteby g, the vector distribution generated by
g(p)- For g € G, wedenoteby L, and R, respectively theleft and right translations
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with respect to g.

LEMMA 4.2. For every < < p < 0 the vector distribution g, isinvariant with
respect to left trangations by elements of G and right translations by elements of
G,.

Proof. Theinvariance under (L,). for g € G isobvious. For X e gandg € G,
we have

(Ry-1)+(X) = Ad(g)(X).
Since
adQ((Y)(X) = [Y’X] € 9(p) VX € 9(p)> Y e g+

theLiealgebraof theLiesubgroup A of theelementsg € G suchthat (Ry).(g(,)) C
g(p) CONtains g, . Hence G, C A because G is connected.
Using these lemmas we obtain:

THEOREM 4.3. The homogeneous space M = G/G. isa simply connected real
analytic manifold. We can endow M by a natural C'R structure, in such a way that
G actson M asa group of C'R automor phisms and the Levi—Tanaka algebra g(x)
of M at every point z of M isisomorphicto g.

Proof. Since G is a closed subgroup of G, the homogeneous space M =
G/G isarea anaytic manifold, on which the elements of G define real analytic
diffeomorphisms. Moreover, M issimply connected because G issimply connected
and G is connected.

Let us describe the C'R structure of M. We denote by : G — M the natural
projection, and by G x M > (g,z) — g -z € M theleft action of G on M. Let
g-1, 8+ = g(0) and g(_1) denote the vector distribution generated respectively by
g-1, 6+ ad g(_1) = Dp>—10p. They areall invariant by left translationsand g is
the vertical distribution of the G_, -principal bundle G = M.

Let o = 7 (e) be the image of theidentity of G in M and H,M = m,.((g—1)e)-
If h € G4, wehave

W*((ﬁfl)h) = H,M.
Indeed, sincer o R;, -1 = w for h € G, weobtain
Te((8-1)n) = m((@(—1))n) = ™ 0 (Rpp-1)«((8(-1))n)

= 7r*((fl(—l))e) = m((§-1)e) = HoM.
Thisimplies that

Hy M = g.H,M
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iswell defined at all points of M and isinvariant by the action of G on M.

If X isin H,M and g € G issuchthat z = g - o, then we can find a unique
X € g_psuchthat X = g.m.(X.). Wewant to definethe partial complex structure
Jyr of M insuch away that

JMX; = g*w*(JXe).

Thiswouldimply alsothat M > z — g-x € M isaC R diffeomorphism for every
g €G.

Tothisaim, we only need to show that the definitionisconsistent, i.e. that, if v is
another element of G suchthaty-0 = zandY € g_j issuchthat vy, (Ye) = X,
then

Yartu (JYe) = guma(J Xe).
We note that v~ 1g € G and thus we are reduced to show that
T (Ad(h)(J X)) = T (T Ye) (10)

ifhe G4, X,Y € g_,andY<Ad(h)X € g;.LetH = ¥,50H), € g, expressed
as a sum of its homogeneous components. Then we have Ad(exp(tH))X <
Ad(exp(tHp))X € g4 for X € g_; and ¢t € R. This shows that (10) holds
for the elements of G, which are of the form exp(H) for H € g and therefore
foral h € G, because G isconnected.

To show that the Levi—Tanaka algebra g(z) of M at every point x € M is
isomorphic to g, it suffices to note that by construction m(o) is isomorphic to m
and hence g(o0) ~ g: the general statement follows because G operateson M asa
group of C'R diffeomorphisms.

The G-homogeneous C'R manifold obtained in Theorem 4.3 will be denoted
by M, and called the standard (homogeneous) C'R manifold associated to the
Levi—Tanaka algebra g. We have

THEOREM 4.4. Let T be the kernel of the representation of G as a group of
CR automorphisms of the standard C'R manifold M. Then I' is the discrete
subgroup Z(G) N G, where Z(G) denotes the center of G, and G/T" is the
connected component of the identity in the group of C'R automor phisms of M.

If N isanother connected G-homogeneous C'R manifold with the same Levi—
Tanaka algebra g, then thereis a C R covering map M — N commuting to the
action of G.

Proof. We note that T' = ﬂgeG(gG+g_l) is a closed normal subgroup of G
containedin G, . ItsLiealgebraisanideal containedin g, and thenisnull because
g is transitive. This shows that T" is a normal discrete subgroup of the connected
Lie group G and hence is contained in its center. So we haveT = Z(G) N G,.
Vive versaevery element of Z(G) N G isobvioudly in the kernel T'.
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To show that G is the component of the identity in the group of C' R automor-
phisms of M we essentially follow [13]; the proof in the case of homogeneous
manifoldsis actually simpler.

() Let usdenoteby A the connected subgroup of G with Liealgebram. If #isthe
Maurer—Cartan form of G, then the Maurer—Cartan form ¢ of A isthe pullback of 6
to A. The natural projection 7: G — G/G, = M induces a diffeomorphism of an
open neighborhood U, of e in A onto an open neighborhood U, of o = 7 (e) in M.
Leté = (m|p, )«€ and set &P = (m|y, )«£P, where ¢ = 3, o€P isthe decomposition
of ¢ according to the graduation of the fundamental algebra m. We note that we

obtain the equations
- 1 I
deP = "&%] forp<O.
=z 318 forp

(b) Let X be a vector field defined on an open neighborhood of o in M.
We can as well assume that X is defined on U,. We want to take X as the
infinitesimal generator of a 1-parameter family of local C' R diffeomorphisms on
M. 1f ¢x (t) isthelocal 1-parameter group defined by X, this condition meansthat
dox (t): TeM — Ty (1)) M induces, by passing to the quotient, an isomorphism
of pseudocomplex fundamental graded Lie algebras

