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Abstract

Regardless of the highly efficient anthelmintics available and the control measures taken by
dog owners and veterinarians, gastrointestinal parasites, especially zoonotic helminths, are
still abundant in dogs and pose a health risk to humans. Free-ranging dogs in rural areas
can be an important source of helminth infection. The aims of the present work were to col-
lect scats of rural dogs, determine the environmental contamination caused by helminth infec-
tions among rural dogs of Western Estonia, analyse how diet affects helminth infection rate
and compare the findings to a previous study focusing on dog helminths in urban areas of
Estonia. To differentiate the scats of dogs from other sympatric canids, a genetic method
was applied. Of 328 samples, genetic analysis identified 84 scats belonging to dogs, of
which 87.0% were infected with helminths. A high proportion of rural dog scats harboured
eggs of Taeniidae (65.5%), followed by Trichuris spp./Eucoleus spp. (15.5%), Uncinaria steno-
cephala (14.7%) and Toxocara canis (4.3%). Coinfections occurred in 34.5% of the samples,
being the most common between Taeniidae and U. stenocephala (41.4%). The intensity
model indicated higher helminth infection rate in rural dogs preying on rodents and game.
In comparison to urban dogs, rural dogs were nine times more likely to be infected with intes-
tinal parasites. These results emphasize the need to implement measures to reduce helminth
infections in dogs living in rural areas of Western Estonia. Among a complex of measures to
be taken, we suggest that it is also important to diagnose which gastrointestinal parasite spe-
cies infect dogs to determine specific anthelmintic treatment against these parasites.

Introduction

It is known that dogs transmit over 60 zoonotic diseases that can affect humans (Macpherson
et al. 2013). Some of the most important helminths transmitted from dogs to human beings
include roundworms Toxocara spp., hookworms (Uncinaria stenocephala and Ancylostoma
caninum) and Echinococcus tapeworms (e.g., Pullola et al., 2006; Martínez-Carrasco et al.,
2007; Laurimaa et al., 2015a; Baneth et al., 2016). Humans can be final, intermediate, paratenic
or accidental hosts by ingesting eggs or infective stages from the contaminated environment
(plants, soil, water or scats) or by consuming raw or undercooked meat containing infective
stages of parasites. Moreover, some geohelminth (Toxocara spp.) infective stages can be trans-
mitted directly through animal–human contact and in some cases infective larvae can pene-
trate the skin (Ancylostomatidae). Children are among the most vulnerable to helminth
infections. They may come into contact with animal scats on potential endoparasite infection
hotspots such as recreational zones including parks, playgrounds and other green areas near
schools and nurseries (Talvik et al., 2006; Tull et al., 2020).

Regardless of the efficient anthelmintics available and the control measures taken by own-
ers and veterinarians, gastrointestinal parasites, especially helminth infections are still abun-
dant in dogs (Tylkowska et al., 2010; Kostopoulou et al., 2017; Roussel et al., 2019; Strube
et al., 2019). Free-ranging dogs in urban and rural areas can be an important source of hel-
minth infection (Laurimaa et al., 2015a; Knapp et al., 2018; Jarošová et al., 2021). They
may come into contact with carcasses or scats of red fox (Vulpes vulpes), raccoon dog
(Nyctereutes procyonoides), European badger (Meles meles) and other wild animals infected
with helminths of zoonotic potential, facilitating helminth transmission from wildlife to
humans. Also, feeding dogs with offal or raw viscera of hunted or domesticated animals
(e.g., sheep and cattle) promotes the shift from the sylvatic cycle of helminths such as
Echinococcus granulosus sensu lato (s.l.) and other taeniids to the synantropic cycle
(Marcinkutė et al., 2015; Baneth et al., 2016).

