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CATEGORY RESULTS FOR TSUJI FUNCTIONS 

D. D. BONAR, F. W. CARROLL, AND PETER COLWELL 

1. Introduction and statement of results. Let D be the unit disk, 
\z\ < 1, and H(D) the Fréchet space of holomorphic functions on D, provided 
with the topology of uniform convergence on compact subsets of D. If / is 
meromorphic in D, we denote by 

f*M _ TOI 

the spherical derivative of/. If T is a rectifiable curve in D, 

(1.1) A ( D = A ( r , / ) = ( f*(z)\dz\ 

is the length of the projection of f(T) on the Riemann sphere. The Tsuji class 
7\ consists of the meromorphic functions f on D for which 

(1.2) sup A(Cr) < oo, 
0<r<l 

where Cr is the circle \z\ = r. The Tsuji class T2 consists of the meromorphic 
functions/ on D for which there is a sequence \Jn) of closed rectifiable curves, 
depending on / , whose interiors expand to D as n tends to infinity, such that 

(1.3) Hm sup A(/„) < oo. 

The classes 7\ and T2 were introduced by Tsuji [15] and Hayman [11], 
respectively. 

In Section 2 we prove the two principal results of this paper. 

THEOREM 1. The subset of H(D) consisting of functions f for which /* is 
integrable on D {with respect to two-dimensional Lebesgue measure) is of first 
category in H(D). A fortiori, 7\ C\ H(D) is a first category subset of H(D). 

THEOREM 2. For all f in a residual subset of H(D), there holds 

(1.4) liminf I f*(z)\dz\ - 0, 
w^oo J C(n) 

where C(n) is the circle \z\ = 1 — l/n, n = 2, 3, . . . . A fortiori, T2 C\ H(D) 
is a residual subset of H(D). 

Theorem 2 settles the question raised in [10]. 
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A holomorphic function / on D is called strongly annular if 

lim sup min {\f(z) | : \z\ = r\ = oo . 
r - > i -

If 

lim sup min {|/(z) | : z E Jn] = °° 

for a sequence, {Jn}, of Jordan curves whose interiors expand to D, t h e n / is 
called annular [3]. The strongly annular functions are residual in H(D) [6]. 
In Section 3 we indicate how the technique of Section 2 can be used to obtain 
this and several other known results. In the final section we discuss the 
question of whether a function can be T\ and annular. 

2. Proofs of Theorems 1 and 2. Some special notation will be helpful. 
For n = 2, 3, . . . , let C(n) be the circle \z\ = r(n) = 1 — 1/n. In the proofs 
of Theorems 1 and 2 we let 

(2.1) K(n,f) = fffdA; L(n} f) = A(C(«),/) 
\z\UHn) 

for each / £ H(D), n = 2,3 , 
(In the applications in Section 3, K(n, •) and L(w, •) will denote nonnegative-

valued functions defined on H(D) or some of its subspaces.) 
It is clear that for each fixed n, K(n, •) and L(n, •) are continuous on H(D). 

Theorem 1 asserts that only on a set of first category do we have 

(2.2) lim s u p # ( » , / ) < oo, 

while Theorem 2 claims that only on a set of first category do we have 

(2.3) lim inf ! , (» , / ) > 0 
W->oo 

If (2.2) holds for a l l / in a second category set, there is a nonempty open set 
& in H(D) such that {K(n, f ) : / 6 0, n = 2, 3, . . .} is bounded ([4, p. 19] 
or [14, p. 77].) A parallel argument holds for (2.3). Hence, we can prove 
Theorems 1 and 2 by establishing appropriate density lemmas. 

LEMMA 1. {K(n, •) : n = 2, 3, . . .} is unbounded on every nonempty open 
subset of H(D). That is, given /0 G H(D) satisfying (2.2), a neighborhood © of 
/o, and arbitrary M > 0, there exists / i Ç & and an integer g ^ 2 such that 

(2.4) X f o / O ^ M. 

LEMMA 2. Gi'mz /0 G H(D), a neighborhood © of /0, tmd arbitrary I > 0, 
//îere exi's/s / i G ^ and an integer q ^ 2 SWC/Ê ̂ a / 

(2.5) Lfo/x) < /. 
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It is enough to prove the lemmas for a set © of the type 

0 = [feH(D):mBXK\f-fo\ < e}, 

where K is an arbitrary fixed compact subset of D, and e is a fixed positive 
number. 

Proof of Lemma 1. Let d be the distance on the Riemann sphere between 
the parallels of latitude corresponding to \w\ = 1/4 and \w\ = 3/4. Choose 
integers p, q and j so that: K C {\z\ < r(p)\ ; q > p; and j is so large that 

(2.6) 2dj(r(q) - r(p)) > M. 