—

dox (£):m(z) = m(dx (¢)x)

for 2 in asmall neighborhood of o and ¢ in asmall neighborhood of 0. In particular,
using theidentification of m(z) tom for al = € U,, the differentia at o of the map
m — m induced by the diagram

m m

.

m(z) 2 w(gx(t)e)

givesamap % U, — go. )
Let us set, for p < O, fP(x) = €P(X,) € g, Then the definition of f9 can be
rewritten by

-1

df?(z) =D [P "(x), & modéP L, ... &+ forp <O.

r=p
Indeed, we havefor every Y € x(M)

(Lx&P)(Y) = X(EP(Y)) €[X,Y] = %(¢X(t)*€p)(y)|t:0

= [fOx),P1(Y)modéP—2,... 6 * forp <O.
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Hence we deduce that

df?(z) = d(é (X)) = d(X] ") = Lx&” &X] dé?

Then we can define fP also for p > 0in such away that

dff =3 [f77"(2),£"] VpeL.

r<0

We have already constructed f? for p < 0. Now we note that these equationsyield

df(x) = D If (@), ¢,

dfi(z) = > [f' "(2).¢7],

r<0

which is acompletely integrable system (see [13]).

(c) Let usdenote by x, the Lie algebra of germsat o of infinitesimal generators
of 1-parameter groups of local C' R diffeomorphisms. By Lemma 6.4 in [13], we
have

fheyy =4 > % /3] ¥p ez ¥X,Y €%,
r+s=p

wherefor Z € X, we used % for the set of functions associated to Z asin (b).

Themap X, > X — 2 f%(0) € g is therefore an anti-homomorphism of Lie
algebras and isinjective by Lemma 6.3 in [13]. But this map is trivially surjective
and therefore is an anti-isomorphism. This provesthe first statement.

To prove the last statement of the theorem, it sufficesto notethat N = G/Q for
aclosed subgroup Q of G whose Lie algebraisisomorphicto g . Indeed from (a),
(b), (c) abovewededucethat M and N arelocally C R diffeomorphic and therefore
the Lie algebrasof the stabilizer of apoint in the group of local C' R automorphisms
of M and N (respectively) are isomorphic.

The following theorem is a slight extension of aresult in [13]:

THEOREM 4.5 If the Levi—Tanaka algebra g is semisimple, then the standard
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homogeneous C'R manifold M, is compact.
The proof of this theorem relies on the following

LEMMA 4.6. Let g = @,czg, be a finite dimensional semisimple Levi—Tanaka
algebraand let

g=tdp

be a Cartan decomposition of g, wheret isa maximal Lie subalgebra of g on which
the Killing form , is negative defined. Then, for g = ®,>0g,, we have

g=t+gq.

Proof. Let d = dimg go and m = dimg m where m = ®,0g,. The Killing
form k4 is nondegenerate on go and therefore its restriction to go has a signature
(oF,07) withot + o~ = d. Sincem istotaly isotropic, the Killing form x, has
signature (6™ + m, o~ + m). Given a Cartan decomposition g = £ + p, we claim
that ¢ N g isaLiesubagebraof dimension o~ of g. Indeed, if X = X,-0X, isa
nonzero vector in ¢ N g, decomposed into its homogeneous components, then

0> HQ(X,X) = Kg(Xo,Xo)

showsthat the natural projectiontNg, — go isinjectiveand itsimageisasubspace
of go on which x4 is negative definite. This showsthat dimg €N g < o~. Onthe
other hand, the projection ¢ — g/g., having kernel €N g, isnecessarily surjective
and therefore has rank m and o~ -dimensional kernel. In particular we obtain that
g=Ft+gy.

Proof (of Theorem4.5). Let G be a connected and simply connected Lie group
withLiealgebragandlet G, and K betheconnected Liesubgroupsof G havingLie
algebrasg., and ¢ respectively, with ¢ the direct summand in a Cartan decomposition
of g. ThenK isacompact subgroup of G. We consider themapK — M, = G/G,.
induced by the restriction of the natural projection. Itsimageis compact and hence
closed. On the other hand, the decomposition g = ¢ + g, showsthat thismapisa
submersion and then open. Therefore, since M, is connected, this map is onto and
M, is compact.

Denote by K the connected Lie subgroup of G having Lie algebrat N g .
(Note that € N gy C go if we use a Cartan decomposition with the properties of
Proposition 3.41.) Thenthe natural mapK /Ko — M, isadiffeomorphism because
is a connected covering of a simply connected manifold.

4.2. CANONICAL IMMERSIONS OF STANDARD C'R MANIFOLDS

Let g = ®pezg, beafinite dimensional Levi-Tanakaalgebraand g© = C ®x g be
its complexification. We denote by G© aconnected and simply connected Liegroup
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having Lie algebra g© and by G® the connected Lie subgroup of G® having Lie
algebrag. Thisisaclosed Lie subgroup of G®, as G¥ is the connected component
of the identity of the closed subgroup of G©

{g € G®|Adgc(9)(s) = g},

whereAd;c: G — GL¢(g®) istheadjoint representation. Wealso usethe notation
g = C ®g g4 for the complexification of the Lie subalgebragy = ®,>0g, and
G} for the connected Lie subgroup of G* having Lie algebrag..