In Europe, helminth prevalence of dogs in rural and urban areas varies, among the studied
countries being largest (63.5%) in rural areas of Spain (Regidor-Cerrillo et al., 2020), whereas
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in rural and urban areas of the Czech Republic helminth preva-
lence of dogs has been estimated at 41.7% and 14.3%, respectively
(Dubná et al., 2007). In Hungary and Portugal, the helminth
prevalence of dogs in rural areas is rather similar, 56.3% and
58.8%, respectively (Fok et al., 2001; Cardoso et al., 2014). Fok
et al. (2001) demonstrated that 30.1% of rural dogs were infected
with Toxocara canis causing toxocariasis in humans. The zoonotic
Uncinaria sp. and Ancylostoma sp. have high prevalence in rural
areas of Portugal (40.9%; Cardoso et al., 2014) and Spain (35.6%;
Regidor-Cerrillo et al., 2020). These studies refer to major con-
tamination of the environment with zoonotic helminths in rural
areas. In Estonia, there is a large knowledge gap considering hel-
minths of rural dogs.

As it is often difficult to reliably separate dog scats from those
of other canids based on morphology, and genetic approaches are
needed for correct species identification. In Estonia, the other
canids are red fox, grey wolf (Canis lupus), raccoon dog and
golden jackal (Canis aureus). Studies have confirmed that faecal
DNA analysis provides more accurate and informative results
than scat-based morphological studies (Davison et al., 2002;
Janečka et al., 2008; Rosellini et al., 2008; Monterroso et al.,
2013; Laurimaa et al., 2015b; Mumma et al., 2016; Oja et al.,
2017; Valdmann & Saarma, 2020). Therefore, for reliable identi-
fication of dog scats, genetic analysis was applied. The aims of
the present work were to determine helminth infections among
dogs in rural areas of Western Estonia and to compare these find-
ings with a previous endoparasite study focusing on dog hel-
minths in urban areas of Estonia (Tull et al., 2020). In addition,
the effect of diet on the risk of infection of rural dogs with various
helminths was studied.

Materials and methods

Study area and samples

A non-probabilistic sampling was used which involved collecting
available scats of canids during fieldwork. Faecal samples (N =
328) were collected from rural areas (local small roads near settle-
ments) in Western Estonia, mainly in Matsalu National Park, in
April–June 2019 (fig. 1). Samples were placed into a separate plas-
tic bag and tagged with unique ID, including coordinates. To
inactivate eggs of zoonotic parasites, for example Echinococcus
multilocularis and E. granulosus s.l., which are endemic in
Estonia (Moks et al., 2006, 2008; Laurimaa et al., 2015a, b), sam-
ples were kept at −80°C for a minimum of seven days. In order to
compare the infection prevalence between rural and urban dogs,
data of 657 urban dogs were included from a previous study
carried out in five Estonian towns (Tull et al., 2020) and pooled
together with rural dogs for further analyses.

Molecular identification of dogs

Scats of different canid species are sometimes difficult to
distinguish and to avoid mixing the data of various species, we
conducted a genetic analysis to identify dog samples. Genomic
DNA was isolated from scats using the QIAamp Fast DNA
Stool Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol. A hypervariable fragment of the
mitochondrial DNA (mtDNA) control region that enables to dis-
tinguish between wolves and dogs in Estonia, was polymerase
chain reaction (PCR)-amplified and sequenced as described in
Plumer et al. (2018). In brief, a 351 base-pair (bp) fragment of

the mtDNA control region was PCR-amplified using 0.25 pmol
of primers Canis1F and Canis3R. The reaction mixture (20 μl in
total), contained 2 μl of DNA, 4 μl of 5× Phusion HF buffer,
0.4 mM deoxynucleoside triphosphate (dNTP) and 0.2 μl
Phusion HS II polymerase (Thermo Fisher Scientific, Waltham,
USA). The following PCR cycling parameters were used: 30 s at
98°C, then 10 cycles: 10 s at 98°C, 30 s at 68°C (with touchdown
of −0.8°C per cycle), 45 s at 72°C; then 35 cycles: 10 s at 98°C,
30 s at 60°C, 45 s at 72°C, and finally 2 min at 72°C. PCR
products were purified with 1 U of both FastAP and ExoI
(Thermo Fisher Scientific). Purified PCR products were sent for
sequencing to the core laboratory of the Institute of Genomics
at the University of Tartu.

