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Fusion Ring and Explicit Verlinde Formula

The aim of this chapter is to prove the celebrated Verlinde formula giving an
explicit expression for the dimension of the space of conformal blocks.

To facilitate this, we develop an algebraic formalism for general fusion
rules and the corresponding associated ring. By a fusion rule on a finite
set A together with an involution ∗, one means a map F : Z+[A] → Z
satisfying certain properties (cf. Definition 4.1.1). It is shown that given a
nondegenerate fusion rule on A, the free Z-module Z[A] with basis A acquires
a natural associative and commutative ring structure together with a trace form
t : Z[A] → Z. This ring Z[A] together with the trace form is called the fusion
ring associated to the fusion rule F on A. Further, the involution ∗ extends to a
ring isomorphism of Z[A] and Z[A] is a Gorenstein ring (cf. Proposition 4.1.2).
The trace form t and the involution ∗ together give rise to a natural positive-
definite symmetric bilinear form 〈 , 〉 on Z[A] (cf. Definition 4.1.4). We further
show (cf. Lemma 4.1.5) that the complexified algebra C[A] := C ⊗Z Z[A]
is a (finite-dimensional) reduced algebra (i.e., it has no nonzero nilpotent
elements). Hence, we get the decomposition (as C-algebras):

ϕA : C[A] � CSA, ϕA(x) = (χ(x))χ∈SA, for x ∈ C[A],

where SA is the set of all the C-algebra homomorphisms from C[A] to C (cf.
Lemma 4.1.5).

The fusion rule F should be thought of as the ‘genus 0 fusion rule.’
Motivated from the Factorization Theorem, the fusion rule F is extended to
a fusion map Fg : Z+[A] → Z for any genus g ≥ 0 (cf. Definition 4.1.6). The
map Fg is explicitly determined in Proposition 4.1.7 and Corollary 4.1.8 using
the trace t , a ‘Casimir element’  ∈ Z[A] defined as

 =
∑
λ∈A

λ · λ∗ ∈ Z[A],
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126 Fusion Ring and Explicit Verlinde Formula

and the set SA. The matrix encoding the fusion product is diagonalized in
Exercise 4.1.E.3.

Having developed the algebraic machinery of fusion rules and fusion ring in
Section 4.1, the aim of Section 4.2 is to state and give a proof of the Verlinde
dimension formula. For any simple Lie algebra g and central charge c > 0,
recall the set Dc consisting of dominant integral weights of g with level ≤ c.
Then, the finite setDc has a natural involution λ �→ λ∗ := −woλ, where wo is
the longest element of the Weyl group of g. Define the function Fc : Z+[Dc] →
Z+ by Fc(0) = 1 and, for any s ≥ 1 and λi ∈ Dc,

Fc(λ1 + · · · + λs) = dim VP1( �p,�λ),

where �p = (p1, . . . ,ps) are any distinct points in P1 and �λ = (λ1, . . . ,λs). (By
Proposition 3.5.8 and Exercise 2.3.E.2, Fc(λ1+· · ·+λs) does not depend upon
the choice of the points �p.) These Fc will be our most important examples of
fusion rule (cf. Example 4.2.1). The corresponding fusion ring Z[Dc] is called
the fusion ring of g at level c and will be denoted by Rc(g). We denote the
basis of the fusion ring Rc(g) by {[V (λ)]}λ∈Dc and denote the fusion product
(i.e., the product in Z[Dc]) by ⊗c. Proposition 4.2.3 determines the fusion
product [V (λ)] ⊗c [V (μ)] in terms of the action of sl2(θ) (sl2 passing through
the highest root space of g) on the components. This proposition is an easy
consequence of Corollary 2.3.5. As an application of this proposition, we show
that [V (λ)]⊗c [V (μ)] coincides with the usual tensor product [V (λ)]⊗[V (μ)]
in the case λ + μ ∈ Dc. We also determine [V (λ)] ⊗c [V (μ)] when (λ +
μ)(θ∨) = c + 1 or c + 2 (cf. Corollary 4.2.4 and Exercise 4.2.E.1).

We give another definition of the fusion product ⊗cF in terms of the
g-equivariant Euler–Poincaré characteristic of certain vector bundles on the
infinite Grassmannian X̄G (cf. Definition 4.2.11). In Definition 4.2.7, we define
a Z-module map

ξc : R(g) → Rc(g),

where R(g) is the representation ring of g. It is shown to be a (surjective) ring
homomorphism if we endow Rc(g)with the fusion product ⊗cF (cf. identity (8)
of Subsection 4.2.18). Its kernel is determined in Lemma 4.2.8.

Then, using a result of Teleman on the Lie algebra homology of
ĝ− := g ⊗ t−1C[t−1] with coefficient in the tensor product of an integrable
highest-weight ĝ-module with a finite-dimensional g-module (cf. Theorem
4.2.16), we show that the above two fusion products ⊗c and ⊗cF coincide
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Fusion Ring and Explicit Verlinde Formula 127

(cf. Corollary 4.2.17). This identification, together with the combinatorics of
the affine Weyl group Wc (cf. Definition 4.2.5), gives rise to another (closed)
expression for the fusion product (cf. Lemma 4.2.12):

For λ,μ ∈ Dc,
[V (λ)] ⊗c [V (μ)] =

∑
ν∈Dc

∑
w∈W ′

c

(−1)�(w)nλ,μ
w−1∗ν[V (ν)],

whereW ′
c is defined in Definition 4.2.7 and nλ,μ

w−1∗ν := dim (Homg(V (w−1∗ν),
V (λ) ⊗ V (μ))). Further, by using the equality of the two fusion products
⊗c and ⊗cF , we of course get that ξc is a ring homomorphism with respect
to the usual fusion product ⊗c (cf. Theorem 4.2.9). The equality of ⊗c and
⊗cF can be more easily deduced for any simple g not of type E• and F4 (cf.
Exercise 4.2.E.4).

The surjective ring homomorphism ξc allows us to determine the set of
algebra homomorphisms Rc(g) → C and identify them with T reg

c /W (cf.
Corollary 4.2.18), whereW is the (finite) Weyl group of g and T reg

c is a certain
finite subgroup of the maximal torus T of the simply-connected algebraic
group G (with Lie algbera g) (cf. Definition 4.2.5). Now, the stage is set to
state and prove the following Verlinde formula giving an explicit expression
for the dimension of the space of conformal blocks (cf. Theorem 4.2.19). This
is one of the most important results of the book.

Theorem Let g be any simple Lie algebra and let c > 0 be any central
charge. Let (�, �p = (p1, . . . ,ps)) be an irreducible smooth s-pointed curve of
any genus g ≥ 0 (where s ≥ 1) and let �λ = (λ1, . . . ,λs) be a collection of
weights in Dc. Then, for the space V�( �p,�λ) of covacua,

dim V�( �p,�λ) = |Tc|g−1
∑
μ∈Dc

((
�si=1(chtμ([V (λi)]))

) ·
�α∈�+

(
2 sin

(
π

c + h∨ 〈μ+ ρ,α〉
))2−2g

)
,

where �+ is the set of positive roots of g, κ : h∗ → h is the isomorphism
induced from the normalized invariant form, Tc is defined in Definition 4.2.5,
h∨ is the dual Coxeter number of g and tμ := Exp

( 2πiκ(μ+ρ)
c+h∨

) ∈ Tc.
In particular, if g = 1, then dim V�(p,0) = |Dc|.
In Exercise 4.2.E.8, dim V�(p,0) is determined for any g if g is simply-

laced and c = 1.
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128 Fusion Ring and Explicit Verlinde Formula

4.1 General Fusion Rules and the Associated Ring

Definition 4.1.1 LetA be a finite set with an involution ∗ (i.e., a bijection of
order 2). Let Z+[A] :=⊕a∈A Z+a be the free monoid generated by A, where
Z+ := Z≥0. The involution ∗ of A clearly extends to an involution of Z+[A].

By a fusion rule on A, we mean a map F : Z+[A] → Z satisfying the
following conditions:

(f1) F (0) = 1
(f2) F (a) > 0, for some a ∈ A
(f3) F (x) = F(x∗), for x ∈ Z+[A]
(f4) F (x + y) =∑λ∈A F(x + λ)F (y + λ∗), for x, y ∈ Z+[A].

The fusion rule F is said to be nondegenerate if it satisfies
(f5) For any a ∈ A, there exists λa ∈ A such that F(a + λa) � 0.

Proposition 4.1.2 Let F : Z+[A] → Z be a nondegenerate fusion rule.
Then the abelian group Z[A] := ⊕

a∈A Z acquires a product (defined by (1)
below), making Z[A] into a commutative ring with identity.

Moreover, it admits a unique linear form t : Z[A] → Z (called the trace)
satisfying the following properties:

(a) t (a · b∗) = δa,b for a, b ∈ A.
(b) t (�a∈Aana ) = F

(∑
a∈A naa

)
, for any na ∈ Z+.

Further, ∗ is a ring homomorphism of Z[A] and Z[A] is a Gorenstein ring.

The ring Z[A] together with the trace form t is called the fusion ring
associated to the fusion rule F . Observe that t is ∗-invariant.

Proof Define the multiplication (called the fusion product)

a · b =
∑
λ∈A

F(a + b + λ∗)λ, for a,b ∈ A, (1)

and extend bilinearly on Z[A]. By definition, the product is commutative. We
next show that it is associative.

Take a, b, c ∈ A. Then

(a · b) · c =
∑
λ,μ∈A

F(a + b + λ∗)F (λ+ c + μ∗)μ

=
∑
μ∈A

F(a + b + c + μ∗)μ, by (f4) of Definition 4.1.1 (2)

= a · (b · c).
This proves the associativity.
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4.1 General Fusion Rules and the Associated Ring 129

We next show that ∗ is a ring homomorphism; i.e.,

∗(a · b) = (∗a) · (∗b), for a,b ∈ A.

Now

∗(a · b) =
∑
λ∈A

F(a + b + λ∗)λ∗

=
∑
λ∈A

F(a∗ + b∗ + λ)λ∗, by (f3) of Definition 4.1.1

= (∗a) · (∗b).
We next show that there exists a unique 1 ∈ A such that

F(1) = 1, F (a) = 0, for all a ∈ A,a � 1. (3)

Applying (f1) and (f4) of Definition 4.1.1 to x = y = 0, we get

1 =
∑
λ∈A

F(λ)F (λ∗)

=
∑
λ∈A

F(λ)2, by (f3) of Definition 4.1.1.