LEMMA 4.7. Let g%V = {X + VELIX | X € g_1}. Thenq = g% @ € isa
complex Lie subalgebra of g°.
Proof. First we remark that g(f)’ll) is a complex subspace of g®. Indeed, for
X € g_, wehave
Vel(X +vellX) = («JX)+velJ(«JX) and JX €g_g.
Moreover

(X +VellX)Y +vVelJY] =0 VXY €91
and [C ®g go, g(_o’ll)] C g(_o’ll) because g(_oil) is a complex subspace of g* and the
elements of p_1(go) commute with J on g_1. Finaly, it is obvious that [C ®g
gp,g(_o’ll)] CC®rgp—1Cqforp>0.
Let Q be the connected complex Lie subgroup of G® corresponding to the Lie
subalgebrag.

LEMMA 4.8. Q isaclosed Lie subgroup of G°.
Proof. We consider the adjoint representation Adg:: G© — GL¢(g%). Then

H={g € G"|Adgc(9)(q) = a}
is a closed subgroup of G® and Q is the connected component of the identity
of H.

THEOREM 4.9. The G©-homogeneousspace M¢ = G©/Q isacomplex manifold.

The G*-homogeneous space M = G*/G% is a differentiable manifold with a
unique C' R structure which makes the covering map

My — M}
defined by the commutative diagram
G G*

o

M, —— M%
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alocal C'R diffeomorphism.
The composition G — G® — G® inducesa C'R immersion

orC
My — Mg,

whoseimage M isalocally closed C' R submanifold of Mgc.

Proof. M. ;C is a connected smooth complex manifold because Q isaclosed sub-
group of G®. Analogously M is aconnected real analytic C'R manifold because
Gf isaclosed subgroup of G*.

The group G is a covering of G* and Mgf is G-homogeneous by the action

R R
Gx M, > (g,7) = plg) - v € M,

wherep: G — G* isthe covering map.

We consider the orbit ME in M of the image o of the identity of G in
Mg with respect to the closed subgroup G®. Since g, is the Lie algebra of the
stabilizer in G* of o, we obtain an immersion M¥ — ME which is a surjective
local diffeomorphism onto the orbit MT. Let a: G — ME denote the map

g—g-o.

We notethat for theelements X of g_1 weobtain, by the definition of q, a. (JX) =
V&la, (X) and therefore the map M — M isaC'R immersion.

Let A and A be the connected Lie subgroups of G having Lie algebras m and
[=g_1® (69p<,1g;c,) respectively. We fix convex open neighborhoods Uy of 0in
g® and V5 of 0iin [ such that the exponential maps

exp: Uy — U, C GF, exp: Vo — V., C A,
exp:UpNg — U, NG?

be diffeomorphisms. We can assume that Vo = UpN [, sothat V. = U, N A. If
a € GRNANU, wehavea = exp(Z) = exp(X + vV&1Y) with Z € gn Uy,
X emY € @pc_1gp and Z, X + /&1Y € Up. By the injectivity of the
exponential on U, we obtain Z = X + &1V, henceY = 0and Z € m. This
shows that GENANU, =ANU,.Moreover, AN U, isclosed and connected in
A N U,. We note now that the projection : G& — M;C induces a diffeomorphism

of aneighborhood W C V; of e in A onto aneighborhood W, of o = (e) in M
and, sinceQNANYV, = {e}, wehave (myy,) "} (ME) = V. N G*. Thisshowsthat
W, N M isclosedin W,. Since M is homogeneous, it islocally closed in ME‘?.

Wecall ME‘F the standard (homogeneous) complex manifold associated to g and
the map M, — M the canonical immersion of M,.
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THEOREM 4.10. Il g is semisimple, then the standard homogeneous complex
manifold M ;C associated to g is compact.

Proof. Let 6: g — g be the Cartan involution found in Proposition 3.41 and let
g = ¢ ® p be the corresponding Cartan decomposition. Thenu = ¢ @ /&lp isa
compact form of the complexification g© of g. We set

w0 = (X o/ES1JX +0(X) + VELI(X) | X € g_1},
u@D = (X + V/E1JX +0(X) oV=el(X) | X €9 1},
u = u (gc_p + gcp) for p>0.

Next we define the real Lie subalgebrah of g© by

h=uNgq :uOGBu(O’l).
Let U denote the connected Lie subgroup of G© having Lie algebraw and H the
connected Lie subgroup of G® having Lie algebra . The group U is compact and
hence closed in G®, and also H is compact, being the connected component of the
identity in the intersection U N Q.

Consider the commutative diagram

U G®
I
U/n G%/o.

Sinceu + q = g%, themap U — G%/q isasubmersion and therefore is open. It is
also closed, being a continuous map from a compact space into a Hausdorff space.
Since M¢ = G®/q isconnected, thismapissurjectiveand thereforeU /i — G©/q
isacovering map. Since G®/q is simply connected, this map is a diffeomorphism.
This proves the theorem.

PROPOSITION 4.11. If the component g1 of g is null, then the manifold M;C is
embedded in M;C as a closed submanifold and euclidean.

Proof. By Lemma 3.18.4 of [16], M is closed in M;C and simply connected
and, by Lemma 3.18.11 of [16], it is also euclidean. Indeed, m isanideal in g and
thereforethemapm @ go > (X,Y) — exp(X)exp(Y) € G isadiffeomorphism.