Sequences of both DNA chains were aligned with CodonCode
Aligner v.5.0.2 (CodonCode Corp.) to produce consensus
sequences and corrected using BioEdit v.7.2.5 (Hall, 1999). The
length of the final alignment was 245 bp and the dataset was fur-
ther aligned with homologous wolf and dog sequences from
Estonia (Hindrikson et al., 2012; Plumer et al., 2018). Molecular
identification of species was possible due to specific nucleotide
characters that distinguish between wolves and dogs in
Estonia; at three nucleotide positions: 15,598, 15,655 and 15,803
(according to reference sequence KT448278 in GenBank) nucleo-
tides C, G and T (respectively) are specific to domestic dogs,
whereas T, A and C (respectively) are specific to Estonian wolves
(Plumer et al., 2018).

Molecular identification of food objects

For the identification of birds, mammals, reptiles and fish, a
303 bp fragment of mtDNA cox1 gene was PCR-amplified with
primers AVS2F (CCTGTGACCTTCATCAACC) and AVS3R
(GTTATTTATGCGTGGGAATGCTATGTC). PCR reactions
were carried out in a total volume of 20 μl with 1× Phusion HF
Buffer (Thermo Fisher Scientific), 0.2 mM dNTP, 0.25 μM of
each primer and 0.4 U Phusion Hot Start II DNA Polymerase
and 2 μl of purified DNA. The PCR mixture was initially dena-
tured at 98°C for 30 s, followed by 10 touchdown cycles for 10 s
at 98°C, 20 s at 60°C (reducing the temperature 1°C per cycle)
and 30 s at 72°C, followed by 30 cycles of 10 s at 98°C, 20 s at
50°C and 30 s at 72°C. In case the PCR was negative due to highly
degraded DNA, we performed a second analysis by
PCR-amplifying a shorter, 183 bp fragment of mtDNA 12S
rRNA gene, using primers Ave12 F and Ave12R, described in
Oja et al. (2017). PCR products were checked using 2% 1xTAE
gel-electrophoresis and visualized under ultraviolet (UV) radi-
ation using ethidium bromide.

The PCR products were purified, sequenced and aligned as
described above for the identification of dogs. A nucleotide
Basic Local Alignment Search Tool (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) was used to identify mammal, reptile, fish and
bird taxa.

Morphological analysis of food objects

The analysis was done as described in Valdmann & Saarma
(2020). Shortly, faecal samples were processed according to stand-
ard laboratory procedures (Reynolds & Aebischer, 1991).
Non-mammal remains (e.g., birds) recovered in predator scats
were identified in comparison with reference materials.
Mammal remains were identified by examining the cuticular pat-
tern and the medulla of the hairs using reference manuals
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(Teerink, 1991; Tóth, 2017) and hairs collected from hunted
animals.

Parasite identification and prevalence

Helminth occurrence was determined using the concentration flo-
tation technique (sodium chloride, specific gravity = 1.2 g/cm3)
(Roepstorff & Nansen, 1998), followed by helminth egg counting

in McMaster chambers until 100 eggs per parasite taxa.
Identification of helminth taxa was based on morphological char-
acteristics (Bowman, 2013). Most of the parasite taxa were identi-
fied at the genus level, except T. canis and U. stenocephala.
Although, we attempted genetically to determine the species
among the isolated eggs of Taeniidae, it was not successful, pos-
sibly due to partial degradation of DNA by high-UV radiation
and other environmental factors.

Fig. 1. Sampling sites for faecal samples of rural dogs in Western Estonia, in Matsalu National Park (N = 68), Hiiumaa (N = 3) and Häädemeeste (N = 13). The buffer
distance around scat samples (the average straying area of free-ranging dogs) is marked with light purple colour. Base map: Estonian Land Board, 2021.
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Helminth prevalence was defined as the proportion of all eggs
in scats, and infection intensity was determined as the count of
eggs up to 100 per taxa in a sample. Since the upper limit in
counting the helminth taxa was set to 100, this should be consid-
ered as relative intensity.