From this, we get (3). (Observe that we have used (f2) of Definition 4.1.1
here.) In particular, by (f3) of Definition 4.1.1,

1∗ = 1. (4)

Applying (f4) of Definition 4.1.1 to x = a ∈ A, y = a∗, we get

F(a + a∗) =
∑
λ∈A

F(a + λ)F (a∗ + λ∗)

=
∑
λ∈A

F(a + λ)2, by (f3) of Definition 4.1.1. (5)

In particular, for a ∈ A,

F(a + a∗) ≥ F(a + a∗)2.

This forces

F(a + a∗) = 0 or 1. (6)

Further, by (5),

F(a + λ) = 0, for all λ � a∗, λ ∈ A. (7)
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130 Fusion Ring and Explicit Verlinde Formula

Since F is nondegenerate, (6) and (7) force

F(a + a∗) = 1. (8)

Combining (7) and (8), we get

F(a + b∗) = δa,b , for a,b ∈ A. (9)

Now, define the linear form t : Z[A] → Z by

t (a) = F(a), for a ∈ A. (10)

Of course, this definition is forced by property (b). Now, by the definition
of the product, for a,b ∈ A,

t (a · b∗) =
∑
λ∈A

F(a + b∗ + λ∗)F (λ)

= F(a + b∗), by (f4) of Definition 4.1.1

= δa,b , by (9).

This proves property (a).
We next show that 1 is the multiplicative identify of Z[A]. For any

x ∈ Z+[A],

F(x) = F(x + 0) =
∑
λ∈A

F(x + λ)F (λ∗) = F(x + 1), by (3) and (4).

(11)

Now, for any a ∈ A,

1 · a =
∑
λ∈A

F(1 + a + λ∗)λ

=
∑
λ∈A

F(a + λ∗)λ, by (11)

= a, by (8) and (9).

This proves that 1 is the multiplicative identity of Z[A].
Similar to the derivation of (2), by induction on n, it is easy to see that for

any a1, . . . ,an ∈ A,

a1 · a2 · · · an =
∑
μ∈A

F(a1 + · · · + an + μ)μ∗.
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4.1 General Fusion Rules and the Associated Ring 131

Thus,

t (a1 . . . an) =
∑
μ∈A

F(a1 + · · · + an + μ)t (μ∗)

=
∑
μ∈A

F(a1 + · · · + an + μ)F(μ∗), by (10)

= F(a1 + · · · + an), by (f4) of Definition 4.1.1.

This proves property (b).
Finally, we show that Z[A] is a Gorenstein ring over Z.
Consider the Z-linear map

ϕ : Z[A] → HomZ(Z[A],Z),

defined by

ϕ(x)(y) = t (x · y), for x,y ∈ Z[A],

where HomZ(Z[A],Z) denotes the Z-module of Z-linear maps from Z[A] to
Z. By the property (a) of t , ϕ is a Z-linear isomorphism. Put a Z[A]-module
structure on HomZ(Z[A],Z) by

(x · α)(y) = α(xy), for x,y ∈ Z[A] and α ∈ HomZ(Z[A],Z).

Then ϕ is a Z[A]-module isomorphism (under the multiplication action of
Z[A] on itself). The exact sequence

0 → Z → Q → Q/Z → 0

gives rise to the exact sequence of Z[A]-modules (Z[A] being a free
Z-module):

0 → HomZ(Z[A],Z)→ HomZ(Z[A],Q)→ HomZ(Z[A],Q/Z)→ 0.

Now, HomZ(Z[A],Q) and HomZ(Z[A],Q/Z) are injective Z[A]-modules (cf.
(Lang, 1965, Chap. III, Exercise 9(d))). Thus, Z[A] � HomZ(Z[A],Z) has
finite injective dimension. Hence, Z[A] is a Gorenstein ring (by one of the
equivalent definitions of Gorenstein rings). This completes the proof of the
proposition. �

The converse of Proposition 4.1.2 is also true. Specifically, we have the
following.

Lemma 4.1.3 Let R be a commutative ring with identity 1 endowed with
a ring involution ∗ and a ∗-invariant linear form t : R → Z. Assume that R
admits a finite orthonormal Z-basis A with respect to the (symmetric) bilinear
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132 Fusion Ring and Explicit Verlinde Formula

form 〈,〉 : R×R → Z, 〈x,y〉 := t (x · y∗). Assume further that 1 ∈ A and A is
stable under ∗. Then the map

F : Z+[A] → Z, F

(∑
a∈A

naa

)
= t

(
�a∈Aana

)
, for na ∈ Z+, (1)

is a nondegenerate fusion rule such that the associated fusion ring with trace
coincides with (R,t).

Proof Since 1 ∈ A, t (1) = 1. Thus, F(0) = t (1) = F(1) = 1. Since t is
invariant under ∗, F(x) = F(x∗), for any x ∈ Z+[A]. For any a ∈ A,

F(a + a∗) = t (a · a∗) = 〈a,a〉 = 1.

Finally, take x = ∑
a∈A

naa, y = ∑
a∈A

maa ∈ Z+[A]. Then

F(x + y) = t
((
�a∈Aana

) · (�a∈Aama ))
= 〈�a∈Aana, �a∈A(a∗)ma

〉
=
∑
b∈A

〈
�a∈Aana,b

〉 〈
b,�a∈A(a∗)ma

〉
,

since A is an orthonormal basis of R

=
∑
b∈A

〈
�a∈Aana,b

〉 〈
b∗,�a∈Aama

〉
, since t is ∗-invariant

=
∑
b∈A

F(x + b∗)F (y + b).

Thus, F satisfies all the defining properties of a nondegenerate fusion rule.
From the definition of the induced product in Z[A] as in identity (1) of the

proof of Proposition 4.1.2 (denoted by ·), we get that, for a, b ∈ A,

a · b =
∑
λ∈A

F(a + b + λ∗)λ

=
∑
λ∈A

t (abλ∗)λ

=
∑
λ∈A

〈ab,λ〉λ

= ab, since A is an orthonormal basis.

This shows that the fusion product in Z[A] = R induced from F coincides
with the original product in R.

https://doi.org/10.1017/9781108997003.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108997003.006


4.1 General Fusion Rules and the Associated Ring 133

The induced trace form clearly coincides with t by identity (10) of the proof
of Proposition 4.1.2 and (1). This proves the lemma. �

Definition 4.1.4 Let F be a nondegenerate fusion rule on a finite set A
(cf. Definition 4.1.1) and let Z[A] be the corresponding fusion ring with trace
t : Z[A] → Z (cf. Proposition 4.1.2). Define the positive-definite symmetric
bilinear form 〈,〉 on Z[A] by

〈x,y〉 = t (xy∗). (1)

(It is positive definite by the defining property (a) of Proposition 4.1.2.)

Let R[A] be the R-algebra Z[A] ⊗Z R obtained by extending the scalars.
Clearly 〈,〉 extends to a positive-definite symmetric R-bilinear form on R[A].
Also, the involution ∗ on Z[A] extends to an R-algebra involution on R[A].

Let SA := Spec(R[A]) be the (finite) set of R-algebra homomorphisms
f : R[A] → C, which is the same as the set of C-algebra homomorphisms
C[A] → C, where C[A] := R[A] ⊗R C.

Lemma 4.1.5 With the assumptions and notation as in the above Definition
4.1.4, the R-algebra R[A] is reduced. Further, the C-algebra homomorphism
ϕA : C[A] → CSA into the product algebra given by

ϕA(x) = (χ(x))χ∈SA , for x ∈ C[A], (1)

is an isomorphism.
Also, for any x ∈ R[A],

ϕA(x
∗) = ϕA(x). (2)

Proof We first show that R[A] is reduced, i.e., it has no nonzero nilpotent
elements. It clearly suffices to show that for x ∈ R[A] such that x2 = 0, we
have x = 0. Now,

〈xx∗,xx∗〉 = t (x2x∗2
) = 0.

Thus, xx∗ = 0, which gives 〈x,x〉 = 0 and hence x = 0. Thus, C[A] is a
reduced algebra as well, which implies that ϕA is an isomorphism.

We now prove (2).
Since R[A] is reduced, we have a canonical decomposition (as R-algebras):

R[A] � R1 × · · · × Rm × C1 × · · · × Cn

obtained from the indecomposable idempotents of R[A], where each Ri is
the R-algebra R and each Cj is the R-algebra C. The decomposition being
canonical, for any 1 ≤ i ≤ m and 1 ≤ j ≤ n,
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134 Fusion Ring and Explicit Verlinde Formula

∗ Ri = Ri′ and ∗ Cj = Cj ′,

for some 1 ≤ i′ ≤ m and 1 ≤ j ′ ≤ n. We next claim that i′ = i and j ′ = j .
For, otherwise, if i′ � i for some i, then, for any x ∈ Ri , x · x∗ = 0, which
gives 〈x,x〉 = 0. This is a contradiction since 〈,〉 on R[A] is positive definite.

By the same argument, we see that j ′ = j , for all j , i.e., ∗ keeps each of
the factors Ri and Cj stable. Of course, ∗ being an R-algebra homomorphism
on each factor, ∗ is the identify map on each Ri factor.

We next claim that ∗ is the complex conjugation on each Cj factor. For, if
not, ∗ would be the identity map on some Cj . This would give

t (x2) = t (xx∗) = 〈x,x〉 ≥ 0, for all x ∈ Cj .

This is a contradiction since t is a R-linear map and {x2 : x ∈ Cj } = Cj .
Finally, the canonical C-algebra isomorphism Cj ⊗R C � C × C is given

by z⊗ w �→ (wz,wz). From this (2) follows easily. �

Definition 4.1.6 Let F be a nondegenerate fusion rule on a finite set A.
Then, for any ‘genus’ g ≥ 0, define the map (by induction on g)

Fg : Z+[A] → Z

by

F0 = F, and, for any g ≥ 1, Fg(x) =
∑
λ∈A

Fg−1(x + λ+ λ∗), x ∈ Z+[A].

Also, define the ‘Casimir’ element

 =
∑
λ∈A

λ · λ∗ ∈ Z[A]. (1)

For any x ∈ Z[A], let μx : Z[A] → Z[A] be the multiplication by
x : y �→ xy. Let Tr(x) denote the trace of μx . Then, by Proposition 4.1.2(a)
and Definition 4.1.4,

Tr(x) =
∑
λ∈A

〈x · λ,λ〉 =
∑
λ∈A

t (x · λ · λ∗) = t (x · ). (2)

Proposition 4.1.7 For g ≥ 1 and any nondegenerate fusion rule on a finite
set A and any a1, . . . ,an ∈ A,

Fg(a1 + · · · + an) = t (a1 . . . an · g) = Tr(a1 . . . an · g−1), (1)

where t is the trace as in Proposition 4.1.2.
In fact, (1) remains true for g = 0 as well by Lemma 4.1.9.
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4.1 General Fusion Rules and the Associated Ring 135

Proof By the definition of Fg ,

Fg(a1 + · · · + an) =
∑

λ1,...,λg∈A
F0(a1 + · · · + an + λ1 + λ∗

1 + · · · + λg + λ∗
g)

=
∑

λ1,...,λg∈A
t (a1 . . . an · λ1 · λ∗

1 . . . λg · λ∗
g),

by the defining property 4.1.2(b)

= t (a1 . . . an · g).
This proves the first equality in (1). The second equality in (1) of course follows
from the identity (2) of Definition 4.1.6. �

As a consequence of Lemma 4.1.5 and Proposition 4.1.7, we have the
following.