4.3. CANONICAL PROJECTIVE IMMERSIONS OF STANDARD C' R MANIFOLDS

The problem of finding an immersion of the standard homogeneous C' R manifold
M, into a complex projective space is equivalent, by Theorem 4.4, to the one
of finding, given a Levi—Tanaka algebra g, G-homogeneous C'R submanifolds of
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complex projective spaces having at each point a Levi—Tanakaalgebraisomorphic
tog.

Our construction is akin to the one used in [1]. We use the complexification
of the adjoint representation Ad,c: G® — GL¢(g%) and denote by Gi: and G*
respectively the image AdGC(GC) and AdGc(GR). They are Lie subgroups of
GLc(g%). We also set Q" and G, for the connected Lie subgroups of G¢ having
Lie algebraequal respectively to the Lie subalgebrag defined in Lemma4.7 and to
O+
We consider the Grassmannian Gr,(g®) of complex subspaces of g© having
dimension ¢ equal to the complex dimension of g. The orbits Mg” and M of q by
theaction of G- and G” arerespectively aG¢.-homogeneous complex manifold and
a G®-homogeneous C' R submanifold (and therefore G© and G-homogeneous). In
thisway weobtainaC' R submanifold of aprojective manifold having the prescribed
Levi—Tanakaalgebra g at each point.

We take up now the question of the existence of a closed embedding into a
projective space in the case where the Levi—-Tanakaagebrais semisimple.

Werecall that a Borel subalgebrab of aLiealgebrag isamaximal solvableLie
subalgebra of g and a Lie subalgebra q of g is said to be parabolic if it contains
a Borel subalgebra. Accordingly, a connected Lie subgroup B (resp. Q) of aLie
group G isaBorel (resp. parabolic) subgroup if its Lie algebra b (resp. q) is Borel
(resp. parabolic). In particular a Borel subgroup of G is a maximal connected
solvable subgroup of G.

LEMMA 4.12. Let g = @z, beafinitedimensional Levi—Tanaka algebra. Then
the following facts are equivalent:

(i) gissemisimple;
(il) g4+ = ®p=ogp isparabolic;
(iii) q = g(_oil) @ g5 isaparabolic Lie subalgebra of ¢°.

Proof. (i) < (ii). Let E be the element of go described in Lemma 3.5. Then
®p>08p ® R - E is asolvable Lie subalgebra of g and hencefore is contained in
a Borel subalgebra b. If ¢ isthe radical of g, then+ C b. By Corollary 3.30, ¢ is
containedin g, if and only if g issemisimpleand + = 0. The condition istherefore
necessary.

To prove sufficiency, we first note that the representation p: b — gl(g) obtained
by restriction from the adjoint representation is faithful. Then, by the criterion of
Cartan, p(b), and thus b, is solvable if and only if [b, 6] is orthogonal to b with
respect to the Killing form «, of g. Assume by contradiction that t contains an
element X = X,X, with homogeneous component X, # O for some ¢ < O.
Since g was assumed to be semisimple, we can find Y_, € g_, C b such that
kg(Xgq,Y_q) # 0. Then we obtain
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K;g([EvX]? qu) = q'%g(XlIa qu) 7£ 07

which contradicts the Cartan criterion.

(i) < (iii). If ¢ isthe radical of g, then C ®g ¢ is the radical of g©. Clearly, if
X € t_q, then X <+/<1JX belongs to the radical of ¢© and therefore, if q is
paraboalic, the radical of g iscontained in g . The proof is complete.

THEOREM 4.13. A necessary and sufficient conditionin order that A/ 5’ be compact
isthat g is semisimple.

If gissemisimple, then M7 — ME isa closed embedding of M into a compact
projective complex manifold.

Proof. The first part of the statement is a consequence of Lemma 4.12 and of
[2] (Theorem 11.1 and Corollary 11.2) because G. is an agebraic group.

The second part follows because M 5’ is compact when g is semisimple because
it is the quotient of M, with respect to the action of adiscrete subgroup of G.

We call Mg” the standard (homogeneous) projective manifold associated to the
Levi-Tanaka algebra g and the map M, — M — M + the canonical projective
immersion of M.

THEOREM 4.14. Let g be a finite dimensional Levi—Tanaka algebra. Then a
necessary and sufficient condition in order that M;C be compact is that g be
semisimple.

Proof. We aready proved that Mg is compact when g is semisimple. When g
is not semisimple, then Mg” is not compact and hence also M;C is not compact,

. . . ~ ]P;
becauseit is acovering space of M.

Remark 4.15. It follows from [6] that, when g is semisimple, the standard
homogeneous projective manifold M associated to a semismple Levi-Tanaka
algebrag = ®_,p<pgp Withdimgg_1 = n and dimgn = dimg ®p<_1 9, = F,
hasa C'R embedding in the space CP2"+(3/2)k]

Remark 4.16. Every Borel subalgebrab of g is splittable. Indeed the splittable
envelope of a solvable subalgebraof g is still solvable and therefore the splittable
envelope of b isequal to b by maximality.

5. Examples

Letm = ®_,<p<om, be a pseudocomplex fundamental graded Lie algebra. By
Proposition 1.1 the aternating map

m_gxm_13(X,Y) = [X,Y]€m o,
uniquely defines a Hermitian symmetric form
fm_gxm_13(X,Y) > §(X,Y)ECQrm_»
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such that

[X,Y]=Sf(X,Y) VX,V €m_;.
We consider the natural map

Amy, 2 € = e € Hs(m_q)

from the dual space m* , of m_; to the real linear space $,(m_1) of Hermitian
symmetric forms on m_1, which is given by

fe(X,Y) = ({(X,Y),§) VEem? VXY €m_y.