Next select j values of 0, 0 < 0i < 03 < . . . < 02j-i < 2TT, SO that f0(z) ?* 0 
for all z G Si = {reie : r(p) g r ^ r(g), 0 = 0b 03, . . . , 02j-i}. Let 0O = 0, 
02y = 2?r, and 02s = (02s-i + 02*+i)/2 for 5 = 1 , 2, . . . , j - 1, and S2 = 
j r g ^ : r(p) ^ r ^ r(g), 0 = 0O, 02, . . . , 02j,}. By Mergelyan's theorem there is 
an entire function g which so closely approximates 1 on K, l / /0 on Si, and 
0 on S2 t h a t / i = g/0 lies in @, | / i | > 3/4 on Si, and | / i | < 1/4 on S2. Conse­
quently, for r(p) < r < r(q), A(C n / i ) > 2dj, and 

I f(re0)rd6dr 
r(<n) • / 0 

2d/dr = 2dj(r(g) - r(p)) > M 

by (2.6). This establishes (2.4) and proves Theorem 1. 

The proof of Lemma 1 can be modified so that Si W S2 lies in any preassigned 
sector A — {reid : 0 ^ r < 1, |0 — </>| < ô}. We say ez0 is a 2"sw/ï point for 
/ G if CD) if, for some Ô > 0, 

sup I f*(reie)rdd < co. 
0<r<l ^ 0 - 5 

If / G H(D) has a Tsuji point on C, then/* is integrable over some sector A 
in Z>. The Tsuji set of a function/ G H(D) is the set of points a G ^ for which 
/ o 4>a G 7\, where 0«(z) = (z — « ) / ( l — «2). If / G H(D) has a nonempty 
Tsuji set in Z>, then/* is integrable over some sector A in Z>. Thus we can state 
the following result. 

THEOREM 3. The set of functions f in H(D) for which J j A f*(z)rdrdd < 00 , 
where A is a sector in D, is of first category. In particular, the set of functions in 
H(D) with no Tsuji points is residual, and the set of functions in H(D) with 
a nonempty Tsuji set is of first category. 

Proof of Lemma 2. Let p be a positive integer such that K C {\z\ < r(p)\ 
and P be a partial sum of the Maclaurin's series for /0 such that 

max I/o - P\ < e/2. 
\z\Sr(p) 
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Now choose an integer q > p so large that both 

q> 107r/max{l+ \P\ + \P'\] 
civ) 

holds, and 

Mz) =P(z)+±Tql-i(z/r(p)y 

lies in Û. 
Straightforward calculation shows that, on C{p), |/i*(s)| ^ 1/(2T), and 

(2.5) is established. 

3. Applications. Many recent category results for H{D) or its subspaces 
can be viewed as statements that certain sequences of nonnegative functions 
{K(n, •)} (resp. {L(n} •)}) have lim sup equal to oo (resp. lim inf equal to 0) 
on a residual subset. Such a reformulation emphasizes in each case how the 
proof rests on the construction of an example for an appropriate density 
lemma. In this section we list several recent results and indicate the appropriate 
K(n,f) or L(n,f ). We shall not discuss the "density lemma" example in any 
detail, except in Theorem E where we deduce a stronger conclusion than the 
original statement. 

In each of the subspaces considered, the metric topology used is finer than 
the relative topology from H(D), and there is no difficulty about the continuity 
of K(n, •) or L(n, •)• 

THEOREM A [6]. The strongly annular functions form a residual subset of 
H(D). 

THEOREM B [12]. In the space {f(z) = J2n=o ewsn: en = ± 1 , z £ D} with the 
relative topology from H(D), there is a residual subset of strongly annular func­
tions. 

In both Theorems A and B we may take 

K(n,f) = mm {\f(z)\:zt C(n)}. 

The following three theorems deal with the normed space 

A = \feH(D):f(z) = E akz\ J \ak\ < oo } 

oo 

with norm | | / | | = X htl-
fc=0 

THEOREM C [2]. The set of functions in A which have no Tsuji point is 
residual. 

If {0n} is a dense sequence in [0, 2ir) and 

T(n) = C(n) H {z: |argz - 6n\ < 1/Vn], 
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we let 

K(nJ) =A(r(»)). 

(Compare Theorem C with Theorem 3 above.) 

THEOREM D [1, Theorem 1]. Let ^ be a real continuous function on [0, 1) 
with ^(r) | oo as r] 1. There is a residual subset S of A such that, for all f in S, 

V(f,0,V) = r\f'(rei9)\*(r)dr = oo 
J o 

for every 6. 

In this case we take 

\f'(rei9)Mr)dr. 

THEOREM E. Let {(j)(n)}™=o be a monotone sequence of positive numbers in­
creasing to infinity arbitrarily slowly. For eachf(z) = Yln=o anz

n in A, letf(z, 0) = 
2^=o an<j>(n)zn. If X denotes the set of functions f in A such thatf(z, <£) is strongly 
annular, then X is residual. 

(Since strongly annular functions do not have bounded characteristic, 
Theorem E contains [1, Theorem 4]). 