Corollary 4.1.8 With the notation and assumption as in Proposition 4.1.7,
for any a1, . . . ,an ∈ A and g ≥ 0,

Fg(a1 + · · · + an) =
∑
χ∈SA

χ(a1) . . . χ(an)χ( )
g−1. (1)

Moreover, for any χ ∈ SA,

χ( ) =
∑
λ∈A

|χ(λ)|2. (2)

Proof For any x ∈ C[A], the multiplication map μx : C[A] → C[A],
under the identification ϕA of Lemma 4.1.5, is given by the diagonal matrix
(χ(x))χ∈SA (in the standard coordinate basis of CSA ). Thus,

Tr(x) =
∑
χ∈SA

χ(x).

Combining identity (1) of Proposition 4.1.7 with the above, we get

Fg(a1 + · · · + an) = Tr(a1 . . . an · g−1)

=
∑
χ∈SA

χ(a1) . . . χ(an)χ( )
g−1.

This proves (1). To prove (2), use identity (2) of Lemma 4.1.5. �

The following lemma is due to Jiuzu Hong.

Lemma 4.1.9 The element  ∈ Z[A] (cf. identity (1) of Definition 4.1.6) is
an invertible element in C[A].
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136 Fusion Ring and Explicit Verlinde Formula

In particular, identity (1) of Proposition 4.1.7 remains true for g = 0 as
well.

Proof By Lemma 4.1.5 it suffices to prove that, for any χ ∈ SA, χ( ) is
nonzero. Now,

χ( ) =
∑
λ∈A

|χ(λ)|2, by identity (2) of Corollary 4.1.8

> 0.

This proves the lemma. �

4.1.E Exercises

In the following Exercises 1–3, F is a nondegenerate fusion rule on a finite
set A.
(1) Let Q[A] := Z[A] ⊗Z Q be the associated fusion algebra over Q. Show

that there is a canonical decomposition (as a Q-algebra)

Q[A] � �mi=1Ei ×�nj=1Fj,

where each Ei is a (finite) totally real extension of Q and each Fj is an
imaginary quadratic extension of a (finite) totally real extension F ′

j of Q.
Moreover, each Ei and Fj are stable under ∗ with ∗ acting on each Ei

and F ′
j via the identity map and ∗ on each Fj acts via the nontrivial

automorphism of Fj over F ′
j .

Hint: Follow the proof of Lemma 4.1.5.
(2) Show that, for any g, h ∈ Z+ and x, y ∈ Z+[A],

Fg+h(x + y) =
∑
λ∈A

Fg(x + λ)Fh(y + λ∗).

Observe that this is a higher-genus analogue of the condition (f4) of
Definition 4.1.1.

(3) By definition, A is a basis of C[A]. For a ∈ A, let Fa = (F ab,c)b,c∈A be
the matrix of the multiplication μa in the A-basis. Then, by the definition
of multiplication in C[A] (cf. identity (1) of the proof of Proposition
4.1.2),

Fab,c = F(a + c + b∗).

Also, under the identification of C[A] with CSA (as in Lemma 4.1.5),
the standard coordinate basis of CSA gives rise to a basis of C[A]
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parameterized by SA. For a ∈ A, let Da be the matrix of μa in the
SA-basis. Then, clearly Da = (Daχ)χ∈SA is a SA × SA diagonal matrix
with

Daχ = χ(a).

Show that there exists a unitary matrix � = (�χ,a)χ∈SA,a∈A such that

Fa = �−1 ·Da ·� , for all a ∈ A.

In fact, � can be taken so that its entries

�χ,a = χ(a)(∑
λ∈A

|χ(λ)|2
) 1

2

.

Prove further that for any a1, . . . ,an ∈ A and g ≥ 0,

Fg(a1 + · · · + an) =
∑
χ∈SA

�χ,a1 · · ·�χ,an
(�χ,1)

n+2g−2
,

where 1 is the multiplicative identity of Z[A] (cf. the proof of
Proposition 4.1.2).

4.2 Fusion Ring of a Simple Lie Algebra and an Explicit
Verlinde Dimension Formula

In this section g is a simple Lie algebra over C. We fix a level c > 0. Associated
to the pair (g,c), there is a fusion rule Fc giving rise to the fusion ring Rc(g).
We will draw upon the general results proved in Section 4.1 to study Rc(g) in
this section. This is our most important example of fusion rings, which leads
to an explicit Verlinde dimension formula. We continue to follow the notation
from Section 1.2, often without explanation.

Example 4.2.1 Let Dc be as defined in (1) of Definition 2.1.1. Define the
function Fc : Z+[Dc] → Z+ by Fc(0) = 1 (for the zero element of Z+[Dc])
and, for any s ≥ 1 and λi ∈ Dc,

Fc(λ1 + · · · + λs) = dim VP1( �p,�λ),
where �p = (p1, . . . ,ps) are any distinct points in P1, �λ = (λ1, . . . ,λs) and
VP1( �p,�λ) denotes the space of covacua on P1 with respect to the weights
�λ attached to the points �p. By Proposition 3.5.8 and Exercise 2.3.E.2,
Fc(λ1 + · · · + λs) does not depend upon the choice of the points �p .
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Define the involution ∗ : Dc → Dc by λ∗ := −woλ, wherewo is the longest
element of the Weyl group of g. Thus, λ∗ is the highest weight of the dual
module V (λ)∗.

By Exercise 2.3.E.2, Fc satisfies the properties (f2) and (f5) of Definition
4.1.1 for A = Dc. The property (f4) follows from Corollary 3.5.10(b) for
g = 0. (If x = 0 as an element of Z+[Dc], it follows from Exercise 2.3.E.2.)
The property (f3) follows from the following lemma. Thus, Fc is indeed a
nondegenerate fusion rule.

The corresponding fusion ring Z[Dc] (as given by Proposition 4.1.2) is
called the fusion ring of g at level c. Henceforth, it will be denoted by Rc(g).
By definition, as a Z-module, it is freely generated by the isomorphism classes
{[V (λ)]}λ∈Dc and the fusion product ⊗c (at level c) is given by (cf. identity (1)
of the proof of Proposition 4.1.2):

[V (λ)] ⊗c [V (μ)] :=
∑
ν∈Dc

dim VP1((λ,μ,ν
∗))[V (ν)], (1)

where VP1((λ,μ,ν∗)) denotes the space of covacua on P1 with respect to the
weights (λ,μ,ν∗) attached to any three distinct points in P1.

Lemma 4.2.2 Let s≥ 1. For any s-pointed curve (�, �p) and any �λ =
(λ1, . . . ,λs) with each λi ∈ Dc, there is an isomorphism

V�( �p,�λ) � V�( �p,�λ∗),

where �λ∗ := (λ∗
1, . . . ,λ

∗
s ).

Proof Recall first that there exists an automorphism β : g→ g such that, for
any λ ∈ D, the g-module V (λ)β is isomorphic with V (λ∗), where V (λ)β is the
same vector space as V (λ) but the g-module structure on V (λ)β is twisted via

x 
 v = β−1(x) · v, for x ∈ g and v ∈ V (λ) (1)

(cf. (Bourbaki, 2005, Chap. VIII, §7, no. 6, Remark 1)).
The automorphism β clearly gives rise to an automorphism β̂ of the affine

Lie algebra ĝ defined by

β̂(x[f ]) = β(x)[f ], for x ∈ g, f ∈ K = C((t)) and β̂(C) = C.

Now, for any λ ∈ Dc, the twisted ĝ-module H (λ)β̂ (with the same space
as H (λ) and the ĝ-module structure twisted by the same formula as (1)) is
isomorphic with H (λ∗). To see this, let v+ ∈ H (λ) be a highest-weight

vector. Then, (g ⊗ tC[[t]]) 
 v+ = 0 in H (λ)β̂ . Moreover, the g-submodule
of H (λ)β̂ generated by v+ is the same as V (λ)β � V (λ∗). Thus, H (λ)β̂ is
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an irreducible quotient of the generalized Verma module M̂(V (λ∗),c) (cf. (4)
of Definition 1.2.4) and hence an irreducible quotient of the Verma module

M̂(λ∗
c ). Now, apply Exercise 1.2.E.6 to get that H (λ)β̂ � H (λ∗).

Choose a ĝ-module isomorphism H (λ)β̂ � H (λ∗) (which is unique up to
a scalar multiple by Exercise 1.2.E.5) and let

β̂λ : H (λ)→ H (λ∗)

be the set-theoretic identity map under the above identification. Then, clearly

β̂λ(x̂ · v) = β̂(x̂) · β̂λ(v), for x̂ ∈ ĝ,v ∈ H (λ). (2)

Now, we are ready to prove the lemma. Let

β̂�λ : H (�λ) := H (λ1)⊗ · · · ⊗ H (λs)→ H (�λ∗)

be the linear isomorphism β̂�λ := β̂λ1 ⊗ · · · ⊗ β̂λs .
From property (2), it is easy to see β̂�λ induces an isomorphism V�( �p,�λ) �

V�( �p,�λ∗). This proves the lemma. �

As a consequence of Corollary 2.3.5 and the definition of the fusion product
⊗c (as in (1) of Example 4.2.1), we get the following result.

Proposition 4.2.3 For any λ, μ ∈ Dc, [V (λ)]⊗c [V (μ)] is the isomorphism
class of the quotient Qλ,μ of V (λ) ⊗ V (μ) by the g-submodule Kλ,μ
generated by ⊕

p+q+r>2c

(
V (λ)(p) ⊗ V (μ)(q)

)
(r)
,

where
(
V (λ)(p) ⊗ V (μ)(q)

)
(r)

denotes the isotypic component of V (λ)(p) ⊗
V (μ)(q) corresponding to the irreducible representation indexed by r of sl2(θ)
(cf. Definition 2.3.1).

In particular,Qλ,μ has no components V (ν) with ν � Dc.