Viceversa, given afinite dimensional C-linear space V' and alinear subspace L
of the space (V') of Hermitian symmetric formson V, thereis a pseudocomplex
fundamental graded Liealgebram = m_» & m_; of kind 2 such that

m_1=V and A(m®,)=L.
This algebrais unique up to isomorphisms and can be described by setting
m-2 = L*a [m*27 m*Z] = [m*27 m*l] =0

and defining the Lie product [X,Y’] of two elements X, Y € m_; = V asthe
R-linear functional on L

(X, Y:L>h—Sh(X,Y)eR

We say that m is of type (n, k) wheren = dim¢ V and k& = dimg L.
Thegroup GL (V') of C-linear automorphisms of V" acts on the space $(V') of
the Hermitian formson V' by

GLc(V) x 9(V) 3 (a,h) = a-h e H(V),
where
a-hX,Y)=h(aX),a"(Y))
Ya € GL¢(V), Vh € H(V), VX,Y € V.

Clearly $,(V') is stable under this action of GL¢(V"). Moreover, GL (V) trans-
forms k-dimensional subspacesof 6, (V') into k-dimensional subspacesof §,(V').
We denote by $,,(V') the Grassmannian of k-dimensiona subspaces of $,(V')
and by 94 (9,(V)) the space of orbits of 6., (V") for the action of the linear group
GLc(V).
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PROPOSITION 5.1. Let n, k be positive integers, with 1 < k < n? and let V bea
complex vector space of dimension n. Thereis a 1-to-1 correspondence between
pseudocomplex fundamental graded Lie algebras of kind 2 and type (n, k) modulo
isomor phisms and the orbitsin O (9, (V)).

Proof. Letm = m_»®m_; beapseudocomplex fundamental graded Lieal gebra.
Let a € GL¢(m—1) and b € GLg(m_3). Then we obtain another isomorphic
fundamental graded Lie algebram = m_» @ m_1 by settingm_3 = m_; as C-
linear spaces and m_» = m_» as R-linear spaces and defining the Lie product

(X, Y] = b([a(X),a(Y)]) VX, Y Em_1=m_3.
The isomorphism ¢: m — m isgiven by
13X sa(X)€Em_y and @m_23T — b Y(T) € m_y.

Indeed the equation ¢([X,Y]") = [¢(X), #(Y")] reduces then to the definition of
the Lie product in m.

By this remark, the statement of the proposition becomesclear.

Using this proposition, we can parametrize pseudocomplex fundamental graded
Lie algebras of kind 2 and type (n, k) modulo isomorphisms by fixing a complex
n-dimensional vector space V' and apoint L in one of the orbits of O (H.(V)). We
will denote by m(L) the corresponding pseudocomplex fundamental graded Lie
algebraand by g¢(L) its canonical pseudocomplex prolongation.

Let P$, (V) denote the projective (n? <1)-dimensional space corresponding to
the linear space $),. The action of GL (V') defines, by passing to the quotient, an
action on P, (V). Let us denote by C theimagein P, (V') of the cone of positive
definite Hermitian symmetric forms on V. Thisis a convex body in P$, (V). The
corresponding Hilbert distancein C isgiven by

d((hal. [hz]) = sup log 22,

I<ij<n AJ

where [h1] and [hy] are the points of C corresponding to two positive definite
Hermitian symmetric forms h1, hp on V and A4, ..., A, are the eigenvalues of hy
with respect to A (i.e., denoting still by h; and h; the anti-C-linear mapsV — V*
corresponding totheformshq and h, the eigenval ues of the C linear endomorphism
h;l o hp of V). The group GL (V') operates on C. Itsimage in its representation
in the group of permutations of C isthe connected component of theidentity in the
Lie group of isometries of the Hilbert metric.
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We devote the rest of this section mostly to the study of the canonical pseudo-
complex prolongationsin the kind 2 case. In the following we will denote by V' an
n dimensional complex space and use L for a k-dimensional real linear subspace
of 9,(V) and PL for its projectiveimage in P§, (V).

5.1. LEVI-TANAKA ALGEBRAS OF KIND 2 ISOMORPHIC TO su(p + m, q + m)

Let m,p,q be nonnegative integers with m > O and ¢ = p + ¢ > 0. With I,
denoting the ¢ x ¢ identity matrix, we set

I, O
Ipg = 0 :
<l

We consider the Hermitian symmetric matrix

0O 0 I,
Q=0 I,, O
I, 0 O

The Lie algebra g of matrices A ins((¢ + 2m, C) satisfying
A*"Q+QA=0

is isomorphic to su(p + m,q + m), so it is simple. Its elements are null-trace
matrices of the form

a11 <:>a§31p7q a13

a1 a2 a23

az1 Saylyg <aiy

with blocks a3, az1 € u(m) and az € u(p,q). We obtain a structure of Levi—
Tanakaalgebra of type (¢/m, m?) by defining the elements £ and .J by

I, 0 O I, 0 0

E=| 00 o0 and j:e:fz}l 0 2mI, O
m

0 0 &I, 0 0 «ii,

This case generalizesthe case of C'R hypersurfaces, i.e. of type (n, 1), with nonde-
generate Levi form, that was fully discussed in [14] and [4] and correspondsto the
choicem = 1. We note that the space of orbits of D1($,(V")) containsonly finitely
many elements. In order that the canonical pseudocomplex prolongation be finite
dimensional, it is necessary and sufficient to start from PL = {[h]} with A nonde-
generate, i.e. of signature (p, q) with p + ¢ = n. Inthiscase g(L) isisomorphic to
thesimple Liealgebrasu(p + 1,q + 1).
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5.2. LEVI-TANAKA ALGEBRAS OF KIND 2 ISOMORPHIC TO sl (n, C)