Spatial analysis

Maps were created using the Free & Open Source QGIS (v3.18;
2021) to display infected dog scats and to describe the average dis-
tance from private houses (henceforth privates) to collected faecal
samples which was considered as the buffer distance around scat
samples known as the average straying area of free-ranging dogs
(see fig. 1). The map layers originated from public Web Map
Services (Base map: Land Board, 2021).

Statistical analysis

The dependent variables consisted of (co)infection prevalence and
infection intensity. The independent variable consisted of food
items (data not given; a separate manuscript on the diet of rural
dogs is in preparation). Food objects were divided into five cat-
egorical variables: game; bird; dog food; plant material; and
rodent.

Since multiple testing was performed between (co)infection
and different food groups, it is possible to obtain false positive
results (Type I error) in a set of tests. The Holm–Bonferroni
method (more powerful compared to the Bonferroni procedure)
was applied to prevent Type I error rates when performing mul-
tiple tests (Aickin & Gensler, 1996).

Due to the availability of data from a previous study of urban
dog endoparasites (Tull et al., 2020), rural dogs (N = 84) were
compared to urban dogs (N = 657) to find associations between
(co)infection occurrence with helminths. Proportions were com-
pared with SAS Studio v9.04 (SAS Institute, Cary NC, 2021) soft-
ware using Chi-squared tests of independence (PROC FREQ) to
determine independent variables associated with overall (co)infec-
tion and single taxa prevalence. If one or more cells in the 2 × 2
contingency tables had expected values of less than 5, Fisher’s

exact test was used. Generalized linear models (package
‘glmmTMB’ (Brooks et al., 2017) or ‘logistf’ (Heinze & Ploner,
2018; R Development Core Team 2020)) were used to evaluate
consumption of various food objects associated with overall hel-
minth prevalence, coinfection prevalence and infection intensity.
It was also estimated how dog diet associates with prevalence
(binomial error distribution) and intensity (negative binomial
error distribution) of individual helminth taxa. Models were com-
pared using the Akaike information criterion corrected for small
samples (AICc) (Burnham & Anderson, 2004). Package ‘MuMIn’
(Barton, 2019) was used for conducting model selection and
model averaging. Only models with the highest Akaike weight
wi(AIC) (ΔAICc < 2) were described. Furthermore, the weights
(w) of the same factors presented in one model set were summed
for calculating the relative variable importance (RVI).

Results

Of the 328 collected scat samples, genetic analysis identified that
84 belonged to dogs. Coprological study revealed that 87.0% (73/
84, 95% confidence limit (CL) 79.5–94.3) of the faecal samples
were infected with helminths. Over half of the rural dog scats har-
boured eggs of Taeniidae (65.5%, CL 56.7–74.3), followed by
Trichuris spp./Eucoleus spp. (15.5%, CL 8.8–22.2), U. stenocephala
(14.7%, CL 8.1–21.2) and T. canis (4.3%, CL 0.6–8.1) (fig. 2).

Coinfections with more than one helminth taxa occurred in
34.5% of dogs (29/84, 95% CL 24.1–44.9). The most common
coinfections were between Taeniidae and U. stenocephala
(41.4%, CL 22.3–60.5), and Taeniidae and Trichuris spp./
Eucoleus spp. (31.0%, CL 13.1–48.9) (fig. 3).

In comparison with urban dogs, the overall helminth preva-
lence of urban (Tull et al., 2020) and rural dogs differed nearly
nine times (9.8% and 87%, respectively) (table 1). Rural dogs
(73/741, 9.9%) had significantly (P < 0.0001) higher infection
prevalence than urban dogs (43/741, 5.8%). Of different helminth
taxa, rural dogs (73/741, 9.9%) had significantly (P < 0.0001)
higher infection prevalence with Taeniidae than urban dogs (3/
741, 0.4%). However, there was no statistical difference (P = 0.5)
between Toxocara sp. occurrence among rural (4/741, 0.5%)

Fig. 2. Infection prevalence with different helminth taxa among rural dogs in Western Estonia.
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and urban dogs (22/741, 3.0%). Urban dogs were significantly
more infected with U. stenocephala compared to rural dogs (P
< 0.0001) (fig. 4).