Proof Observe first that for any ν � Dc, V (ν) does not occur inQλ,μ:
If V (ν) does not occur in V (λ)⊗V (μ), there is nothing to prove. So, assume

that ν(θ∨) ≥ c + 1 and there is a copy V (ν) ⊂ V (λ) ⊗ V (μ). Consider the
sl2(θ)-submodule V1 of V (ν) passing through the highest-weight vector of
V (ν). Then,

V1 ⊂
⊕
p,q≥0

(
V (λ)(p) ⊗ V (μ)(q)

)
(ν(θ∨)) .

But, for
(
V (λ)(p) ⊗ V (μ)(q)

)
(ν(θ∨)) to be nonzero, we must have p + q ≥

ν(θ∨). Thus, from the definition ofKλ,μ, V1 ⊂ Kλ,μ hence so is V (ν) ⊂ Kλ,μ.
This proves that V (ν) does not occur inQλ,μ.

https://doi.org/10.1017/9781108997003.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108997003.006


140 Fusion Ring and Explicit Verlinde Formula

We next show that, for any ν ∈ Dc, the multiplicity mνλ,μ :=
dim VP1(λ,μ,v∗) of [V (ν)] in [V (λ)]⊗c [V (μ)] coincides with the multiplicity
nνλ,μ of V (ν) inQλ,μ.

By Corollary 2.3.5,

mνλ,μ = dim

{
g-module maps f : V (λ)⊗ V (μ)⊗ V (ν∗)→ C

such that f vanishes on
⊕

p+q+r>2c

V (λ)(p) ⊗ V (μ)(q) ⊗ V (ν∗)(r)
}

= dim {g-module maps f̄ : V (λ)⊗ V (μ) → V (ν) such that f̄

vanishes on [V (λ)(p) ⊗ V (μ)(q)](r) with p + q + r > 2c}
= nνλ,μ.

This proves the proposition. �

Corollary 4.2.4 With the notation as in Proposition 4.2.3,

(a) [V (λ)] ⊗c [V (μ)] = [V (λ)⊗ V (μ)], if λ+ μ ∈ Dc.
(b) If (λ+μ)(θ∨) = c+1, then [V (λ)]⊗c [V (μ)] is obtained from V (λ)⊗

V (μ) by removing all the components V (ν) with ν(θ∨) ≥ c + 1. (In fact, in
this case V (λ)⊗ V (μ) cannot have any component V (ν) with ν(θ∨) > c+ 1,
since (λ+ μ)(θ∨) = c + 1.)

Proof (a) In this case, clearly Kλ,μ = 0, where Kλ,μ is as defined in
Proposition 4.2.3. This proves (a) by Proposition 4.2.3.

(b) Let V (ν) ⊂ V (λ)⊗ V (μ) be a component with ν(θ∨) = c + 1. Then

V (ν)(ν(θ∨)) ⊂ V (λ)(λ(θ∨)) ⊗ V (μ)(μ(θ∨)).

Thus

V (ν)(ν(θ∨)) ⊂ Kλ,μ and hence V (ν) ⊂ Kλ,μ.

Conversely, take p, q, r such that p + q + r ≥ 2c + 1 and (V (λ)(p) ⊗
V (μ)(q))(r) � 0. Then p = λ(θ∨), q = μ(θ∨) and r = (λ + μ)(θ∨).
But any g-component V (ν) of the g-submodule of V (λ) ⊗ V (μ) gener-
ated by

(
V (λ)(λ(θ∨)) ⊗ V (μ)(μ(θ∨))

)
((λ+μ)(θ∨)) clearly satisfies ν(θ∨)≥ (λ +

μ)(θ∨) = c + 1. Thus, Kλ,μ does not contain any component V (ν) with
ν(θ∨) ≤ c. This proves (b) and hence the corollary is proved. �
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Definition 4.2.5 Let g be a simple Lie algebra over C and letW be its Weyl
group. ThenW acts naturally on the weight lattice P ⊂ h∗, where

P := {λ ∈ h∗ : λ(α∨
i ) ∈ Z for all the simple coroots α∨

i },
and hence also on PR := P ⊗Z R.

Let Q ⊂ P be the root lattice and let Qlg ⊂ Q be the sublattice generated
by the long roots (if all the root lengths are equal, we call them long roots).
Let h∨ := 1 + ρ(θ∨) be the dual Coxeter number, where ρ is the half sum of
positive roots of g and θ is the highest root.

LetG be the connected simply-connected complex algebraic group with Lie
algebra g and let T ⊂ G be the maximal torus with Lie algebra h. (Here we
have deviated from our usual convention to denote the Lie algebra of a group
by the corresponding Gothic character.)

Let Wc be the affine Weyl group of g at level c, which is, by definition,
the group of affine transformations of PR generated by W and the translation
λ �→ λ+ (c+ h∨)θ . Since each long root isW -conjugate to θ ,Wc is the semi-
direct product ofW by the lattice (c+ h∨)Qlg . For any α ∈ �, where� is the
set of all the roots of g, and n ∈ Z, define the affine wall

Hα,n = {λ ∈ PR : 〈λ,α〉 = n(c + h∨)}.
Let

H :=
⋃

α∈�, n∈Z
Hα,n.

The connected components of PR\H are called alcoves. Then, the closure of
any alcove is a fundamental domain for the action of Wc on PR and Wc acts
simply transitively on the set of alcoves (cf. (Bourbaki, 2002, Chap. VI, §2,
no. 1)). In particular, Wc acts freely on PR\H . Moreover, Wc is a Coxeter
group (cf. (Bourbaki, 2002, Chap. V, §3, no. 2)). The fundamental alcove is
defined by

A◦ := {λ ∈PR : λ(α∨
i )>0 for all the simple coroots α∨

i and λ(θ∨)<c +h∨}.
Its closure in PR is clearly given by

A= {λ ∈PR : λ(α∨
i ) ≥ 0 for all the simple coroots α∨

i and λ(θ∨) ≤ c +h∨}.
Then, it is easy to see that

A◦ = A\H . (1)
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Define the shifted action ofWc on PR by

w ∗ λ = w(λ+ ρ)− ρ, for w ∈ Wc and λ ∈ PR. (2)

It is easy to see that the map

Dc → A◦ ∩ P, μ �→ μ+ ρ, (3)

is a bijection. SinceWc keeps P stable and, moreover, it acts simply transitively
on the set of alcoves, for any λ ∈ P \H , there exists a unique w ∈ Wc and
μ ∈ Dc such that

λ− ρ = w ∗ μ. (4)

Conversely, for any w ∈ Wc and μ ∈ Dc,
(w ∗ μ)+ ρ ∈ P \H . (5)

Further, for any λ ∈ Hα,n with α ∈ � and n ∈ Z,

τ 2n(c+h∨)α
〈α,α〉

· sα(λ) = sα · τ−2n(c+h∨)α
〈α,α〉

(λ) = λ, (6)

where τβ denotes the translation by β and sα(λ) := λ − λ(α∨)α ∈ W is the
reflection corresponding to the root α. (Observe that for any α ∈ �,

2α

〈α,α〉 ∈ Qlg, (7)

which can easily be seen from the tables in (Bourbaki, 2002, Plates II–IX).)
Denote by Tc ⊂ T the subgroup

Tc = {t ∈ T : eβ(t) = 1, for all β ∈ (c + h∨)Qlg},
and let T reg

c be the subset of Tc consisting of regular elements, i.e.,

T
reg
c := {t ∈ Tc : w · t � t for any w � 1 ∈ W }

= {t ∈ Tc : eα(t) � 1 for any root α}.
Let κ : h∗ → h be the isomorphism induced from the invariant form

normalized by 〈θ,θ〉 = 2.

Lemma 4.2.6 (a) The map ϕ : λ �→ Exp
(

2πiκ(λ)
c+h∨

)
induces an

isomorphism of groups:

ϕ : P/(c + h∨)Qlg
∼−→ Tc.

(b) The map λ �→ Exp
(

2πiκ(λ+ρ)
c+h∨

)
induces a bijection:

Dc
∼−→ T

reg
c /W .
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Proof (a) For any long root α and λ ∈ P ,

e(c+h
∨)α
(

Exp

(
2πiκ(λ)

c + h∨

))
= e2πi〈λ,α〉

= e2πiλ(α∨), since α is a long root

= 1.

Thus, Imϕ ⊂ Tc.
Let λ = (c + h∨)α, for a long root α. Then

Exp

(
2πiκ(λ)

c + h∨

)
= Exp(2πiκ(α)) = 1,

since

κ(�lg) ⊂ Q∨ (1)

as the following calculation shows, where �lg denotes the set of long roots.
For α ∈ �lg ,

ωi(κ(α)) = 〈ωi,α〉 = 〈ωi,α∨〉 ∈ Z,

where {ω1, . . . ,ω�} ⊂ h∗ are the fundamental weights. Thus, ϕ factors through
(c + h∨)Qlg . We next show that ϕ is injective.

Take λ ∈ P such that Exp
(

2πiκ(λ)
c+h∨

)
= 1. Then, κ(λ)

c+h∨ ∈ Q∨, which gives

λ ∈ (c + h∨)κ−1(Q∨). (2)

For any simple root αi ,

κ−1(α∨
i ) = 2αi

〈αi,αi〉 .

Taking a simple root αk in the W -orbit of non-long αi such that 〈αk,αj 〉 � 0
for a long root αj and considering sk(αj ), we see that

κ−1(Q∨) ⊂ Qlg .

Combining this with (1), we get

κ−1(Q∨) = Qlg . (3)

In particular,Wc is canonically isomorphic with the affine Weyl group defined
in Definition 1.2.12. Combining (2) and (3), we get that ϕ is injective.

Take t ∈ Tc and choose λ ∈ h∗ such that Exp
(

2πiκ(λ)
c+h∨

)
= t . Then

eβ
(

Exp

(
2πiκ(λ)

c + h∨

))
= 1 for all β ∈ (c + h∨)Qlg .
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This gives

λ(κ(α)) ∈ Z, for all α ∈ Qlg .

Hence, by (3), we get

λ(Q∨) ⊂ Z ⇒ λ ∈ P .

This proves the surjectivity of ϕ and hence (a) is proved.

(b) As in Definition 4.2.5 (see (3) of Definition 4.2.5), the map

Dc
∼−→ A◦ ∩ P, λ �→ λ+ ρ, (4)

is a bijection. Moreover, by the (a) part, theW -equivariant map

ϕ : P/(c + h∨)Qlg
∼−→ Tc

is an isomorphism. Thus, ϕ induces a bijection

P/Wc
∼−→ Tc/W . (5)

Now, for any λ ∈ Hα,n (with α ∈ � and n ∈ Z), by identity (6) of Definition
4.2.5,

sα · τ−2n(c+h∨)α
〈α,α〉

(λ) = λ.

