CORRESPONDENCE.

ASSURANCES ON x AGAINST y AND t YEARS LONGER.

To the Editor of the Joumal of the Institute of Actuaries.

Str,-As premiums for assurances on x provided he die before y or within t years after him, are frequently required in connection with reversionary transactions, I thought it would be useful to have a table by which the addition to be made to the ordinary survivorship net premium to cover the risk of x dying within t years after y, could be readily determined, instead of making an arbitrary addition as is sometimes done in consequence of the labour of computing it. I have therefore calculated that addition by the H^{M} Table at 4 per-cent interest for decennial ages, and $t=1,3,5,7$, and 10 , (1) when the premium is payable until the risk determines, and (2) when it is payable during the joint existence of the lives only, and trust that you will find space for the tables in your valuable Journal. For the calculation of the annual premium for x before y or within t years after him, when it is payable until the risk determines, I used the formula

$$
\frac{\mathrm{A}_{x}-\frac{\mathrm{D}_{x+t}}{\mathrm{D}_{x}}\left\{\mathrm{~A}_{x+t}-\mathrm{A}_{x+t . y}^{\frac{1}{t}}\right\}}{1+a_{x}-\frac{\mathbf{D}_{x+t}}{\mathrm{D}_{x}}\left\{a_{x+t}-a_{x+t . y}\right\}}
$$

and the substitution of $a_{x y}$ for the expression in the denominator gave the annual premium payable during the joint existence of the lives only. I calculated the survivorship premiums by the ordinary formula; and as I believe these have not hitherto been published, I append a table of them also for decennial ages.

I should have liked, if possible, to have made the calculation by Mr. Sprague's Select Tables in combination with the $H^{(5)}$; but as the joint-life annuities by these tables are not tabulated, and the calculation had to be kept within practicable limits, I had to abandon the idea. I may mention that I had 216 values of $A_{x+t, y}^{1}$ to compute before I was in a position to commence the calculation of the addition to the survivorship premium, and I also append a table of some of these values in the hope that they will prove serviceable. I have made some calculations, however, with the view of ascertaining what addition would have been made to the Select and $H^{M(5)}$ survivorship premiums had these tables been used in the calculation; and it may be interesting to give a few of the results, and compare them with those by the H^{M} Table. The Select premium for 40 against 70 is $\cdot 01098$ and the $\mathrm{H}^{3} \cdot 01149$; while for 70 against 40 they are 08991 and 09541 respectively, and for 30 against $30, \cdot 01354$ and 01315 . The Select premiums if 40 die before 70 or within 3,7 , and 10 years after him, payable until the risk determines, are 01196,01331 , and -01435 respectively, the additions to the survivorship premium being therefore $00098, \cdot 00233$, and $\cdot 00337$ respectively, which are considerably greater than those given in my table, namely, 00072, 00182, and 00273 . The Select premiums for 40 against 70 or within 3,7 , and 10 years after him, payable during the joint existence of the lives only, are $\cdot 01500, \cdot 02038$, and $\cdot 02437$ respectively, the additions to the survivorship premium being therefore $\cdot 00402, \cdot 00940$, and 01339 respectively, which agree very closely with those given in my table, namely, 00401, 00934 , and 01338 . I believe that, when the premium is payable during the joint existence of the lives only, the addition will be almost exactly the same as that given in my table, but that, when the premium is payable until the risk determines, the addition will be greater, except when one-or both-of the lives is young.

Mr. Meikle has given (J.I.A., iv, 134) a method of approximating to the premium for x against y and t years longer. His formula is (using modern notation) $\mathrm{P}_{x y}^{1}+\mathrm{P}_{x y \cdot \mid t}^{1} \mathrm{~A}_{x+z}$, where $z=e_{x y}$. Here it will be noticed that, when the premium is payable during the joint existence of the lives only, the addition to the ordinary survivorship premium is $\mathrm{P}_{x y}^{1} \mid t \mathrm{~A}_{x+z}$, that is to say, the annual premium which will provide a temporary insurance on x for t years after the joint existence has failed, provided it is dissolved by the death of y, I give some of the additions calculated in this way, and it will be observed that the results by his approximate method agree fairly well with the exact values given in my table; but as the formula assumes a table of the expectation of two joint lives to have been formed, it cannot be readily applied. For 40 against 70 , and $t=1,3,5,7$, and 10, the additions, using first differences, would be 00128 , 00384 , $\cdot 00637, \cdot 00887$, and $\cdot 01266$ respectively, as against $\cdot 00134, \cdot 00401$, $\cdot 00668,00934$, and 01333 bJ my table. When the premium is payable until the risk determines, however, the above formula should not be multiplied by $\frac{1+a_{x y}}{1+a_{x}}$, as stated by him, but by $\frac{1+a_{x y}}{1+a_{y(\bar{t})} \cdot x}$.

