The minimal generating sets of $\operatorname{PSL}(2, p)$ of size four

Sebastian Jambor

Abstract

We show that there are only finitely many primes p such that $\operatorname{PSL}(2, p)$ has a minimal generating set of size four.

Supplementary materials are available with this article.

1. Introduction

In [12], Saxl and Whiston determine upper bounds for the size of a minimax set of $\mathrm{L}_{2}(q)=$ $\operatorname{PSL}(2, q)$; that is, the size of a minimal generating set of maximal cardinality. They prove that if $q=p$ is a prime, then a minimax set contains at most four elements, and if $p \not \equiv \pm 1 \bmod 8$ and $p \not \equiv \pm 1 \bmod 10$, then a minimax set contains exactly three elements. For only a small number of primes have minimax sets of $\mathrm{L}_{2}(p)$ of size four been computed. Recently, Nachman presented a proof that a minimax set contains exactly three elements if $p \not \equiv \pm 1 \bmod 10$ and $p \neq 7$, and conjectured that there are only finitely many primes $p \equiv \pm 1 \bmod 10$ that allow those extremal minimax sets [9]. In this paper, this conjecture is proved, along with a new proof of Nachman's result. Furthermore, a classification of the minimax sets of $L_{2}(p)$ of size four is given. The result is as follows.

Theorem 1. The group $\mathrm{L}_{2}(p)$ has a minimax set of size four if and only if $p \in\{7,11,19,31\}$. More precisely, up to automorphisms there are two minimax sets of size four for $\mathrm{L}_{2}(7)$, fourteen for $L_{2}(11)$, three for $L_{2}(19)$ and one for $L_{2}(31)$.

The proof is computational, using traces of 2×2 matrices based on the ideas of the L_{2}-quotient algorithm (cf. [10]), as follows. The order of a 2×2-matrix with determinant 1 is uniquely determined by its trace if the order is coprime to the characteristic of the underlying field. Furthermore, the traces of products of 2×2 matrices with determinant 1 satisfy certain polynomial relations that are independent of the prime p (cf. $[\mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{1 0}]$). Thus by classifying the orders of the elements in a minimax set and of certain products, we get polynomial conditions on the traces, which can only be satisfied in the characteristics given in the theorem.

We use the notation and results of [12]: let $G=\mathrm{L}_{2}(p)$ for a prime $p>5$ and let $M(G)=$ $\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \subseteq G$ be a minimax set of size four. Set $H_{i}:=\left\langle M(G)-\left\{g_{i}\right\}\right\rangle$ for $i=1, \ldots, 4$. Then every H_{i} is isomorphic to $\mathrm{A}_{5}, \mathrm{~S}_{4}$ or a dihedral group, and at least two of the H_{i} are isomorphic to A_{5} or S_{4} (cf. [12]). (It is easy to see that no H_{i} can be isomorphic to a point stabilizer, that is, a subgroup of $\mathrm{C}_{p} \rtimes \mathrm{C}_{(p-1) / 2}$, since at least two H_{i} are isomorphic to A_{5} or S_{4}. Cf. also [9].)

In the following, we will always assume that H_{3} and H_{4} are isomorphic to A_{5} or S_{4}.

2. Restricting possible orders

Note that $M(G)-\left\{g_{i}\right\}$ is a minimax set of H_{i}, and it is easy to classify the minimax sets of A_{5} and S_{4}; for example, using GAP [5] or MAGMA [2]. In particular, all g_{i} have order 2 or 3.

[^0]Lemma 2. Let H_{1} be a dihedral group. Then $\left|g_{i} g_{j}\right| \leqslant 6$ for $2 \leqslant i<j \leqslant 4$ and $\left|g_{2} g_{3} g_{4}\right| \in$ $\{2,6,10,12,15\}$.