Of course, by (7) of Definition 4.2.5, for any λ ∈ P ,

ϕ(λ) = ϕ(τ−2n(c+h∨)α
〈α,α〉

λ).

Thus, for λ ∈ Hα,n,

sα(ϕ(λ)) = ϕ(λ); in particular, ϕ(λ) ∈ Tc\T reg
c . (6)

Further, sinceWc acts freely on P \H , by (5) and (6),

(P \H)/Wc ∼−→ T
reg
c /W . (7)

Finally, since A◦ is an alcove and Wc acts simply transitively on the set of
alcoves (cf. Definition 4.2.5), the canonical inclusion induces a bijection:

A◦ ∩ P ∼−→ (P \H)/Wc. (8)

Combining the bijections (4), (8) and (7), we get the (b)-part of the lemma.
�
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Definition 4.2.7 LetR(g) be the representation ring of g. Define the Z-linear
map

ξc : R(g) → Rc(g)

as follows. For λ ∈ D (where D is as in Definition 1.2.6) such that λ+ ρ lies
on an affine wall Hα,n (for some α ∈ � and n ∈ Z), define

ξc([V (λ)]) = 0.

Otherwise, there is a unique μ ∈ Dc and w ∈ W ′
c such that λ = w−1 ∗ μ,

where W ′
c is the set of minimal-length coset representatives in Wc/W (cf. (4)

of Definition 4.2.5). (Observe that, for w ∈ Wc and μ ∈ Dc, w−1 ∗ μ ∈ D if
and only if w ∈ W ′

c, see Kostant (2004, Remark 1.3).) In this case, we define

ξc([V (λ)]) = ε(w)[V (μ)],

where ε(w) is the sign of the Coxeter group element w.

The following lemma follows easily from the definition of the map ξc since
R(g) =⊕λ∈D Z[V (λ)].

Lemma 4.2.8 The kernel of ξc : R(g) → Rc(g) is the Z-submodule of R(g)
spanned by

(a) [V (λ)], λ ∈ D such that λ+ ρ ∈ H , and
(b) [V (w−1 ∗ μ)] − ε(w)[V (μ)], for μ ∈ Dc and w ∈ W ′

c.

Proof Take λ ∈ D such that λ+ ρ � H . Then,Wc acts freely on λ+ ρ (cf.
Definition 4.2.5). From this the lemma follows easily. �

The following is a crucial result used in the proof of an explicit Verlinde
dimension formula (cf. Theorem 4.2.19).

Theorem 4.2.9 For any simple Lie algebra g and any level c > 0, the map

ξc : R(g) → Rc(g)

is a surjective ring homomorphism.

In particular, the fundamental representations {[V (ωi)]}1≤i≤� generate the
fusion ring Rc(g).

Before we come to the proof of this theorem, we give a different geometric
definition of a product in Rc(g) which (as shown below in Corollary 4.2.17)
coincides with the product ⊗c. The proof of Theorem 4.2.9 is given in
Subsection 4.2.18.
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As earlier, we fix a level c > 0. Let G be the (simple) simply-connected

complex algebraic group with Lie algebra g and let ¯̂
G= ¯̂

G01 be the cor-
responding affine Kac–Moody group (corresponding to the basic weight
01 ∈ D̂), which is a Gm central extension of the formal loop group Ḡ((t)) (cf.

Proposition 1.4.12). Let P̂ ⊂ ¯̂
G be the parahoric subgroup, which is the inverse

image of Ḡ[[t]] under the central extension p̄ : ¯̂
G → Ḡ((t)). The central

extension uniquely splits over Ḡ[[t]] (cf. Remark 1.4.13) and hence

P̂ � Gm × Ḡ[[t]].

Recall the infinite Grassmannian X̄G, which is an ind-projective variety
(cf. Propositions 1.3.18 and 1.3.24) with C-points

X̄G(C) = G((t))/G[[t]].

Then, ¯̂
G acts on X̄G through p̄ via the action of Ḡ((t)) on X̄G (cf.

Proposition 1.3.18(c)).

Lemma 4.2.10 (a) Let V be a finite-dimensional representation of G. Then

there exists a ¯̂
G-equivariant vector bundle Lc(V ) over X̄G such that the fiber

of Lc(V ), over the base point ō ∈ X̄G, which is a module for (p̄)−1(Ḡ[[t]]) �
Gm × Ḡ[[t]] is acted by the Gm-factor via the character z �→ z−c and Ḡ[[t]]
acts through the representation V ∗ of G under the evaluation map Ḡ[[t]] →
G,t �→ 0.

Moreover,

(b) For any λ ∈ D such that λ + ρ ∈ H , Hi(X̄G,Lc(V (λ))) = 0 for all
i ≥ 0, where H is defined in Definition 4.2.5.

And,

(c) For μ∈Dc and w ∈W ′
c, H

i(X̄G,Lc(V (w
−1 ∗ μ)))= 0 unless

i = �(w), and

H�(w)(X̄G,Lc(V (w
−1 ∗ μ))) � H (μc)

∗

as a module of Lie ¯̂
G = ĝ (cf. Definition B.22 and Lemma 1.4.6).

Thus,

H�(w)(X̄G,Lc(V (w
−1 ∗ μ)))ĝ− � V (μ)∗,

where, as in (4) of Definition 1.2.2, ĝ− := g⊗ (t−1C[t−1]).

Proof To prove the existence of Lc(V ), it clearly suffices to assume that
V = V (λ) for λ ∈ D. Consider the affine full-flag ind-variety X̄G(B) defined
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in Exercise 1.3.E.11, where B ⊂ G is the Borel subgroup with Lie algebra b

(as at the beginning of Section 1.2). Then, parallel to X̄G, ¯̂
G acts on X̄G(B)

through p̄ : ¯̂
G → Ḡ((t)). Let B̂ be the (affine) Borel subgroup of ¯̂

G, which
is the inverse image of B ⊂ Ḡ((t)) defined in Exercise 1.3.E.11. Recall
that B := ev−1

0 (B) is the closed subgroup scheme under the evaluation map
ev0 : Ḡ[[t]])→ G,t �→ 0.

Now, for any λ ∈ D, there exists a ¯̂
G-equivariant line bundle L B

c (λ) over
X̄G(B) such that the fiber of L B

c (λ) over the base point ōB ∈ X̄G(B) (which
is a module for B̂ � Gm × B) is acted by the Gm-factor via the character
z �→ z−c and B acts through the character e−λ of B under the evaluation
map B → B,t �→ 0. More generally, as we will need in Subsection 4.2.18,

for any finite-dimensional B-module M , there exists a ¯̂
G-equivariant vector

bundle L B
c (M) over X̄G(B) such that the fiber of L B

c (M) over the base point
ōB ∈ X̄G(B) is acted by the Gm-factor via the character z �→ z−c and B acts
through the representation M∗ of B. We denote this representation of B̂ by
M∗
c . We now show the existence of such L B

c (M).
Since Ḡ((t)) → X̄G(B) is a locally trivial principal B-bundle (cf.

Exercise 1.3.E.11) and ¯̂
G

p̄−→ Ḡ((t)) is a locally trivial principal Gm-
bundle trivial over Ḡ[t−1]− × Ḡ[[t]] (cf. Proposition 1.4.12), we get that the

composite β : ¯̂
G→ X̄G(B) is a locally trivial principal B̂-bundle. Consider the

B̂-equivariant vector bundle θ : ¯̂
G ×M∗

c → ¯̂
G under the projection θ , where

B̂ acts on ¯̂
G×M∗

c via

b · (g,v) = (gb−1,b · v), for b ∈ B̂,g ∈ ¯̂
G and v ∈ M∗

c .

Thus, by Theorem C.17, θ descends to give the vector bundle L B
c (M) over

X̄G(B) as above. Recall from the proof of Theorem C.17 that, thought of as a
C-space functor, L B

c (M) is the sheafification of the functor

S �
( ¯̂
G(S)× (M∗

c )(S)
)
/B̂(S)

(also see Kumar (2002, Corollary 8.2.5) for another construction of L B
c (M)).

Now, define

Lc(V (λ)) := π∗
(
L B
c (λ)

)
for the locally trivialG/B-fibration π : X̄G(B) → X̄G (cf. Exercise 1.3.E.11).
By the classical BWB theorem, Lc(V (λ)) satisfies the property (a). Further,
from the degenerate Leray spectral sequence applied to the fibration π with
respect to the line bundle L B

c (λ), for any i ≥ 0 and λ ∈ D,

https://doi.org/10.1017/9781108997003.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108997003.006


148 Fusion Ring and Explicit Verlinde Formula

Hi
(
X̄G(B),L

B
c (λ)

)
� Hi

(
X̄G,Lc(V (λ))

)
.

Thus, (b) and (c)-parts of the lemma follow from the affine analogue of the
BWB theorem (cf. (Kumar, 2002, Corollary 8.3.12)). (Observe that we have
used here Proposition 1.3.24.) �

Definition 4.2.11 For any λ,μ ∈ Dc, define the following (a priori different
from ⊗c) product ⊗cF :

[V (λ)] ⊗cF [V (μ)] = χg
(
X̄G,Lc(V (λ)⊗ V (μ))

)∗
, (1)

where for any finite-dimensionalG-module V , we define the virtualG-module

χg(X̄G,Lc(V )) :=
∑
i≥0

(−1)i
[
Hi(X̄G,Lc(V ))

ĝ−
]

∈ Rc(g). (2)

As shown below in the following Lemma 4.2.12, the above sum is a finite sum
and it is determined there. In particular, it lies in Rc(g).

We can rewrite (1) as follows. Let

Hi
(
X̄G,Lc(V (λ)⊗ V (μ))

) �
⊕
ν∈Dc

d
λ,μ
i (ν)H (ν)∗,

as ĝ-modules, for some (unique) dλ,μi (ν) ∈ Z+ (cf. Lemma 4.2.10). Then

[V (λ)] ⊗cF [V (μ)] =
∑
ν∈Dc

⎛⎝∑
i≥0

(−1)idλ,μi (ν)

⎞⎠ [V (ν)]. (3)

Lemma 4.2.12 For any λ, μ ∈ Dc ,

[V (λ)] ⊗cF [V (μ)] =
∑
ν∈Dc

∑
w∈W ′

c

(−1)�(w)nλ,μ
w−1∗ν[V (ν)], (1)

where

n
λ,μ

w−1∗ν := dim
(

Homg
(
V (w−1 ∗ ν),V (λ)⊗ V (μ)

))
.