Let n > 3 and let us fix two positive integers m, £ with 2m + £ = n. We write a
matrix A € sl(n, C) intheform

a1, 613, a31, asz € gi(m, C)

a11 Ga12 a13 al, azxz mMm X / complex matrices
a1 G2 a3 with az1, az3 £ x m complex matrices
az azx a3 az € gl(£,C)

tr(ag1) + tr(azz) + tr(ass) = 0.
We graduate the Lie algebras((n, C) by setting

a11 ai12 a3
gp = a1 a2 a3 | Qi = 0 for RS 75 p
azy az2 agz3

The elements E and J are like in the previous example. We denote this pseudo-
complex graded Lie algebraby si(2m + ¢, C).

We consider the 2¢m-dimensional complex vector space V' of pairs of £ x m
complex matrices and the map

0O 0 O
g-1> a1 0 0] — (a21,a§2) € V,
0 azx O

where a3, denotes the conjugated transpose of azp. This map is C-linear for the
complex structure of g1 and the canonical complex structure of V. Identifying the
space of m x m complex matrices to a 2m2-dimensional real space, we obtain the
Levi-Tanakaformon V'

Sf((vla UZ)? (wla U)z)) = ’U;U}]_ <:>w§1)1.

It is convenient to represent g_» as the direct sum of two copies of the Hermitian
symmetric m x m matrices. We obtain a (vector-valued) Levi form that can be
written as

0 \/<:>1[g> (1)1)
V1 @\/&Ig 0 V2
Va( ) — € 9, (C™)?

v2 (of, 03) 0 I, n
1,02 I, O )
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and therefore si(2m + ¢, C) is the Levi—Tanaka algebra of a C R manifold M of
type (2¢m, 2m?) which is ¢-pseudoconcave. It is also m/-pseudoconvex.

Notethat the algebraconsidered in this example can be obtained by considering
the complexification of the algebrain the previous one, where £ = p + gq.

Remark 5.2. The simple algebra si(n, C) admits at least one structure of Levi—
Tanakaalgebraof kind i, for 1 < i < n. Moreover, there exist several nonequiva-
lent structuresfor thesame p if 1 < p < n <1,

Indeed, given a partition (no, . ..,n,) of n, i.e. positive integers n; with 0 <
j < psuchthat B%_gn; = n, we consider

E = jdiag(plng, - - -, (1 2§) In, - - -, S1uly,) + culn,

~ el | ;
J = > diag(lng, - - - (1) Iy ..o, (S, ) + VEle]y,

where ¢, c; € R aresuch that E, J € si(n,C) and diag(ao, . .. , a,,) denotes the
block-diagonal matrix of entries ao, . .., a,. If we denote by g,, the eigenspace of
the adjoint representation of si(n, C) of the element F associated to the eigenvalue
G < p < pytheng = ©_cp<psp, With the pseudocomplex structure on g_;
given by the adjoint representation of the element .J, is a Levi—Tanaka algebra of
kind .

We note that if in addition n; = n,_; for every 0 < j < p, denoting by

I

o

I,

0
we have that the algebra
{A€sl(n,C)|A"Q + QA =0},

with the graduation and the pseudocomplex structure similarly defined, is a Levi—
Tanakaalgebraof kind . If in addition 1 is even, we may take in the definition of
@ the matrix I, ; instead of I, /,. These algebras are all isomorphic to su(p, ¢) for
suitable p and g.

5.3. LEVI-TANAKA ALGEBRA OF KIND 2 ISOMORPHIC TO so(n + 2,n)

Let V' be a complex linear space of dimension n > 2 and let W be a totally
real subspace of V' of real dimension . We consider the n(n <-1) /2 dimensional
subspace L of $,(V') of Hermitian symmetric forms h such that A (X, X) = Ofor
alx ew.
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Inabasises,...,e, of V contained in W, the matrices associated to the ele-
mentsof L are of theform /<1 A for amatrix A € so(n). We call such asubspace
L of 9,(V) a skew subspace of ©,(V). Clearly, all skew subspaces of $,(V)
belong to the same orbit under the action of GL (V") and therefore define isomor-
phic pseudocomplex fundamental graded Lie algebrasm(L).

PROPOSITION 5.3. The canonical pseudocomplex prolongation of a pseudocom-
plex fundamental graded Lie algebra m(L) associated to a skew subspace L of
$,(V) isasimple graded Lie algebra, isomorphic to the Lie algebrase(n + 2, n).

Proof. We consider on the real vector space R?"+2 the symmetric bilinear form
of signature (n + 2, n) defined by the Hermitian symmetric matrix

0 0 I,
Q=101 o],
I, 0 0

where I, istheidentity ¢ x £ matrix. Then so(n + 2, n) isidentified to the space of
matrices of the form

a € gl(n,R)
a § v G isa2 x nrea matrix
B e &b where § isan x 2real matrix
0 <3 S v, 0 € so(n)

€ € 50(2,R).