Coinfections with helminths occurred more in rural (29/741,
3.9%) than in urban areas (6/741, 0.8%; P < 0.0001) (fig. 4).
Rural dogs’ coinfection prevalence with helminths was predicted
by two equally good models (ΔAICc < 2). The best coinfection
prevalence model (wi = 0.5) with helminths showed that rural
dogs preying on rodents had significantly (3.7 times) higher
odds to be coinfected than rural dogs who had not preyed on
rodents (βRODENT = 1.3, SE = 0.6, P = 0.02). The model also indi-
cated a 63% reduction in rural dogs’ coinfection with helminths,
if they consumed dog food (βDOGFOOD = −1.0, SE = 0.6, P = 0.1).
All good models contained the factors ‘dog food’ and ‘rodent’.
The RVI indicates strong effect for the factor ‘rodent’ but moder-
ate effect towards the factor ‘dog food’.

The best infection intensity model (wi = 0.6) with Taeniidae
revealed 1.8 times higher infection intensity for rural dogs preying
on game (βGAME = 0.6, SE = 0.3, P = 0.04) and a 1.7 times higher
infection intensity for rural dogs preying on birds (βBIRD = 0.5, SE
= 0.3, P = 0.03). The RVI indicates moderate effects for the factor
‘bird’ and towards the factor ‘game’.

Rural dogs’ scats which contained rodent remains had up to
four times (wi = 0.9) more Eucoleus spp./Trichuris spp. (βRODENT
= 1.4, SE = 0.6, P = 0.01). However, dogs feeding on dog food
more than on other prey items had significantly lower infection
prevalence with Eucoleus spp./Trichuris spp. (βDOGFOOD =−2.6,
SE = 1.5, P = 0.008). The RVI indicates strong effect for the factors
‘rodent’ and ‘dog food’. The intensity model (wi = 0.8) with
Eucoleus spp./Trichuris spp. displayed significantly higher intensity
for rural dogs preying on game than on other food items (βGAME =
2.6, SE = 0.6, P < 0.0001). The RVI indicates strong effect for the
factor ‘game’ but very weak effect towards the factor ‘bird’.

The average distance between infected scats and privates was
approximately 560 m. The minimum distance of an infected dog
from a household was 8 m and maximum distance 1834 m. There
were respectively 124 privates adjacent to the 560 m buffer zone.

Discussion

The genetic identification of scats applied in the study allowed to
distinguish dog samples from other free-ranging canid species

such as the red fox, raccoon dog, golden jackal and grey wolf,
which guarantees that only the scats of dogs were included in fur-
ther analyses.

The results revealed very high helminth occurrence (87%)
among rural dogs in Western Estonia, especially near private
houses (on average 560 m adjacent to privates), suggesting that
the majority of dog owners do not provide anthelmintic treatment
to their dogs or do it ineffectively. However, note that as it was not
possible to identify individual dogs based on scat samples col-
lected in nature (DNA degradation was too high to apply micro-
satellite analysis), it is difficult to tell how many dogs were
involved in the sampling. Based on the relatively large study
area and the abundance of dogs in this area, we can rule out
that the scats belong to very few individuals. Moreover, our aim
was not to analyse the parasite burden of different individuals,
but the general impact of infected rural dogs contaminating the
environment with parasite ova.

Although previous studies have also demonstrated extensive
helminth infections among rural dogs with percentage ranging
from 31% (Schurer et al., 2013) to 84.4% (Ngui et al., 2014),
the current study has shown the highest prevalence to date.
Most of the collected scats originated from the Matsalu
National Park, which is also a recreational area, offering various
hiking trails and outdoor sights. Humans and their pets living
at or visiting the national park may come into close contact
with contaminated soil, water or directly with infected scats.
Therefore, considering the very high helminth prevalence in
scats of rural dogs and close contacts between dogs and humans,
these problematic key findings could increase transmission of
zoonotic diseases and affect public health.