Proof Decompose as g-modules (cf. Definition 4.2.7):

V (λ)⊗ V (μ) �
⎛⎝⊕
ν∈Dc

⊕
w∈W ′

c

n
λ,μ

w−1∗ν V (w
−1 ∗ ν)

⎞⎠⊕ ⊕
γ∈D∩(H−ρ)

dλ,μγ V (γ ),

(2)

for some dλ,μγ ∈ Z+.
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Then, from decomposition (2) and Lemma 4.2.10, we get

Hi(X̄G,Lc(V (λ)⊗ V (μ)))

�
(⊕
ν∈Dc

⊕
w∈W ′

c

n
λ,μ

w−1∗νH
i
(
X̄G,Lc(V (w

−1 ∗ ν))
))

⊕ ⊕
γ∈D∩(H−ρ)

dλ,μγ H i
(
X̄G,Lc(V (γ ))

)
�
⊕
ν∈Dc

( ⊕
w∈W ′

c
�(w)=i

n
λ,μ

w−1∗ν

)
H (ν)∗, by Lemma 4.2.10. (3)

Thus,

χg
(
X̄G,Lc(V (λ)⊗ V (μ))

) =
∑
ν∈Dc

∑
w∈W ′

c

(−1)�(w)nλ,μ
w−1∗ν[V (ν)

∗].

From the definition of [V (λ)] ⊗cF [V (μ)] as in (1) of Definition 4.2.11, we get
(1). This proves the lemma. �

Definition 4.2.13 For any μ ∈ D and nonzero z ∈ C, realize V (μ) as a
module for the affine Lie algebra g̃ := (g ⊗ A) ⊕ CC (cf. (1) of Definition
1.2.1) via the evaluation at z:

evz : (g⊗ A)⊕ CC → g, C �→ 0 and x[f ] �→ f (z)x, for x∈g and f ∈A.

We denote this g̃-module by Vz(μ).
For any ν ∈ Dc and μ ∈ D, we give a resolution of H (ν)⊗ Vz(μ).
First, recall the BGG resolution consisting of ĝ-modules and ĝ-module maps

(cf. (Kumar, 2002, Theorem 9.1.3)):

· · · δ2−→ F1
δ1−→ F0

ε−→ H (ν) → 0,

where

Fp :=
⊕
w∈W ′

c
�(w)=p

M̂(V (w−1 ∗ ν),c).

Tensoring with Vz(μ), we get the resolution

· · · → F1 ⊗ Vz(μ)→ F0 ⊗ Vz(μ) → H (ν)⊗ Vz(μ) → 0.

Recall from Definition 1.2.2 that ĝ− := g⊗ (t−1C[t−1]).
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Lemma 4.2.14 For any ν ∈ Dc, μ ∈ D and z ∈ C, the Lie algebra
homology H∗(ĝ−,H (ν) ⊗ Vz(μ)) as a g-module is given by the homology
of the following complex consisting of g-modules and g-module maps:

· · · → F̂p → · · · δ̂2−→ F̂1
δ̂1−→ F̂0 → 0,

where

F̂p :=
⊕
w∈W ′

c
�(w)=p

(
V (w−1 ∗ ν)⊗ V (μ)

)
.

Proof By the proof of Lemma 1.2.5, for any g-module V , as U(ĝ−)-
modules,

M̂(V ,c) � U(ĝ−)⊗C V,

where U(ĝ−) acts on the right-hand side via the left multiplication on the first
factor. Thus, by the Hopf principle (cf. (Kumar, 2002, Proposition 3.1.10)), as
U(ĝ)-modules,

M̂(V ,c)⊗ Vz(μ) � U(ĝ−)⊗C (V ⊗ Vz(μ)). (1)

In particular, M̂(V ,c)⊗Vz(μ) is free as a U(ĝ−)-module. Thus, the homology
H∗(ĝ−,H (ν)⊗ Vz(μ)) is given by the homology of the complex:

· · · → C ⊗U(ĝ−)
(
F1 ⊗ Vz(μ)

)
→ C ⊗U(ĝ−)

(
F0 ⊗ Vz(μ)

)
→ 0. (2)

By (1), there exists a g-module isomorphism (for any g-module V ):

C ⊗U(ĝ−)
(
M̂(V ,c)⊗ Vz(μ)

)
� V ⊗ Vz(μ) � V ⊗ V (μ). (3)

Combining (2) and (3), we get the lemma. �

Proposition 4.2.15 The products ⊗c and ⊗cF in Rc(g) coincide if and only
if for all λ, μ, ν ∈ Dc ,

χg(λ,μ,ν) = 0,

where

χg(λ,μ,ν) :=
∑
i≥1

(−1)i dim
(
Homg(V (λ),Hi(ĝ−,H (ν)⊗ V1(μ)))

)
.
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Proof By Lemma 4.2.12, for λ, μ ∈ Dc,

[V (λ)] ⊗cF [V (μ)] =
∑
ν∈Dc

∑
w∈W ′

c

(−1)�(w)nλ,μ
w−1∗ν[V (ν)]

=
∑
ν∈Dc

∑
w∈W ′

c

(−1)�(w) dim
(

Homg(V (λ),V (w
−1 ∗ ν)

⊗V (μ∗))
)

[V (ν)]

=
∑
ν∈Dc

∑
i≥0

(−1)i dim
(
Homg(V (λ),Hi(ĝ−,H (ν)

⊗V1(μ
∗))
)

[V (ν)], (1)

by Lemma 4.2.14 using the Euler–Poincaré principle. Further, by the definition
of ⊗c (cf. (1) of Example 4.2.1),

[V (λ)] ⊗c [V (μ)] =
∑
ν∈Dc

dim VP1(λ,μ,ν
∗)[V (ν)], (2)

where (λ,μ,ν∗) are attached to the points (∞,1,0) on P1, respectively.
By Lemma 4.2.2,

VP1(λ,μ,ν
∗) � VP1(λ

∗,μ∗,ν)
� [H (ν)⊗ V∞(λ∗)⊗ V1(μ

∗)]g⊗C[t−1], by Theorem 2.2.2.

� Homg(V (λ),H0(ĝ−,H (ν)⊗ V1(μ
∗))). (3)

Combining (1)–(3) and replacing μ by μ∗, we get the proposition. �

We now recall the following result from Teleman (1995, Theorem 0), the
proof of which is omitted due to its length. Actually, he proves a more general
result, but the following version is sufficient for our purposes.

Theorem 4.2.16 For any λ, μ, ν ∈ Dc and any i ≥ 1, V (λ) does not occur
in Hi(ĝ−,H (ν)⊗ V1(μ)) as a g-module. �

From the above theorem, one can completely determine Hi(ĝ−,H (ν) ⊗
V1(μ)) as a g-module, provided one knows the g-module H0(ĝ−,H (ν) ⊗
V1(μ)) (cf. Exercise 4.2.E.6).

As an immediate consequence of Lemma 4.2.12, Proposition 4.2.15 and
Theorem 4.2.16, we get the following.

Corollary 4.2.17 The two products ⊗c and ⊗cF in Rc(g) coincide for any
simple Lie algebra g and any central charge c > 0.
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Hence, for any λ, μ ∈ Dc ,

[V (λ)] ⊗c [V (μ)] =
∑
ν∈Dc

∑
w∈W ′

c

(−1)�(w)

× dim
(

Homg(V (w
−1 ∗ ν),V (λ)⊗ V (μ))

)
[V (ν)].

Now, we are ready to prove Theorem 4.2.9.

4.2.18 Proof of Theorem 4.2.9

In view of Corollary 4.2.17, it suffices to show that the map ξc : R(g) → Rc(g)

is a ring homomorphism with respect to the product ⊗cF in Rc(g). As an
immediate consequence of ξc being a ring homomorphism with respect to the
product ⊗cF in Rc(g), we get that ⊗cF is associative (since ξc is surjective).

For any finite-dimensional G-module V , define the virtual ĝ-module

χ

(
X̄G,Lc(V )

)
:=
∑
i≥0

(−1)iH i
(
X̄G,Lc(V )

)
.

By the definition of ξc and Lemma 4.2.10, for any λ ∈ D,

ξc([V (λ)]) = χg
(
X̄G,Lc(V (λ))

)∗
, (1)

where χg is defined by (2) of Definition 4.2.11.
We next show that for any λ ∈ D, w ∈ Wc with w−1 ∗ λ ∈ D and finite-

dimensional G-module V ,

χ
(
X̄G,Lc(V (λ)⊗ V )

) = (−1)�(w)χ
(
X̄G,Lc

(
V (w−1 ∗ λ)⊗ V

))
. (2)

In particular,

χg
(
X̄G,Lc(V (λ)⊗ V )

) = (−1)�(w)χg
(
X̄G,Lc

(
V (w−1 ∗ λ)⊗ V

))
. (3)

Since V is aG-module, from the Leray spectral sequence applied to the locally
trivialG/B-fibration X̄G(B) → X̄G (cf. Exercise 1.3.E.11) with respect to the
vector bundle L B

c (Cλ ⊗ V ) and the classical BWB theorem, we get

χ
(
X̄G,Lc(V (λ)⊗ V )

) = χ
(
X̄G(B),L

B
c (Cλ ⊗ V )

)
=
∑
β∈PV

nβ χ
(
X̄G(B),L

B
c (λ+ β)

)
, (4)

where the vector bundle L B
c (M) over X̄G(B) for any finite-dimensional

B-moduleM is as in the proof of Lemma 4.2.10, Cλ denotes the 1-dimensional
representation of B corresponding to the character eλ, PV is the set of weights
of V and the character
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ch(V ) =
∑
β∈PV

nβe
β .