Proof. The element $g_{i} g_{j}$ is contained in the group H_{k} for some $2 \leqslant k \leqslant 4$. If H_{k} is isomorphic to A_{5} or S_{4}, then $\left|g_{i} g_{j}\right| \leqslant 5$. Now assume that H_{k} is a dihedral group. Recall that an element of a dihedral group is called a rotation if it is contained in the cyclic subgroup of index two, and a reflection otherwise. If g_{i} and g_{j} are both rotations, then $\left|g_{i} g_{j}\right| \leqslant 6$, since $\left|g_{i}\right|,\left|g_{j}\right| \leqslant 3$; if precisely one of g_{i} and g_{j} is a reflection, then $g_{i} g_{j}$ is a reflection, hence of order 2. Finally, if both g_{i} and g_{j} are reflections with $g_{i} \neq g_{j}$, then the group $\left\langle g_{i}, g_{j}\right\rangle$ is not cyclic, so by the proof of $\left[12\right.$, Lemma 1] it is elementary abelian of order 4 , hence $\left|g_{i} g_{j}\right|=2$. This concludes the proof that $\left|g_{i} g_{j}\right| \leqslant 6$. To bound the order of $g_{2} g_{3} g_{4}$, note that if $\left\{g_{2}, g_{3}, g_{4}\right\}$ contains an odd number of reflections, then the product $g_{2} g_{3} g_{4}$ is also a reflection, hence of order 2. Otherwise, $g_{2} g_{3} g_{4}$ is a product of two rotations of restricted orders, and the result easily follows.

Corollary 3. Let $\left\{g_{1}, \ldots, g_{4}\right\} \subseteq \mathrm{L}_{2}(p)$ be a minimax set of size four for some prime p. There are only finitely many possibilities for the orders of the elements g_{i} for $1 \leqslant i \leqslant 4, g_{i} g_{j}$ for $i<j \leqslant 4$ and $g_{i} g_{j} g_{k}$ for $j<k \leqslant 4$.

All of these possibilities can be easily computed.

3. Restricting possible traces

The L_{2}-quotient algorithm [10] uses the fact that an absolutely irreducible representation of the free group on two generators over \mathbb{F}_{q} is uniquely determined by three traces, up to equivalence. For four matrices, more traces are needed, but the same principles hold.

Definition 4. For a quadruple $m=\left(m_{1}, \ldots, m_{4}\right) \in \operatorname{SL}(2, q)^{4}$ of matrices, let

$$
t_{m}:=\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{12}, t_{13}, t_{14}, t_{23}, t_{24}, t_{34}, t_{123}, t_{124}, t_{134}, t_{234}\right) \in \mathbb{F}_{q}^{14}
$$

where $t_{i}:=\operatorname{tr}\left(m_{i}\right), \quad t_{i j}:=\operatorname{tr}\left(m_{i} m_{j}\right)$ and $t_{i j k}:=\operatorname{tr}\left(m_{i} m_{j} m_{k}\right)$ for $1 \leqslant i \leqslant 4, i<j \leqslant 4$ and $j<k \leqslant 4$. We call t_{m} the trace tuple of m. Conversely, if $t \in \mathbb{F}_{q}^{14}$ and $m=\left(m_{1}, \ldots, m_{4}\right) \in$ $\mathrm{SL}(2, q)^{4}$ are matrices with $t_{m}=t$, we call m a realization of t.

Proposition 5. Let q be an odd prime power and $t \in \mathbb{F}_{q}^{14}$ with realization $m \in \operatorname{SL}(2, q)^{4}$ such that $\left\langle m_{1}, \ldots, m_{4}\right\rangle$ is absolutely irreducible. Then m is unique up to conjugation by an element in $\mathrm{GL}(2, q)$.

Proof. Let w be a word in m_{1}, \ldots, m_{4}. If w has length $\geqslant 4$, then by Procesi's theorem [11], $\operatorname{tr}(w)$ can be expressed as a polynomial in traces of words of smaller length (this uses the fact that q is odd). Furthermore, $\operatorname{tr}\left(m_{i} m_{j}\right)=\operatorname{tr}\left(m_{j} m_{i}\right)$, and $\operatorname{tr}\left(m_{i} m_{k} m_{j}\right)$ can be written as a polynomial in $\operatorname{tr}\left(m_{i} m_{j} m_{k}\right)$ and traces of words of smaller length (cf. for example [6]). Hence the trace of all elements in $\left\langle m_{1}, \ldots, m_{4}\right\rangle$ is uniquely determined by t. Since $\left\langle m_{1}, \ldots, m_{4}\right\rangle$ is finite and absolutely irreducible, it is uniquely determined by its \mathbb{F}_{q}-valued character, up to equivalence.
(This statement can be proved in a more general form; cf. [8].)
Not every 14 -tuple of field elements has a realization. The reason is that the traces satisfy certain polynomial relations.