Over half of the examined rural dog scats contained eggs of
Taeniidae (65.5%). It is known that most of taeniid species that
occur in dogs have zoonotic potential (e.g., Dipylidium caninum,
Dibothriocephalus latus, Taenia spp. and Echinococcus spp.). The
current study revealed a higher prevalence of taeniids than most
other studies (Dubná et al., 2007; Soriano et al., 2010; Schurer
et al., 2013; Papajová et al., 2014). In some areas, the high preva-
lence of Taeniidae may result from coastal effect, which provides
more opportunities to prey on raw fish that are host for example
of D. latus. The occurrence of this parasite in black or grizzly
bears and in wolves has been linked with seasonality when
hosts’ diet shifts to salmon (Frechette & Rau, 1978; Gau et al.,

Fig. 3. Coinfection prevalence with helminths among rural dogs in Western Estonia.
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1999; Bryan et al., 2012). Fish remains can be fed to rural dogs by
humans, and dogs can find these also in nature during roaming.
Because the composition of taeniid species was not revealed, fur-
ther studies are needed to estimate the prevalence of different tae-
niid species in coastal rural areas.

Although T. canis was among the least common parasites
found in Western Estonian rural areas, earlier studies have
shown, on the contrary, that T. canis was one of the most preva-
lent helminth species in rural areas of Hungary and the Slovak
Republic (Antolová et al., 2004; Fok et al. 2001). Albeit, even
lower prevalence of T. canis has been found from Eastern
Spain (Sanchez-Thevenet et al., 2019). The epidemiology of T.
canis is largely affected by age of the host. The highest infection
rates with T. canis were found among puppies of 4 weeks old and
the infection decreased in older dogs (Barutzki & Schaper,
2013). Over the recent years, toxocariasis has gained much
attention as this disease was listed as one of the five most
neglected parasitic infections by the Centers for Disease
Control and Prevention (CDC) in the United States. In
Estonia, Remm & Remm (2014) showed that dog owners had
a significantly higher risk of being infected with Toxocara spp.
Another study, carried out by Lassen et al. (2016) found higher
T. canis seroprevalence in animal caretakers than in the general
population.

Over a third of dogs had coinfections, the most common one
occurred between Taeniidae and U. stenocephala. Eggs of the zoo-
notic U. stenocephala are highly resistant to cold and the parasite
is proliferating in areas of temperate and subarctic regions
(Traversa, 2012; Bowman, 2013). According to the CDC (2020),
larvae of U. stenocephala penetrate unprotected skin causing cuta-
neous larva migrans in humans. According to the authors’ knowl-
edge, it is uncommon for Taeniidae and U. stenocephala to
co-occur in most samples. Because scats were collected during
the spring when mild weather conditions and adequate precipita-
tion exist in temperate climate, U. stenocephala larvae rapidly
develop to the infective stage, hence explaining the higher
co-occurrence with Taeniidae in spring season. The higher
Taeniidae coinfection rate is possibly linked to the predator–
prey relationships when free-ranging rural dogs have the oppor-
tunity to prey on diverse intermediate (pike and perch) or para-
tenic host (rodents) species.