We denote by g the Lie algebraof (2n + 2) x (2n + 2) matrices defined above. We
consider theelement £ € g

I, 0 O
E=]10 0 O
0 0 «i,

Then ad, (F) issemisimplewith eigenvalues <2, <1, 0, 1, 2 and we denote by g,
the eigenspace corresponding to its integral eigenvalues <2 < p < 2. Inthisway
g=g 2Dg_1DgoD g1 D g hasthe structure of asimple graded Lie algebra. We

note that
a 0 O
g0 = 0 e 0 | |acgln,R), c€s0(2)
0 0 &
and
0 0 O
g_1= B 0 0| |Bisa2x nmatrix
0 <3 0
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__0(:)1
7=\ 1 0

and consider

Let

00O
00O

Wehavep_1(J)° = <id|, , and [p_1(J) X, p_1(J)Y] = [X, Y] forevery X, Y ¢
g_1, therefore p,l(j) defines a complex structure in g_1. If we associate to the
matrix ( parametrizing g_1 the element Z € C* obtained by adding to itsfirst row

v <l timesits second row, the way the element

a 0 0
Xo=[0¢ O € 90
00

&

actson g_; can be described by

p-1(X0)(Z) =caZ+Velr Z

g:(j fj).

Itisclear then that [Xo,g_1] # 0if Xo € go isdifferent from zero. Moreover, the
matrices of theform 3y <3, for 3, varying in the space of n x 2 real matrices,
areabasisof so(n) asareal vector spaceandthebilinear form (3, v) — Bly<nBis
nondegenerate. Theng_>® g 1 isanondegeneratefundamental graded Liealgebra.
By Lemma 3.16, it follows that g is transitive. From j% = I, we obtain also that
g 2@ g1 ispseudocomplex. By Theorem 3.21, it is sufficient then to establish an
isomorphism between the pseudocomplex fundamental graded Lie algebrasm(L)
andg >®g 1.

To thisaim we chooseabasises, ..., e, of V contained in W and associate to
every vector v € V then x 2 real matrix 5 whosefirst column is the real and the
second the immaginary part of the componentsof v in thisbasis. Theidentification
of g_» and L* isthe standard identification of the dual of real alternating forms on
W with the real alternating forms on W*. The proof is complete.
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5.4. LEVI-TANAKA ALGEBRASOF TYPE (n,2) WITHn > 1

Let m = @,>_2g, be afundamental graded Lie algebra of type (n, 2). Assume
that m is nondegenerate so that its canonical pseudocomplex prolongation is finite
dimensional. The structure of m can be given by areal 2-dimensional subspace
of Hermitian symmetric forms on a complex vector space V' with dimcV' = n.
Assume that there exists a nondegenerate form belonging to L and let L; and L»
be abasis of L with L., nondegenerate. By Theorem 4.5.19 of [7] we can choose
abasisof V suchthat ., and L, are represented by two matrices in the diagonal
form with £; x ¢; blocks A;, respectively B;, where

0 (67
0 1 )
Ai=¢ - , Bi=g¢; ;
l o .l .-
a 1 0

witho; € Randeg; = +1,for 1 <7 < r,and 2¢; x 2¢; blocks

a; 1

witha; € C\ R, forr +1<i<r+s.
We assumethat /; = 1forevery 1 < ¢ < r+s. Thecases = 0and a1 =
- = q«p is not possible because L has dimension 2. In the case s = 0 with

a1 = =0y F Qpy1 = - = Qg the dgebram is the direct sum of two
idealsand g isisomorphictosu(p+1, 1) ®su(g+ 1, 1) (see Proposition 3.3). When
r=0,nisevenand if a; = --- = a5, then g isisomorphic to s((2 + n/2, C)

asin examplein 5.2 (using Theorem 3.21). In al other caseswithn > 3 it can be
proved that p_»(go) = R1d,_, and so, by Theorem 3.24, we have that g, = O for
every p > 0.

Whenn > 3andall /;’sareequal to 1 and the «;’ saredistinct, the corresponding
standard homogeneous C'R manifolds are euclidean and are parametrized, modulo
C'R diffeomorphisms, by a moduli space of real dimension n < 3. This spaceis
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indeed the quotient of the set of n-tupleof distinct pointsof CP*, symmetrical for the
involution defined by RP! ¢ CPY, under the action of the group of automorphisms
of CP! which leave invariant the Poincaré half-plane. This has been shown in [9]
for the case n > 7 and in general by one of the authorsin his laurea dissertation
(1991).

For n = 2, assuming again that the /;'s are equal to 1, we obtain Levi—Tanaka
algebras isomorphic either to su(2,1) @ su(2,1) (the pseudoconvex case) or to
sl(3, C) (the 1-pseudoconcave case).

We consider a case where ¢; # 1 in the example below, that completes the
description of all Levi—Tanakaalgebras of type (2,2) and kind pn = 2.

5.5. THE WEAKLY PSEUDOCONCAVE LEVI-TANAKA ALGEBRA OF TYPE (2, 2)

Let L bethelinear subspaceof §,(C?) generated by the Hermitian forms associated
to the matrices

10 q 01

oo) ™ ( 1 0) '
To compute the Levi—Tanaka algebra g(L) we first introduce some notation. We
denote by T>C the unitary associative C-algebra of lower triangular 2 x 2 matrices

with complex coefficients. We consider on T>C the two antilinear maps T>C >
a— a € ToCand T>C 5 a — & € T>C associating to the matrix

a;r O
o =
Q21 a2
the matrices
_ an O _ ap 0
a = _ _ , a = _ _ .
Q21 Q2 a1 Q11

Then we define the two subrings of T>C

0
Nzcz{(zl > | 21, zzE(C} — {a € ToC|a = al,

22 21

t1 O
NZIR:{<1 )|t1,t26R}:{a€T2(C|oz:o7:o?}.

ty

Remark 5.4. We have:
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(1) af =ap Vo, 8 € ToG
(2 af = pa Vo, B € ToC;
(3) CM/B = ,30{ VO(, /3 € NZ(C,

@ ifa, feTCandal =CB V(€ NoR, thena = B € N,C.