Similarly,

χ(X̄G,Lc(V (w
−1 ∗ λ)⊗ V ))

=
∑
β∈PV

nβ χ
(
X̄G(B),L

B
c (w

−1 ∗ λ+ β)
)

=
∑
β∈PV

nβ χ
(
X̄G(B),L

B
c (w

−1 ∗ (λ+β)
)
, since nβ= nvβ, for any v∈W

= (−1)�(w)
∑
β∈PV

nβ χ
(
X̄G(B),L

B
c (λ+ β)

)
,

by Kumar (2002, Corollary 8.3.12). (5)

Combining (4) and (5), we get (2).
Specializing (2) to the case when λ ∈ D is such that λ + ρ ∈ Hα,n (with

α ∈ � and n ∈ Z), we get from (6) of Definition 4.2.5 (since τ 2n(c+h∨)α
〈α,α〉

has even

length by Kumar (2002, Exercise 13.1.E.3) and (sα ·τ−2n(c+h∨)α
〈α,α〉

)(λ+ρ) = λ+ρ
by (6) of Definition 4.2.5),

χ(X̄G,Lc(V (λ)⊗ V )) = −χ(X̄G,Lc(V (λ)⊗ V ))

and hence

χ(X̄G,Lc(V (λ)⊗ V )) = 0. (6)

In particular,

χg(X̄G,Lc(V (λ)⊗ V )) = 0. (7)

We are now ready to prove that ξc is a ring homomorphism with respect to
the product ⊗cF in Rc(g), i.e., for λ, μ ∈ D,

ξc([V (λ)⊗ V (μ)]) = ξc ([V (λ)])⊗cF ξc ([V (μ)]) . (8)

If at least one of λ or μ (say λ) is such that λ + ρ ∈ H , then by (1) and
(7), both sides of (8) are zero. So, assume that both of λ + ρ and μ + ρ lie in
P \H , i.e., there exists v, w ∈ W ′

c and λo, μo ∈ Dc such that λ = ν−1 ∗ λo and
μ = w−1 ∗ μo.
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Then, by (1) and (3),

ξc([V (λ)⊗ V (μ)]) = χg

(
X̄G,Lc (V (λ)⊗ V (μ))

)∗

= (−1)�(v)+�(w)χg
(
X̄G,Lc(V (λo)⊗ V (μo))

)∗
= (−1)�(v)+�(w)ξc ([V (λo)])⊗cF ξc ([V (μo)]) ,

by (1) of Definition 4.2.11

= ξc ([V (λ)])⊗cF ξc ([V (μ)]) .

This completes the proof of (8) and hence Theorem 4.2.9 is proved. �
For any t ∈ T , we get an algebra homomorphism

cht : R(g) → C,

where for any representation δ of G in a finite-dimensional vector space V ,

cht ([V ]) := traceV δ(t).

As a consequence of the Weyl character formula, Lemmas 4.1.5, 4.2.6, 4.2.8
and Theorem 4.2.9, we get the following.

Corollary 4.2.18 For any t ∈ T
reg
c (cf. Definition 4.2.5), the character

cht : R(g) → C factors through Rc(g) via ξc (cf. Definition 4.2.7) to give an
algebra homomorphism

cht,c : Rc(g) → C.

Moreover, {cht,c}t∈T reg
c /W bijectively parameterizes the set SDc of algebra

homomorphisms of Rc(g) to C.

Proof To prove that, for any t ∈ T reg
c , cht factors through Rc(g), by Lemma

4.2.6, we can assume that

t = Exp

(
2πiκ(μ+ ρ)
c + h∨

)
, for some μ ∈ Dc.

By the Weyl character formula, for any λ ∈ D,

cht ([V (λ)]) =

∑
w∈W

ε(w)ew(λ+ρ)(t)∑
w∈W

ε(w)ewρ(t)
.

Since t ∈ T is regular, the denominator is nonzero.
So, by Lemma 4.2.8, it suffices to prove that∑
w∈W

ε(w)e
2πi
c+h∨ 〈w(λ+ρ),μ+ρ〉 = ε(vτβ)

∑
w∈W

ε(w)e
2πi
c+h∨ 〈wv(λ+ρ+β),μ+ρ〉

, (1)
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for any v ∈ W , λ, μ ∈ Dc and β ∈ (c + h∨)Qlg , and∑
w∈W

ε(w)e
2πi
c+h∨ 〈w(λ+ρ),μ+ρ〉 = 0, for λ ∈ D with λ+ ρ ∈ H and any μ ∈ Dc.

(2)

For any β ∈ (c + h∨)Qlg , ε(τβ) = 1, by (3) of the proof of Lemma 4.2.6 and
Kumar (2002, Exercise 13.1.E.3). Moreover, for any β ∈ (c + h∨)Qlg (and
hence w · β ∈ (c + h∨)Qlg),

〈β,μ+ ρ〉 ∈ (c + h∨)Z, by (3) of Lemma 4.2.6. (3)

This proves (1).
To prove (2), let λ+ρ ∈ Hα,n for some α ∈ � and n ∈ Z. Then, by identity

(6) of Definition 4.2.5, sα · τ−2n(c+h∨)α
〈α,α〉

(λ+ ρ) = λ+ ρ. Thus,

∑
w∈W

ε(w)e
2πi
c+h∨ 〈w(λ+ρ),μ+ρ〉 =

∑
w∈W

ε(w)e
2πi
c+h∨ 〈wsα(λ+ρ− 2n(c+h∨)α

〈α,α〉 ), μ+ρ〉

= −
∑
w∈W

ε(w)e
2πi
c+h∨ 〈w(λ+ρ− 2n(c+h∨)α

〈α,α〉 ), μ+ρ〉

= −
∑
w∈W

ε(w)e
2πi
c+h∨ 〈w(λ+ρ),μ+ρ〉

and hence ∑
w∈W

ε(w)e
2πi
c+h∨ 〈w(λ+ρ),μ+ρ〉 = 0,

proving (2).
Since ξc : R(g) → Rc(g) is a surjective algebra homomorphism and

cht : R(g) → C is an algebra homomorphism, we get that cht,c : Rc(g) → C
is an algebra homomorphism.

By Lemma 4.1.5,

|SDc | = |Dc|. (4)

Further, by Lemma 4.2.6, ∣∣T reg
c /W

∣∣ = |Dc|. (5)

Since

γ : R(g)⊗Z C
∼−→ C[T/W ]
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is an isomorphism (cf. (Bröcker and tom Dieck, 1985, Chap. VI, Proposition
2.1)), where

γ ([V ])(t) = cht ([V ]), for t ∈ T/W,
we get that {cht,c}t∈T reg

c /W are all distinct. Thus, by (4) and (5), {cht,c}t∈T reg
c /W

bijectively parameterizes SDc . This proves the corollary. �

We now come to the following Verlinde formula, which is one of the most
important results of the book.

Theorem 4.2.19 Let g be any simple Lie algebra and let c > 0 be any
central charge. Let (�, �p = (p1, . . . ,ps)) be an irreducible smooth s-pointed
curve of any genus g ≥ 0 (where s ≥ 1) and let �λ = (λ1, . . . ,λs) be a
collection of weights in Dc. Then

dim V�( �p,�λ) = |Tc|g−1
∑
μ∈Dc

((
�si=1(chtμ([V (λi)]))

) ·
�α∈�+

(
2 sin

(
π

c + h∨ 〈μ+ ρ,α〉
))2−2g

)
,

(1)

where �+ is the set of positive roots of g, h∨ is the dual Coxeter number,
Tc is as in Definition 4.2.5, κ : h∗ → h is the isomorphism induced from the

normalized invariant form and tμ := Exp
(

2πiκ(μ+ρ)
c+h∨

)
∈ Tc.

Moreover,

|Tc| = (c + h∨)�|P/Q| |Q/Qlg|, (2)

where � is the rank of g, P (resp. Q) is the weight (resp. root) lattice and Qlg
is the sublattice ofQ generated by the long roots.

In particular, for g = 1,s = 1 and �λ = (0),

dim V�( �p,�λ) = |Dc|.
Proof Let Fc be the fusion rule as in Example 4.2.1. By Corollar-
ies 3.5.10(a) and 4.1.8,

dim V�( �p,�λ) =
∑
χ∈SDc

χ([V (λ1)]) . . . χ([V (λs)])χ( )
g−1, (3)

where SDc is the set of algebra homomorphisms Rc(g) → C and

χ( ) =
∑
ν∈Dc

|χ([V (ν)])|2. (4)
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By Corollary 4.2.18 and Lemma 4.2.6,

SDc = {chtμ,c}μ∈Dc . (5)

We now determine χ( ) for any χ = chtμ,c.
Let L2(Tc) be the space of C-valued functions on Tc with inner product

〈f,g〉 = 1

|Tc|
∑
t∈Tc

f (t)g(t).

For any μ ∈ Dc, consider the function on Tc:

Jμ(t) =
∑
w∈W

ε(w)ew(μ+ρ)(t).

Since Jμ isW -anti-invariant, i.e.,

Jμ(vt) = ε(v)Jμ(t), for any v ∈ W and t ∈ Tc,
Jμ vanishes on Tc\T reg

c . Of course, |Jμ|2 is W -invariant. Thus, by
Lemma 4.2.6(b), ∑

ν∈Dc
|Jμ(tν)|2 = |Tc|

|W | ||Jμ||2. (6)

Now, we claim that for any μ ∈ Dc, {ew(μ+ρ)}w∈W are distinct characters
of Tc, i.e., for w � 1,

ew(μ+ρ)|Tc � e
μ+ρ |Tc .

By Lemma 4.2.6(a), it is equivalent to the assertion that

〈w(μ+ ρ)− (μ+ ρ),λ〉 � (c + h∨)Z, for some λ ∈ P .

If not, assuming 〈w(μ + ρ) − (μ + ρ),λ〉 ∈ (c + h∨)Z, for all λ ∈ P , we
get from (3) of the proof of Lemma 4.2.6 that

w(μ+ ρ)− (μ+ ρ) = β, for some β ∈ (c + h∨)Qlg .

Thus,

τ−β · w(μ+ ρ) = μ+ ρ,
which is a contradiction, since μ + ρ ∈ A◦ by (3) of Definition 4.2.5. This
proves that {ew(μ+ρ)|Tc }w∈W are distinct characters.

Thus, by the orthogonality relation for the finite group Tc, we get

||Jμ||2 = |W |. (7)
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Taking χ = chtμ,c in (4), we get

χ( ) =
∑
ν∈Dc

| chtμ,c([V (ν)])|2

=

∑
ν∈Dc

|Jν(tμ)|2

�α∈�(eα(tμ)− 1)
, by the Weyl character formula

=

∑
ν∈Dc

|Jμ(tν)|2

�α∈�(eα(tμ)− 1)
, by the definition of Jμ

= |Tc|
�α∈�+

(
2 sin π

c+h∨ 〈μ+ ρ,α〉
)2
, by (6) and (7). (8)

Combining (3), (5) and (8), we get (1).
By Lemma 4.2.6(a),

|Tc| = (c + h∨)�|P/Q| |Q/Qlg|.
This proves (2) and hence the theorem is proved. �

Remarks 4.2.20 (a) The expression for dim V�( �p,�λ) as in (1) of Theorem
4.2.19 remains valid for any s-pointed stable curve � by Theorem 3.5.9 and
Lemma 3.3.3.