I take this opportunity of submitting another solution of the problem, in the belief that it will be more readily followed by the younger readers of the Journal.

Required the present value of an assurance of 1 payable if x die before y or within t years after him.
(1) During the first t years the insurance would be paid whether x died before or after y, and we have ${ }_{t t} \mathrm{~A}_{x y}^{1}+{ }_{\mid t} \mathrm{~A}_{x y}^{2}={ }_{\mid t} \mathrm{~A}_{x}$. (2) After t years the insurance would be paid in any year, say the $(t+n)$ th, if x die in that year and y be alive t years previously, that is to say, on the average at the middle of the nth year. The value of the second part is therefore

$$
\begin{aligned}
& \sum v^{n+t} \frac{d_{x+t+n-1}}{l_{x}} \cdot \frac{l_{y+n-\frac{1}{2}}}{l_{y}} \\
& \quad=v^{t} \frac{l_{x+t}}{l_{x}} \Sigma v^{n} \frac{d_{x+t+n-1}}{l_{x+t}} \cdot \frac{l_{y+n-\frac{1}{2}}}{l_{y}} \\
& \quad=v^{t} t_{x} p_{x+t . y}
\end{aligned}
$$

The total value of the assurance is therefore

$$
{ }_{t} \mathbf{A}_{x}+v^{t}{ }_{t} p_{x} \mathbf{A}_{x+t \cdot y}^{3} .
$$

It may be useful to point out that Mr. Curtis Otter, in solving this problem (J.I.A., vii, 240), speaks of the payment in the nth year when it is evidently the payment in the $(t+n)$ th year which is meant.

> I am, Sir,
> Your obedient servant, JAMES CHATHAM.

Scottish Equitable Liffe Assurance Socy., Edinburgh, 7th December, 1885.

Table showing the Addition to $100 \mathrm{w}_{x y}^{1}$ to cover the Risk of x dying within t Years after y, when the Premium is payable until the Risk determines, $-100\left(w_{x: y(\overline{1})}^{1}-\varpi_{x y}^{1}\right)$. $\mathbf{H}^{\mathrm{M}} 4$ per-eent.

x	y	$t=1$	$t=3$	$t=5$	$t=7$	$t=10$	x	y	$t=1$	$t=3$	$t=5$	$t=7$	$t=10$
20	20	. 008	026	$\cdot 042$	$\cdot 058$. 080	50	20	-008	084	041	-058	$\cdot 085$
	30	-010	-030	$\cdot 049$. 070	-099		30	-015	$\cdot 043$.071	-098	$\cdot 137$
	40	-009	. 027	. 046	. 067	-098		40	.026	. 077	$\cdot 126$	$\cdot 173$	$\cdot 239$
	50	.007	-022	-039	$\cdot 057$	-085		50	$\cdot 039$	$\cdot 118$	$\cdot 197$	$\cdot 273$	-381
	60	. 007	-021	.035	. 051	.075		60	. 045	$\cdot 142$	$\cdot 243$	-347	-502
	70	$\cdot 007$	$\cdot 021$	$\cdot 035$	-049	$\cdot 072$		70	$\cdot 047$	-148	-258	-373	-555
30	20	-011	$\cdot 028$	$\cdot 045$. 061	. 084	60	20	$\cdot 007$	$\cdot 025$	'044	.066	$\cdot 097$
	30	-014	$\cdot 041$	- 068	-094	$\cdot 131$		30	$\cdot 013$	-040	-070	-100	$\cdot 142$
	40	-016	. 048	-081	$\cdot 114$	$\cdot 164$		40	-024	$\cdot 074$	$\cdot 123$	$\cdot 172$	$\cdot 237$
	50	-014	044	-076	$\cdot 109$	$\cdot 163$		50	-045	-137	$\cdot 225$	$\cdot 310$	$\cdot 424$
	60	. 011	-038	$\cdot 066$	'095	$\cdot 143$		60	-069	$\cdot 216$	-363	-505	702
	70	. 012	. 037	$\cdot 062$	-089	-131		70	-090	-284	-486	$\cdot 690$	-985
40	20	. 008	-026	- 042	-059	-082	70	20	-011	-034	-061	-088	- 121
	30	. 015	-045	. 074	-102	$\cdot 139$		30	-014	-048	-085	-119	$\cdot 162$
	40	-023	-069	$\cdot 114$	$\cdot 158$	-220		40	. 023	-077	$\cdot 133$	$\cdot 183$	$\cdot 244$
	50	-027	-081	-138	$\cdot 194$	$\cdot 280$		50	-046	$\cdot 146$	-243	329	-430
	60	-024	$\cdot 077$	$\cdot 134$	$\cdot 193$	-288		60	-091	-279	-460	620	-808
	70	$\cdot 023$	$\cdot 072$	$\cdot 125$	-182	$\cdot 273$		70	$\cdot 158$	$\cdot 490$	- 808	1.092	$1 \cdot 432$