Proof. For n = 2 , 3 , . . . , a n d / 6 A, we let K(n,f) = min {|/(z, 0) | : z £ C(n)}. 
It will suffice to verify that the analogue of Lemma 1 holds. 

Suppose /o £ A and/o(s, 0) is not already strongly annular. Let e > 0 and 
arbitrarily large M > 0 be given, and let €A = {g Ç A: \\g — /0 | | < e}. 

Let P be a partial sum of the Maclaurin's series of /0 of degree N so large 
that \\P — /o|| < e/2. Now choose an integer p > N so that 

(e/2)4>(p) > 2 ( M + | | P ( z f 0 ) | | ) , 

and choose an integer q so that (r(q))p > 1/2. If we set f\{z) = P(z) + 
(e/2)s*, then | | / i - / o | | < e, and 

tffe./i) = min \P(z, 0) + (e/2)4>(pW\ 
C(q) 

^ (e/2)<t>(p)(r(q)Y - | | P ( s , * ) | | 

> M + ||P(s, * ) | | - ||P(2, * ) | | = M. 

THEOREM F [7]. If 0 < p < oo, w //ze s^a^e / A with the usual topology, 
there is a residual subset of functions f for which every point of \z\ = 1 is a 
Picard point for f. 

For each y, \y\ = 1, and / G Hv, we let An be the complement of the set 
f(\z: z G A |s — T| < 1/w}) and L(n, f ) be the diameter of An H {|w| ^ w}. 
With an analogue of Lemma 2 it is established that Hp contains a residual 
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subset in which each function has 7 as a Picard point. Since the set of Picard 
points is closed, the theorem follows by repeating this argument for a dense 
sequence on \z\ = 1. 

4. An open question. Theorems 2 and A imply that a residual subset of 
H(D) consists of functions which are both T2 and annular. Hayman, [11, 
Theorem 5], constructed a nonconstant function/ in T2 C\ H(D) for which 

liminf I f*(z)\dz\ = 0. 
r->l J Cr 

It is not difficult to see that such a function/ must be strongly annular. 
However, the following question is not yet resolved. 

Question. Does there exist an annular function in the Tsuji class TV 

Such a function, were one to exist, would have many interesting properties, 
of which we mention several which follow easily from the known properties of 
annular functions [5], and of the class T\ [11]. 

1. For each 7, \y\ = 1, there exists a path T(y) in D ending at 7 along which 
/ —•» 00 as z —> 7. And for almost all 6 

lim f(rei6) = 00. 

2. If r (0) is any path in D ending at 1, for each 6 let r(0) be the rotation 
of r (0) through angle 6. Then, for each 6 in a residual subset of [0, 2T), f (T(6)) 
is dense in the complex plane [9, p. 76]. 

3. For any small e > 0, L(e) = {z £ D: \f(z)\ < e\ has infinitely many 
components in every neighborhood of every point of \z\ = 1. 

Let 6* be the subset of [0, 2TT) consisting of those 6 for which the radius to 
eie intersects infinitely many components of L(e). 5 has measure 0 in [0, 2ir) 
but is residual in [0, 2ir). 

Recall that if/ is meromorphic in D, a point eie is an ambiguous point of/ 
if there exist disjoint paths Ti and T2 in D ending at eid for which/(Ti) and 
/ ( r 2 ) have disjoint closures. A point eie is a normal point for / if, in some 
neighborhood TV of eid relative to D, f(N) omits three values on the Riemann 
sphere. Annular functions have neither ambiguous points [5, Theorem 4.1, 
p. 45], nor normal points [5, Theorem 4.4, p. 49]. 

Our last result shows that these properties characterize the annular, 7\ 
functions, if any exist. 

THEOREM 4. Let f be a T\ function in H(D). A necessary and sufficient condi­
tion that f be annular is that f have no ambiguous points and no normal points. 

Proof. We need show only that if / G T\ has neither ambiguous points nor 
normal points, then / is annular. 
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Since/ has no normal points, every point eie is the end of a path in D along 
which / tends to oo [11, Thorem 11]. Were | / | bounded along any path in D 
ending at a point eie, f would have eie as an ambiguous point. Consequently, 
for every eie and any path T(6) in D ending at eie, the closure of / ( r (0) ) con­
tains co. 

A theorem of McMillan, [13, Theorem 2], implies that for each eie there 
exists a sequence, {Jn(6)}, of Jordan arcs in D such that: 

(i) Jn has endpoints e*"™, e*™ with a(n) < 6 < P(n); 
(ii) for every e > 0 there exists positive integer N(e) such that, whenever 

n > N(e), 

JnC{ze D: \z - e«\ < e} 
and 

d(f(z), oo ) < e for all z on Jn 

where d(-, •) is chordal distance on the Riemann sphere. Consequently, if 
r = {z(t): 0 ^ t < 1} with l im^i \z(t)\ = 1 is any boundary path in D, the 
closure of/(T) contains oo , a n d / i s annular [5, Theorem 4.1, p. 45]. 
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