PROPOSITION 5.5. TheLevi—Tanakaalgebra g( L) isisomor phicto the subalgebra
of g{(6, C) of matrices of the form

« n o
¢ B Veln |, (11)
T /Sl ea

wherer, o € NoR, ¢, n € N»C, and
a+ V<1 0
o = ,
c d+ &1

( =4 2\/&1b 0 )

p= (12)

2VElSe S e2y/Th
witha,b,d € Randc € C.
We note that 8 = <F and that « + 8 <& is a diagonal 2 x 2 matrix with O
trace.
Theoperators E, J € go(L) are described by the matrices

b 0 0 N PR 0
E=|00, 0 and J= o -1, o0
0 0 «b 0 0 <%l
We have
000
g 2(L)=<|00 0] |7€NRy ~R?
7 00
0 0 0
0 0
o ={° Y cenct =
0 &/<1¢C 0
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0
0 ||«a,pasin(12) 3 ;
S

[s=
=N
=
I
o o =R
o™ o

0
Vveln | |n€ NC oy ~ c?;
0

[i=}
=
=
Il
o o
o 3

o
o

g
0| |oeNRy ~ R
0

[i=}
SR
=
Il
o o
o o

TheLevi—-Tanaka algebrag( L) admitsagraded Levi—Malevdecompositiong(L) =
s @ v withs ~ su(1,2) andt # 0.

Proof. Using the previous remark, one easily checks by direct computation
that the matrix algebra defined above is a pseudocomplex prolongation of the
fundamental pseudocomplex Lie algebram(L). We define ¢ as the set of matrices
asin (11) with

00 ] 00 ]
T—(t O>,t€R, O'—<S 0>,S€R1
(= 00 € G, 00 € G,
\z 0 " 7 ' " w 0 v '

a O a 0
o= and (= fora € R,c € C.
c <a 2/ EASe <

It is easy to verify that v isanideal of g(L).
Next we denote by s the set of matrices of the form (11) with

t O ) s 0 _
T—(O t>,t€R, O'—<0 S),SER,

C_<O z),zE(C, n—(o w),wE(C,
a+ v&ilb 0 2/ <1b 0
o= and 8=
0 a+ v&lb 0 2/ E1b
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for a,b € R. We observe that s is a Lie subalgebra of g(L) which is semisimple
being isomorphic to su(1, 2). To prove that the algebra g(L) defined above is the
Levi—Tanaka algebra of the second kind associated to L, we have to show that
it isamaxima prolongation. First we remark that the canonical pseudocomplex
prolongation of m(L) is not semisimple because go(L) is not reductive (and go(L)
is the degree O component of the canonical pseudocomplex prolongation). By the
graded Levi-MalCev decomposition and the fact that the canonical prolongation
is semisimple when the radical has no degree <1-component, we deduce that s
is the semisimple part of the canonical pseudocomplex prolongation. Knowing
that a prolongation of g(Z) would be a prolongation of its radical, we conclude
by an explicit computation that the g(Z) we constructed is indeed the canonical
pseudocomplex prolongation of m(L).

5.6. FINITE DIMENSIONAL LEVI-TANAKA ALGEBRAS g = @pczgp WITH
ding_l =2

Let m = ©_,<p<00, be a pseudocomplex fundamental graded Lie algebra with
n = idimgg_; = 1 and let g = &®,>_,g, be its canonical pseudocomplex
prolongation. Supposethat m is nondegenerate. Thisisequivalentto i, > 2 and, by
Theorem 3.1, to g finite dimensional. Note that dimggg < 2. Wewill provethat g is
either solvable with g, = O for every p > 0, or simple and isomorphic to su(2, 1)
with the graduation given in examplein 5.1. Indeed, since p_» isirreducible, if g
is not simple, then, by Corollary 3.32, g isamost solvable, i.e. g = t & s where t
istheradical of g and s is asemisimple subalgebracontained in go. If dimggo = 1,
using that [g1,9-1] = [r1,t—1] C go, We obtain that g has to be solvable. By
the Corollary 3.26, g1 = 0. If dimpgo = 2, then p_; is irreducible, hence, by
Corollary 3.31, g1 = 0 and, since go is Abelian, g is solvable.

Let us assume now that g is simple. Then the complexification g¢ = C ®p g of
g isasemisimple complex Lie algebraand a L evi—Tanakaalgebra. By Lemma 3.9,
g© has a Cartan subalgebra h* contained in gf = C ®g go and then its rank
¢ = dimchC is less than or equal to dimeg§ < 2. By the classification of simple
complex Lie algebras we have that g© is isomorphic to one of the following:
s0(5,C), sl(2,C), sl(2,C) @ sl(2,C), sl(3,C) or the exceptional Lie algebra G.
Since dimeg® = dimgg > 7, and using Proposition 3.39, we obtain that g© is
isomorphictos((3, C). Thisimpliesy = 2anddimgg_» = 1. Thesetwo conditions
characterizeafundamental graded Lie algebram whose prolongationisisomorphic
tosu(2, 1) (cf. examplein5.1). Inconclusion, we proved that aL evi—Tanakaa gebra
g = @pezgp Withn = %ding_l = 1 s either solvable with g, = O for every
p > 0, or isomorphic to su(2, 1).
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