To date, the greatest attention has been paid to studies of the
parasitological situation in urban sites of Estonia. These have
included sandpits, park lawns, avenues and recreational areas, as
well as public playgrounds near schools/nurseries in various
towns of Estonia such as Tartu, Pärnu, Rakvere, Elva and
Kunda (Talvik et al., 2006; Tull et al., 2020). Talvik et al. (2006)
reported that 2.7% of collected dog scats contained eggs of
Toxocara spp. in Tartu, whereby scats adjacent to privates had
higher Toxocara positivity than scats near to apartment
blocks. However, more than a decade later Tull et al. (2020)
revealed higher geohelminth rates near apartment blocks than
near privates. The most frequently found helminths in
Estonian towns were Toxocara spp. and U. stenocephala: in
Tartu 5.3%; Elva 7.8%; Kunda 12.3%; Pärnu 8.1%; and Rakvere
6.9% (Tull et al., 2020). In Iran, a higher contamination rate
with Toxocara eggs (29%) was found in public parks (Maraghi
et al., 2014). In Poland, after 20 years of study
Mizgajska-Wiktor et al. (2017) concluded that the level of soil
contamination was highest in cities, lower in villages and the
lowest in small towns. In cities, a relatively larger number of
dogs in a small area can result in a high level of contamination
with geohelminth eggs. Once an infected dog defecates, the eggs
are passed to the environment, where they embryonate and can
remain infectious for years (Blaszkowska et al., 2013). An infected
dog with T. canis can shed 10,000 eggs in each gram of scat
(Ahmad et al., 2011). Therefore, insufficient anthelmintic
treatment of dogs may facilitate transmission of zoonotic
parasites to humans, but also a high level of soil contamination.
It should be highlighted that many available anthelmintics target
only adult worms, whereas eggs are resistant to treatment.
Effective methods for reducing environmental contamination
and transmission to humans include: controlling the free-ranging
dog population; establishing dog walking areas; enabling
hygienic scat disposal by pet owners; and preventing dog access
to public areas.

In a previous study (Tull et al., 2020) that focused on urban
infection hotspots, it was revealed that helminth infection is
higher in smaller than in larger towns in Estonia. However, the
current study suggests that rural areas are in comparison with
urban areas by far more contaminated with helminths and the
infection risk among dogs is nine times higher in rural areas

Table 1. Helminth prevalence in dogs from rural and urban areas in European countries.

Parasite

Czech Republic
(Dubná et al.,

2007)

Portugal
(Cardoso et al.,

2014)

Slovak Republic
(Papajová et al.,

2014) Hungary (Fok
et al., 2001)

Spain
(Regidor-Cerrillo et al.,

2020)

Estonia (Tull et al.,
2020; urban) and
this study (rural)

rural urban rural urban rural rural rural rural urban

Toxocara canis 13.7% 6.2% 8.0% 13.8% 12.9% 30.1% 11.6% 4.3% 3.4%

Trichuris sp. 1.7% 1.1% 29.9% 10.0% 23.3%a 35.2% 15.5%b NE

Taenia-type 3.5% 1.0% 1.7%c 3.2% 11.4% 2.4% 3.0% 65.5% 0.3%

Capillaria/
Eucoleus spp.

0.6% 0.6% 0.7 1.2% 12.9% NE 15.5%b 3.5%

Ancylostomatidae 40.9% 9.1% 8.6% 13.1% 35.6%

Uncinaria sp. 0.9% 0.4% 14.7% 3.5%

Ancylostoma sp. 0.7% 0.5%

overall prevalenced 41.7% 14.3% 58.8% 29.7% 31.4% 56.3% 63.5% 87.0% 9.8%

NE – not estimated; aTrichuris vulpis; bno differentiation in the study; cTaenia sp.; dincluding all parasites in the study.
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than in towns. There may be several reasons for increased infec-
tion hazard in rural areas. Rural dogs that prey on various para-
tenic or intermediate hosts increase their infection risk with
parasites, including zoonotic. In the current study, rural dogs
preying on rodents had higher coinfection risk with helminths
than rural dogs consuming other food objects. In rural and sub-
urban areas, rodents such as Arvicola terrestris, Microtus arvalis,
Myodes glareolus and Apodemus agrarius can be paratenic or
intermediate hosts for E. multilocularis and Toxocara spp.
(Antolová et al., 2004; Reperant et al., 2009). Another problem
highlighted by the current study is that dogs in rural areas may

still have access to raw meat and offal of domestic and wild ani-
mals. It is known, for example, that dogs scavenging internal
organs of wild game infected with E. granulosus s.l. can become
a direct source of infection for humans and domestic animals
(Baneth et al., 2016). Moreover, contamination of pastures or
coastal meadows with scats of infected wild carnivores also results
in E. granulosus s.l. infection of domestic ruminants. The estab-
lishment of a pastoral cycle may then result from the feeding of
uncooked offal from these domestic animals to dogs (Bowman,
2013). In Estonia E. granulosus s.l. has been found in dogs
(Laurimaa et al., 2015b), grey wolves (Moks et al., 2006), but

Fig. 4. Comparison of parasite infections and coinfections for rural and urban dogs. Data for urban dogs are from Tull et al. (2020). Infected faecal samples are
marked with red colour and uninfected with blue.