Let $R:=\mathbb{Z}[1 / 2]\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}, x_{123}, x_{124}, x_{134}, x_{234}\right]$, where the x_{i}, $x_{i j}, x_{i j k}$ are indeterminates over $\mathbb{Z}[1 / 2]$. Furthermore, define $y_{i i}:=x_{i}^{2} / 2-2, y_{j i}:=y_{i j}:=x_{i j}-$ $x_{i} x_{j} / 2$ and $y_{i j k}:=2 x_{i j k}+x_{i} x_{j} x_{k}-x_{i} x_{j k}-x_{j} x_{i k}-x_{k} x_{i j}$ for $1 \leqslant i \leqslant 4, i<j \leqslant 4, j<k \leqslant 4$.

Proposition 6 [4, Theorem 2.3]. Let q be an odd prime power. For every $m \in \operatorname{SL}(2, q)^{4}$, the trace tuple t_{m} is a zero of the polynomials

$$
y_{i_{1} i_{2} i_{3}} y_{j_{1} j_{2} j_{3}}+2 \operatorname{det}\left(\begin{array}{lll}
y_{i_{1} j_{1}} & y_{i_{1} j_{2}} & y_{i_{1} j_{3}} \\
y_{i_{2} j_{1}} & y_{i_{2} j_{2}} & y_{i_{2} j_{3}} \\
y_{i_{3} j_{1}} & y_{i_{3} j_{2}} & y_{i_{3} j_{3}}
\end{array}\right) \in R
$$

for $1 \leqslant i_{1}<i_{2}<i_{3} \leqslant 4,1 \leqslant j_{1}<j_{2}<j_{3} \leqslant 4$ and

$$
y_{i 1} y_{234}-y_{i 2} y_{134}+y_{i 3} y_{124}-y_{i 4} y_{123} \in R
$$

for $1 \leqslant i \leqslant 4$.
Drensky proves this result for algebraically closed fields of characteristic zero. However, by taking preimages of the m_{i} over an extension \mathcal{O} of \mathbb{Z} and embedding \mathcal{O} in an algebraically closed field, the result also holds for matrices over finite fields.

Further restrictions on the traces can be imposed by prescribing the order of certain elements, using the following connection between orders and traces.

REMARK 7. For $m \in \mathbb{N}$, denote by $\Psi_{m} \in \mathbb{Z}[x]$ the minimal polynomial of $\zeta_{m}+\zeta_{m}^{-1}$, where ζ_{m} is a primitive m th root of unity. If $A \in \mathrm{SL}(2, q)$ is an element of finite order $m>2$, then $\Psi_{m}(\operatorname{tr}(A))=0$.

If $a \in \mathrm{~L}_{2}(q)$ has order ℓ and $A \in \mathrm{SL}(2, q)$ is a preimage, then A has order 2ℓ if ℓ is even and order ℓ or 2ℓ if ℓ is odd.

Definition 8. For $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{12}, \omega_{13}, \omega_{14}, \omega_{23}, \omega_{24}, \omega_{34}, \omega_{123}, \omega_{124}, \omega_{134}, \omega_{234}\right) \in$ \mathbb{N}^{14}, let

$$
\left.\left.I_{\omega}:=\left\langle\Psi_{2 \omega_{j}}\left(x_{j}\right)\right| \omega_{j} \text { even }\right\rangle+\left\langle\Psi_{\omega_{j}}\left(x_{j}\right) \Psi_{2 \omega_{j}}\left(x_{j}\right)\right| \omega_{j} \text { odd }\right\rangle+J \unlhd R
$$

where j runs over all possible indices and J is the ideal generated by the polynomials in Proposition 6.