(b) The number |P/Q| is called the index of connection. It is the order of
the fundamental group π1 of the corresponding adjoint group. Its values are
given by (cf. (Bourbaki, 2002, Plates I–IX)):

• A�(� ≥ 1) : �+ 1

• B�(� ≥ 2), C�(� ≥ 2), E7 : 2

• D�(� ≥ 4) : 4

• E6 : 3

• G2, F4, E8 : 1

(c) The order |Q/Qlg| of course is 1 for simply-laced g. This order for
non-simply-laced g is given as follows:

• B�(� ≥ 2) : 2

• C�(� ≥ 2) : 2�−1

• F4 : 4

• G2 : 6

The above values can be read off from Bourbaki (2002, Plates I–IX).
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4.2.E Exercises

(1) Show that for any λ, μ ∈ Dc such that (λ+ μ)(θ∨) = c + 2,
[V (λ)] ⊗c [V (μ)] is obtained from V (λ)⊗ V (μ) by removing all the
components V (ν) with ν(θ∨) = c + 2 or c + 1 along with those
components V (ν) with ν(θ∨) = c that intersect
V (λ)(λ(θ∨)) ⊗ V (μ)(μ(θ∨)) nontrivially.

Hint: Use Proposition 4.2.3.
(2) Following the notation of Lemma 4.2.14, it is easy to see that

F̂1 = V (ν +mθ)⊗ V (μ), where m := c + 1 − ν(θ∨).

Show that the differential δ̂1 : F̂1 → F̂0 = V (ν)⊗ V (μ) is the composite
map η ◦ (j ⊗ I ) given as follows:

V (ν +mθ)⊗ V (μ) � � j⊗I �� (V (ν)⊗ V (θ)⊗m)⊗ V (μ)

and

η : (V (ν)⊗ V (θ)⊗m)⊗ V (μ) → V (ν)⊗ V (μ)

is given by

η(v ⊗ (x1 ⊗ · · · ⊗ xm)⊗ w)
= v ⊗ (xm . . . x1 · w), for v ∈ V (ν),xi ∈ V (θ) = g,w ∈ V (μ).

Hint: Use the definition of H (ν) as in Definition 1.2.6 to describe the
ĝ-module map δ1 : F1 → F0 as in Definition 4.2.13. Now, use the explicit
identification (1) of the proof of Lemma 4.2.14.

(3) Simply using Corollary 4.2.4 (and not using Theorem 4.2.9), show that
for any c > 0, Rc(g) under the product ⊗c is generated by
{[V (ωi)] : ωi ∈ Dc}, where {ωi}1≤i≤� are the fundamental weights.

Hint: Choose an element H ∈ Q∨ such that αi(H) > 0 for each simple
root αi . Now, use the induction on λ(H) to show that [V (λ)] lies in the
ring generated by {[V (ωi)] : ωi ∈ Dc}.

Thus, to show that ⊗c = ⊗cF in Rc(g), it suffices to prove that

[V (λ)] ⊗c [V (ωi)] = [V (λ)] ⊗cF [V (ωi)], for any λ, ωi ∈ Dc.

(4) Show that for any g of type A�, B�, C�, D� or G2 and any central charge
c > 0, χg(λ,ωi,ν) = 0, for any λ, ν, ωi ∈ Dc, where χg is defined in
Proposition 4.2.15.
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160 Fusion Ring and Explicit Verlinde Formula

Thus, in view of the above Exercise 3 and Proposition 4.2.15, this
gives an alternative (and much simpler) proof of the equality ⊗c = ⊗cF
in Rc(g) for g of any type other that E• and F4 (cf. Corollary 4.2.17 for
any g).

Hint: Use some ‘partial’ determination of H∗(ĝ−,H (ν)⊗ V1(ωi))

for those ωi such that ωi(θ∨) ≤ 2 by observing that any irreducible
g-submodule of the tensor product V (λ)⊗ V (μ) has highest weight of
the form λ+ β for some weight β of V (μ) and using the following
Exercise (7). Further, any fundamental weight ωi of level 1 cannot belong
toQlg

(5) Show that for any μ, ν ∈ Dc, if a g-module V (λ) occurs in
H0(ĝ−,H (ν)⊗ V1(μ)), then λ ∈ Dc.

(6) For any μ, ν ∈ Dc, consider the decomposition as g-modules (cf. the
above Exercise 5):

H0(ĝ−,H (ν)⊗ V1(μ)) �
⊕
λ∈Dc

m
μ,ν
λ V (λ).

Then, assuming the validity of Theorem 4.2.16, show that, for any p ≥ 0,
as g-modules,

Hp
(
ĝ−,H (ν)⊗ V1(μ)

) �
⊕
λ∈Dc

m
μ,ν
λ

( ⊕
w∈W ′

c
�(w)=p

V (w−1 ∗ λ)
)

.

Hint: Use the Hochschild–Serre spectral sequence for Lie algebra
homology.

For μ = 0, this is a result due to Garland and Lepowsky (1976).
(7) Show that

W ′
c = {vτα : v is the shortest coset representative inW/Wα and

α ∈ (c + h∨)Qlg is anti-dominant weight},

whereWα ⊂ W is the stabilizer of α.
(8) Show that for any simply-laced g and c = 1,

dim V�(p,0) = |Z(G)|g,

where g is the genus of the smooth irreducible projective curve �, p is
any point of � and Z(G) is the center of simply-connected G with Lie
algebra g.
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4.C Comments

We refer to the Bourbaki talk (Sorger, 1994a) for a brief survey of the Verlinde
formula and its proof.

The content of Section 4.1 (including Exercises 4.1.E) is largely taken from
Beauville (1996) (barring Lemma 4.1.9 which is a personal communication
due to Jiuzu Hong). Also, Exercise 4.1.E.3 is well known (see, e.g., (Verlinde,
1988), (Moore and Seiberg, 1989), (Kac, 1990, Exercise 13.34) and (Beauville,
1996, §6.4)). We also refer to Szenes (1995) and Ueno (2008, §5.5) for the
contents of this section.

Section 4.2 is largely taken from Faltings (1994, §§5, 6) and Beauville
(1996). Proposition 4.2.3 is contained in Tsuchiya, Ueno and Yamada (1989,
Example 2.2.8). Corollary 4.2.18 (equivalently Theorem 4.2.9) was conjec-
tured in Faltings (1994, Conjecture 5.1), wherein it was proved for all the
classical g and g of type G2. The uniform proof (of Theorem 4.2.9) given
in Subsection 4.2.18 uses another definition of the fusion product ⊗cF given
in terms of the g-equivariant Euler–Poincaré characteristic of certain vector
bundles on the infinite Grassmannian X̄G (cf. Definition 4.2.11) and its
coincidence with the usual fusion product ⊗c defined by (1) of Example 4.2.1.
The definition of the fusion product ⊗cF (as in Definition 4.2.11) and the
result that ξc : R(g) → Rc(g) is a ring homomorphism with respect to the
fusion product ⊗cF (cf. Section 4.2.18), as well as (then) conjectural equality
of ⊗cF with ⊗c is due to Kumar (1997b) (apparently the equality of ⊗cF with
⊗c was also conjectured by Bott, as mentioned in Teleman (1995)). Lemma
4.2.14 and Proposition 4.2.15 are also taken from Kumar (1997b). Now, as
in Corollary 4.2.17, the equality of ⊗cF with ⊗c follows from a result due to
Teleman (1995) (cf. Theorem 4.2.16). In fact, Teleman (1995) determines the
Lie algebra cohomology of the pair (g[t−1],g) with coefficients in the tensor
product H (λc)⊗ �V (�λ) of an integrable highest-weight ĝ-module with finite-
dimensional evaluation modules. More generally, Teleman has determined
the Lie algebra cohomology of the pair (g ⊗ C[�],g) with coefficients in
H (λc) ⊗ �V (�λ) and proved its rigidity under nodal deformations of � (cf.
(Teleman, 1996)).

The Verlinde formula (Theorem 4.2.19) was, in some form, conjectured by
Verlinde (1988). A very significant part of the proof of the formula (in the
precise form of Theorem 4.2.19) was done by Tsuchiya, Ueno and Yamada
(1989).

Exercises 4.2.E.1 and 4.2.E.4 are essentially due to Faltings (1994). Exer-
cises 4.2.E.2 and 4.2.E.6 are due to Kumar (1997b) and Exercise 4.2.E.8 is due
to Faltings (2009) (also see (Zhu, 2017, Corollary 4.2.5)).
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There are several (geometric) proofs of the Verlinde formula for the
dimension of the space of generalized theta functions for G = SL2 (or more
generally for GL2 with fixed determinant) as in Kirwan (1992), Szenes (1993),
Bertram (1993), Bertram and Szenes (1993), Narasimhan and Ramadas (1993),
Daskalopoulos and Wentworth (1993, 1996), Thaddeus (1994) and Zagier
(1995) (and possibly more). Jeffrey and Kirwan (1998) contains a proof of
the Verlinde formula for GLN using Witten’s formula (Witten, 1991) for the
symplectic volume of the moduli space. For the volume computation of moduli
spaces, we refer, in addition, to the papers Pantev (1994), Beauville (1997),
Boysal and Vergne (2010), Oprea (2011), Krepski and Meinrenken (2013) and
Baldoni, Boysal and Vergne (2015). Alekseev, Meinrenken and Woodward
(2000) gave a generalization of the Verlinde formula for some non-simply-
connected groups. Bismut and Labourie (1999) gave a symplectic geometry
proof of the Verlinde formula for c # 0 and anyG. As proved later in Chapter
8, the space of generalized theta functions is isomorphic with the space of
conformal blocks.

Fuchs and Schweigert (1997) gave a proof of the Verlinde formula for genus
g = 0 using Theorem 4.2.9 but without invoking the Factorization Theorem in
g = 0 case.

Following the works of Moore and Seiberg (1988, 1989), Huang formulated
and proved a generalization of the Verlinde conjecture in the framework of the
theory of vertex operator algebras using the results on the duality and modular
invariance of genus 0 and 1 correlation functions (cf. (Huang, 2008)). For more
general conformal blocks arising from vertex operator algebras, under some
natural assumptions, factorization, local freeness and computation of Chern
classes has been done in Damiolini, Gibney and Tarasca (2019, 2020).

An explicit residue formula for dim V�(p,0c) for G = SLN is given in
Szenes (1995). Zagier (1996) contains several number-theoretical and com-
binatorial aspects of the Verlinde formula for GLn (especially for n = 2,3).
Further, an explicit formula for dim V�(p,0c) for the classical groups can be
found in Oxbury and Wilson (1996).

Fakhruddin (2012) gave a formula for the Chern classes of the Verlinde
bundle (i.e., bundle of the conformal blocks) over the moduli stack M̄0,s of
stable s-pointed curves of genus 0 as well as the first Chern class of the
Verlinde bundle over the moduli stack M̄g,s of stable s-pointed curves of any
genus g (see also (Mukhopadhyay, 2016c)). Marian et al. (2017) extended this
work by giving an explicit formula in terms of the tautological classes for the
total Chern character of the Verlinde bundle over the moduli stack M̄g,s .
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