Journal of Helminthology 7

https://doi.org/10.1017/S0022149X22000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0022149X22000116


also in moose (Alces alces; Moks et al., 2008) and roe deer
(Capreolus capreolus; Marcinkutė et al., 2015).

The intensity model indicated a higher helminth infection rate
for rural dogs preying on rodents and preying on game. Both
Eucoleus spp. and Trichuris spp. are geohelminths, maturing in
the soil up to several weeks before becoming infective. However,
if dog diet consisted of commercial dog food, animals had
lower infection risk with helminths, especially with Eucoleus
spp./Trichuris spp. Generally, dogs become infected by ingesting
Eucoleus aerophilus or Trichuris vulpis infective eggs from the
environment, but in rare cases infection may occur when consum-
ing invertebrates (earthworms) or Norway rats (Rattus norvegicus)
(Rothenburger et al., 2014; Traversa et al., 2014). The high hel-
minth burden in rural dogs indicates that rural environment
and customs (including no or less effective anthelmintic treat-
ment, feeding remains of animals, etc.) are contributing signifi-
cantly to the distribution of zoonotic helminths compared to
urban areas.

These findings emphasize the need to implement measures
such as properly disposing of dog scats, not feeding dogs with
raw fish/offal and/or game meat, routine parasite screening and
applying strategic parasite target-treatment to reduce helminth
infections and environmental contamination in rural areas of
Western Estonia. A study by Vienažindienė et al. (2018) found
significant decreases in excretion of T. canis eggs one month
after treatment with anthelmintics (Drontal Plus® (combination
of pyrantel embonate and febantel) and Profender® (combination
of emodepside and praziquantel)). It is also important to diagnose
which (gastrointestinal) parasite species infect dogs to determine
strict and specific anthelmintic treatment against cestodes, nema-
todes, protozoa or trematodes. The same applies also for cats (Tull
et al., 2021). Such strategic parasite target-treatment aids to min-
imize anthelmintic resistance because metaphylactic use of broad
spectrum anthelmintic (e.g., benzimidazoles, pyrantel and macro-
cyclic lactones against hookworm A. caninum) combinations
could result in anthelmintic resistance (Kopp et al., 2008;
Jimenez Castro et al., 2019; von Samson-Himmelstjerna et al.,
2021).

Summary

Free-ranging dogs in rural areas can be an important source of
helminth infection. We have collected and analysed 328 samples
from Western Estonia. The genetic method applied in this
study allowed to distinguish dog faecal samples from other free-
ranging canids, identifying 84 scats belonging to dogs. Of these,
87.0% were infected with helminths, suggesting high environmen-
tal contamination with gastrointestinal parasites shed by rural
dogs. In comparison with urban dogs, rural dogs have nine
times higher infection risk with gastrointestinal parasites. There
may be several reasons for increased infection hazard in rural
areas. Rural dogs that prey on various paratenic and intermediate
hosts increase their infection risk with parasites. In the current
study, rural dogs preying on rodents had a higher coinfection
risk with helminths than rural dogs consuming other food
objects. The intensity model indicated a higher helminth infection
rate for rural dogs preying on rodents and preying on game. The
high helminth burden in rural dogs indicates that rural environ-
ment and customs (including none or less effective anthelmintic
treatment, feeding remains of animals, etc.) are contributing sig-
nificantly to the distribution of zoonotic helminths compared to
urban areas.

Last but not least, educating and counselling pet owners about
helminth infections and their impact on the health of pets and
humans is essential, especially in rural regions, considering the
very high prevalence of intestinal helminths found among rural
dogs.
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