Remark 9. Let $\omega \in \mathbb{N}^{14}$.
(i) If $g=\left(g_{1}, \ldots, g_{4}\right) \in \mathrm{L}_{2}(q)^{4}$ with $\left|g_{i}\right|=\omega_{i},\left|g_{i} g_{j}\right|=\omega_{i j},\left|g_{i} g_{j} g_{k}\right|=\omega_{i j k}$ for some q and $m=\left(m_{1}, \ldots, m_{4}\right) \in \mathrm{SL}(2, q)^{4}$ are preimages of the g_{i}, then the trace tuple t_{m} is a zero of I_{ω}. Conversely, if $t \in \mathbb{F}_{q}^{14}$ is a zero of I_{ω} for some q and $m=\left(m_{1}, \ldots, m_{4}\right) \in \operatorname{SL}(2, q)^{4}$ is a realization of t, then $\left|\underline{g_{i}}\right|=\omega_{i},\left|g_{i} g_{j}\right|=\omega_{i j},\left|g_{i} g_{j} g_{k}\right|=\omega_{i j k}$, where the g_{i} are images of the m_{i} in $\mathrm{L}_{2}(q)$.
(ii) Let $\bar{R}:=R / I_{\omega}$. Every maximal ideal $M \unlhd \bar{R}$ yields a zero $t=\left(t_{1}, \ldots, t_{234}\right) \in \mathbb{F}_{q}^{14}$ of I_{ω}, where $\mathbb{F}_{q}=\bar{R} / M$ is the residue class field of M, by setting $t_{j}:=\overline{x_{j}}+M$. This defines a bijection between the maximal ideals of \bar{R} and $\operatorname{Gal}\left(\mathbb{F}_{q}\right)$-orbits of zeroes $t \in \mathbb{F}_{q}^{14}$ of I_{ω}, where q ranges over all prime powers. The maximal ideals of \bar{R} are in bijection to maximal ideals of R that contain I_{ω}, and a maximal ideal $M \unlhd R$ contains I_{ω} if and only if it contains a minimal associated prime ideal of I_{ω}. In particular, if all associated prime ideals are maximal, then \bar{R} has only finitely many maximal ideals.

For the background on commutative algebra, see [1, Chapter 4]. The minimal associated prime ideals can be computed using [7].

4. Proof of Theorem 1

The proof of Theorem 1 works by running through all order tuples ω of Corollary 3 and computing the minimal associated prime ideals of I_{ω}. For every minimal associated prime ideal that is maximal, compute the unique zero $t \in \mathbb{F}_{q}^{14}$ (where \mathbb{F}_{q} is the residue class field of the
maximal ideal) and check whether t has a realization (this can be done using the methods in [10] and the trace bilinear form). If a realization exists, check whether it yields a minimax set.

Example 10. Assume that $H_{1} \cong H_{2} \cong \mathrm{~S}_{4}$ and $H_{3} \cong H_{4} \cong \mathrm{~A}_{5}$. Let $\left\{h_{1}, h_{2}, h_{3}\right\}$ be a minimax set of S_{4} or A_{5} and $\ell:=\left(\left|h_{1}\right|,\left|h_{2}\right|,\left|h_{3}\right|,\left|h_{1} h_{2}\right|,\left|h_{1} h_{3}\right|,\left|h_{2} h_{3}\right|,\left|h_{1} h_{2} h_{3}\right|\right)$. Then there are 37 possibilities for ℓ in the case of S_{4} and 62 possibilities for A_{5}. Together, they yield 34 possibilities for the order tuples ω. We take a closer look at two of those 34 possibilities.
(i) Let $\omega=(2,2,2,2,3,3,2,2,3,5,4,4,5,5)$. Then I_{ω} has four minimal associated primes, namely

$$
\begin{aligned}
& \left\langle 31, x_{1}, x_{2}, x_{3}, x_{4}, x_{12}-1, x_{13}-1, x_{14}, x_{23}, x_{24}-\delta_{1} \delta_{2}, x_{34}+12 \delta_{1} \delta_{2},\right. \\
& \left.x_{123}+8 \delta_{1}, x_{124}+8 \delta_{2}, x_{134}+13 \delta_{2}, x_{234}+13 \delta_{2}\right\rangle \unlhd R
\end{aligned}
$$

with $\delta_{1}, \delta_{2} \in\{ \pm 1\}$. Hence there are exactly four zeroes of I_{ω}, all defined in characteristic 31 . Possible realizations are given by the matrices