Table showing the addition to $100 \omega_{x y}^{1}$ to cover the Rish of x dying within t Years after y, when the Premium is payable during the joint existence of the Lives only, $-100\left\{\frac{A_{x: y(t)}^{1}}{\mathbf{a}_{x y}}-\boldsymbol{\varpi}_{x y}^{1}\right\} . \quad \mathbf{H}^{\mathrm{M}} 4$ per-cent.

x	y	$t=1$	$t=3$	$t=5$	$t=7$	$t=10$	x	y	$t=1$	$t=3$	$t=5$	$t=7$	$t=10$
20	20	-018	. 055	. 088	120	$\cdot 163$	50	20	.083	. 091	$\cdot 143$	$\cdot 194$,	-258
	30	-023	-068	$\cdot 111$	-152	$\cdot 212$		30	-047	-133	-210	$\cdot 279$	- 368
	40	-026	-079	$\cdot 129$	-180	$\cdot 253$		40	-074	$\cdot 210$	$\cdot 333$	$\cdot 442$	-584
	50	-032	-095	-157	218	$\cdot 308$		50	-114	-331	-532	717	961
	60	-045	-132	-216	$\cdot 297$	-415		60	$\cdot 163$	-484	-794	$1 \cdot 092$	1:507
	70	. 069	-203	$\cdot 331$	$\cdot 454$	$\cdot 630$		70	-232	-694	1153	$1 \cdot 607$	2-273
30	20	$\cdot 024$. 065	-104	-139	$\cdot 187$	60	20	-043	$\cdot 124$	$\cdot 194$	$\cdot 255$	-329
	30	-031	. 091	$\cdot 148$	-200	\cdots		30	-061	-169	-264.	-345	$\cdot 444$
	40	-039	$\cdot 117$	-191	-264	$\cdot 367$		40	-093	$\cdot 261$	$\cdot 406$	-529	-676
	50	$\cdot 047$	$\cdot 142$	-235	-326	\cdot^{462}		50	-160	-450	702	-918	1-179
	60	061	-184	-304	-422	597		60	-269	775	1-230	1-631	2-133
	70	. 091	'270	-443	-613	-861		70	-429	$1 \cdot 260$	$2 \cdot 012$	$2 \cdot 766$	3725
40	20	-026	-074	$\cdot 118$	$\cdot 159$	$\cdot 213$	70	20	-070	$\cdot 184$	$\cdot 277$	$\cdot 349$	-424
	30	-038	$\cdot 111$	$\cdot 178$	-239	. 318		30	-088	$\cdot 239$	358	-450	-45
	40	-056	$\cdot 164$	$\cdot 265$	$\cdot 360$	${ }^{487}$		40	-127	-345	517	-647	780
	50	-075	-222	-365	-503	699		50	-219	-594	-888	$1 \cdot 111$	1.336
	60	-096	-289	-480	$\cdot 669$	-949		60	415	1-132	1704	2-145	2-596
	70	$\cdot 134$	-401	-668	$\cdot 934$	1.383		70	$\cdot 773$	$2 \cdot 154$	$3 \cdot 300$	4212	$5 \cdot 183$

Table of $w_{x y}^{1} . \quad \mathbf{H}^{3} 4$ per-ecnt.