$$
m_{1}=\delta_{1}\left(\begin{array}{cc}
0 & 30 \\
1 & 0
\end{array}\right), \quad m_{2}=\delta_{1}\left(\begin{array}{cc}
20 & 2 \\
1 & 11
\end{array}\right), \quad m_{3}=\delta_{1}\left(\begin{array}{cc}
6 & 24 \\
23 & 25
\end{array}\right), \quad m_{4}=\delta_{2}\left(\begin{array}{cc}
20 & 23 \\
23 & 11
\end{array}\right),
$$

and each quadruple of matrices yields the same quadruple of elements in $L_{2}(31)$. It can be easily checked that these elements form a minimax set having the desired subgroups H_{i}.
(ii) For $\omega=(2,2,2,2,2,3,3,3,3,5,4,4,3,3)$, the ideal I_{ω} contains the prime 2 . Thus I_{ω} only has zeroes in characteristic 2 , which are not relevant to our problem.

It can happen that I_{ω} has non-maximal associated primes. In this case, I_{ω} has zeroes in every characteristic. As it turns out, this happens only if the orders ω come from a configuration where all H_{i} are isomorphic to S_{4} or all are isomorphic to A_{5}. In these cases, there exist quadruples of elements in S_{4} (or in A_{5}) such that every three-tuple is a minimax set of S_{4} (or A_{5}). Since S_{4} and A_{5} have representations of degree 2 in every characteristic, these degenerate sets account for infinitely many zeroes of I_{ω}, that is, the prime ideal of dimension 1 , which can therefore be disregarded.

To get a classification of the minimax sets under the automorphism group, note that all quadruples ($\delta_{1} m_{1}, \ldots, \delta_{4} m_{4}$) with $\delta_{i} \in\{ \pm 1\}$ yield the same quadruple of projective elements. Furthermore, the ordering of the matrices is irrelevant. The actions of $\{ \pm 1\}^{4}$ and S_{4} on quadruples of matrices induce an action of $\{ \pm 1\}^{4} \rtimes \mathrm{~S}_{4}$ on the trace tuples, so the automorphism classes of minimax sets correspond to $\{ \pm 1\}^{4} \rtimes \mathrm{~S}_{4}$-orbits of trace tuples.

5. Source files

All computations have been done in Magma; the source files are supplied as add-ons to this paper and are available from the publisher's website.

Acknowledgement. I thank the anonymous referee for several helpful comments.

References

1. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra (Addison-Wesley, Reading, MA, 1969).
2. W. Bosma, J. Cannon and C. Playoust, 'The Magma algebra system. I. The user language', J. Symbolic Comput. 24 (1997) 235-265; Computational algebra and number theory (London, 1993).
3. S. Donkin, 'Invariants of several matrices', Invent. Math. 110 (1992) 389-401.
4. V. Drensky, 'Defining relations for the algebra of invariants of 2×2 matrices', Algebr. Represent. Theory 6 (2003) 193-214.
5. The GAP group, 'GAP - groups, algorithms, and programming, Version 4.4.12', 2008.
6. R. D. Horowitz, 'Characters of free groups represented in the two-dimensional special linear group', Comm. Pure Appl. Math. 25 (1972) 635-649.
7. S. Jambor, 'Computing minimal associated primes in polynomial rings over the integers', J. Symbolic Comput. 46 (2011) 1098-1104.
8. S. Jambor, 'An $L_{3}-U_{3}$-quotient algorithm for finitely presented groups', PhD Thesis, RWTH Aachen University, 2012.
9. B. NACHMAN, 'Generating sequences of PSL $(2, p)$ ', Preprint, 2012, arXiv:1210.2073 [math.GR].
10. W. Plesken and A. Fabiańska, 'An L_{2}-quotient algorithm for finitely presented groups', J. Algebra 322 (2009) 914-935.
11. C. Procesi, 'The invariant theory of $n \times n$ matrices', Adv. Math. 19 (1976) 306-381.
12. J. Whiston and J. Saxl, 'On the maximal size of independent generating sets of $\mathrm{PSL}_{2}(q)$ ', J. Algebra 258 (2002) 651-657.

Sebastian Jambor
Department of Mathematics
The University of Auckland
Private Bag 92019
Auckland, New Zealand
s.jambor@auckland.ac.nz

[^0]: Received 20 November 2012; revised 7 June 2013.
 2010 Mathematics Subject Classification 20E34, 20G40.
 The author was supported by the Alexander von Humboldt Foundation via a Feodor Lynen Research Fellowship.