x	y	$w_{x y}^{1}$	x	y	$\varpi_{x y}^{1}$	x	y	$\varpi_{x y}^{1}$
20	20	-01004	40	20	-02127	60	20	-05526
	30	-00913		30	-02012		30	-05455
	40	-00823		40	-01823		40	$\cdot 05310$
	50	$\cdot 00748$		50	-01580		50	$\cdot 05010$
	60	-00686		60	-01844		60	-04505
	70	-00635		70	-01149		70	-03858
30	20	-01432	50	80	-08383	70	20	-09697
	30	-01315		30	. 03239		30	-09645
	40	-01168		40	-03056		40	-09541
	50	-01024		50	-02746		50	-09304
	60	.00905		60	-02350		60	-08812
	70	. 00811		70	-01963		70	. 07966

$$
\text { Table of } \mathrm{A}_{x y}^{1} . \quad \mathrm{H}^{\mathrm{M}} 4 \text { per-cent. }
$$

\boldsymbol{x}	y	$\mathrm{A}_{x y}^{1}$	${ }^{3}$	y	$\mathrm{A}_{x y}^{\mathrm{l}}$	\boldsymbol{x}	y	$\Delta_{x y}^{1}$	x	y	$\mathbf{A}_{x y}^{2}$
20	20	$\cdot 1715$	35	20	-2693	50	20	-4205	65	20	-6166
	30	$\cdot 1475$		30	$\cdot 2413$		30	-3994		30	-6045
	40	-1211		40	-2002		40	-3602		40	-5813
	50	$\cdot 0944$		50	$\cdot 1517$		50	-2940		50	-5310
	60	-0682		60	-1051		60	-2097		60	$\cdot 4385$
	70	$\cdot 0448$		70	$\cdot 0661$		70	-1299		70	-3095
25	20	$\cdot 1979$	40	20	-3129	55	20	-4828	70	20	-6839
	30	$\cdot 1712$		30	-2864		30	$\cdot 4650$		30	$\cdot 6744$
	40	-1395		40	$\cdot 2433$		40	$\cdot 4305$		40	-6564
	50	-1069		50	-1863		50	$\cdot 3661$		50	-6156
	60	$\cdot 0760$		60	-1280		60	-2723		60	-5335
	70	. 0489		70	-0791		70	$\cdot 1734$		70	-4028
30	20	$\cdot 2313$	45	20	-3639	60	20	-5494	75	20	${ }^{7} 7468$
	30	$\cdot 2031$		30	$\cdot 3399$		30	$\cdot 5345$		30	7395
	40	$\cdot 1662$		40	$\cdot 2975$		40	-5057		40	$\cdot 7258$
	50	-1262		50	-2341		50	-4471		50	-6942
	60	-0887		60	$\cdot 1626$		60	$\cdot 3504$		60	-6261
	70	-0567		70	$\cdot 1000$		70	$\cdot 2336$		70	-5051

ON THE ANALOGY BETWEEN AN ANNUITY-CERTAIN AND A LIFE ANNUITY.

To the Editor of the Journal of the Institute of Actuaries.
Sir,-The analogy existing between an annuity-certain and a life annuity has been remarked upon by Mr. G. King, in his interesting note in Volume xx of the Journal (p. 435), and Mr. James Chisholm in the preface to his recently-published Tables of Policy-Talues. Both of these writers have investigated the subject on the assumption that the annuities were payable once a year, and little remains to be said upon the matter from this point of view. But the assumption of annual intervals makes it necessary that the functions should be manipulated before their similarity can be demonstrated; while even then, the analogy, in one respect (compare expressions (3) and (4), J.I.A., Xx 436), appeals to the intelligence rather than to the eye. A far stricter resemblance-indeed, a complete and exact coincidencewill, however, be found to exist between the two functions, and between other cognate functions depending upon the same elements, when we regard them as being payable continuously, or by momently instalments. The following formulas attest the truth of this assertion, and may be considered of some interest to students of actuarial science.

On the assumption that the interest is convertible, and the annuity payable, momently, we have

$$
\bar{a}_{n}=\frac{1-\epsilon^{-n \delta}}{\delta}
$$

Here $\epsilon^{-n \delta}$ represents the present value of 1 to be received at the end of n years on the conditions specified, and is really the single payment necessary to secure the unit at the expiration of this period. As

