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Summary

Knowledge gaps regarding distribution, habitat associations, and population size for rare and
threatened range-restricted taxa lead to uncertainty in directing conservation action. Quan-
tifying range metrics and species–habitat associations using Species Distribution Models
(SDMs) with remote-sensing habitat data can overcome these setbacks by establishing
baseline estimates for biological parameters critical for conservation assessments. Area of
Habitat (AOH) is a new range metric recently developed by the International Union for
Conservation of Nature (IUCN) Red List. AOH seeks to quantify inferred habitat within a
species’ range to inform extinction risk assessments. Here, we used SDMs correlating
occurrences with remote-sensing covariates to calculate a first estimate of AOH for the
Endangered Madagascar Serpent-eagle Eutriorchis astur, and then updated additional IUCN
range metrics and the current global population estimate. From these baselines we then
conducted a gap analysis assessing protected area coverage. Our continuous SDM had robust
predictive performance (Continuous Boyce Index = 0.835) and when reclassified to a binary
model estimated an AOH = 30,121 km2, 13% less than the current IUCN range map. We
estimated a global population of 533 mature individuals derived from the Madagascar
Serpent-eagle AOH metric, which was within current IUCN population estimates. The
current protected area network covered 95% of AOH, with the binary model identifying
three additional key habitat areas as new protected area designations to fully protect
Madagascar Serpent-eagle habitat. Our results demonstrated that correlating presence-only
occurrences with remote-sensing habitat covariates can fill knowledge gaps useful for
informing conservation action. Applying this spatial information to conservation planning
would ensure almost full protected area coverage for this endangered raptor. For tropical
forest habitat specialists, we recommend that potential predictors derived from remote
sensing, such as vegetation indices and biophysical measures, are considered as covariates,
along with other variables including climate and topography.

Introduction

Mapping geographical ranges and identifying the environmental requirements of threatened
species are fundamental research areas in conservation biology (Riddle et al. 2011). Defining
species’ spatial and ecological range limits is essential to assess the various threats facing many
taxa in rapidly changing environments (Ladle and Whittaker 2011), and to formulate viable
conservation plans for species survival (Margules and Pressey 2000, Sutton et al. 2021a).
However, significant knowledge gaps still exist regarding the full area of distribution and
environmental attributes of where individual species occur, commonly termed the “Wallacean
Shortfall” (Lomolino 2004). The Wallacean Shortfall contributes to a second knowledge deficit
where, if the current range of a species is unknown or not fully described, it is not possible to
determine whether and when a species is in decline or possibly gone extinct. Thus, the
environmental factors that limit the distribution and abundance of many threatened species
are still poorly understood (Marcer et al. 2013).

A current biogeographical paradigm is that climate plays a central role in determining species
distributions at broad scales (Pearson and Dawson 2003). However, recent work has demon-
strated that biotic interactions (Aragón et al. 2018, Sutton et al. 2023a), landcover (Tuanmu and
Jetz 2014, 2015), and topography (Meineri and Hylander 2017) are also important in setting
range limits for many taxa. Species Distribution Models (SDMs) are a group of geospatial
statistical methods that assess species–habitat associations and predict distribution based on
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correlating environmental covariates with species occurrences
(Matthiopoulos et al. 2020). SDMs can be effective in estimating
potential range limits and ecological associations using satellite
remote-sensing data coupled with occurrences from unstructured
surveys and community science projects (Bradter et al. 2018); this
includes data for threatened species distributed across remote, hard
to survey areas (Sutton et al. 2021b, 2023b).

The endemic Madagascar Serpent-eagle Eutriorchis astur is a
cryptic, medium-sized raptor with a restricted distribution across
tropical forests in eastern Madagascar (BirdLife International 2016).
The species is one of the rarest raptors globally and is currently
classified as “Endangered” on the International Union for Conser-
vation ofNature (IUCN)Red List (BirdLife International 2016). This
forest-dependent raptor was once considered extinct but was redis-
covered three decades ago by Peregrine Fund biologists (Thorstrom
et al. 1995). Madagascar Serpent-eagles generally prefer uninter-
rupted expanses of lowland and mid-altitude tropical forest, with
habitat loss and fragmentation the primary threats to the species
future persistence (Thorstrom and Rene de Roland 2000). Despite
being termed a serpent-eagle, snakes comprise only a small propor-
tion of Madagascar Serpent-eagle prey, with chameleons and geckos
accounting for >80% of diet (Thorstrom and Rene de Roland 2000).
Recent research suggests the Madagascar Serpent-eagle may be
vulnerable to both climate change (Andriamasimanana and Cam-
eron 2013) and increasing forest fragmentation (Benjara et al. 2021).

From surveys using playback techniques (Thorstrom and Rene
de Roland 2000), the known range of theMadagascar Serpent-eagle
is now thought to be considerably larger than previously estimated
and it may not be as rare as once thought (BirdLife International
2016). However, a recent global assessment of human threats to
raptor distributions identified the Madagascar Serpent-eagle as a
priority species for conservation intervention to prevent likely
extinction due to having >90% of its range impacted by forest loss
(O’Bryan et al. 2022). Moreover, the environmental determinants
of Madagascar Serpent-eagle distribution and abundance are still
largely unknown. The global population is still very small, esti-
mated between 250 and 999 mature individuals, and is likely to be
decreasing (BirdLife International 2016). Spatial modelling can
therefore help to determine the key ecological requirements of
the Madagascar Serpent-eagle and update range metrics and popu-
lation size estimates, both currently identified as priority areas of
research (Thorstrom et al. 1995, Thorstrom and Rene de Roland
2000, BirdLife International 2016). Further, predicting the distri-
butional potential for the Madagascar Serpent-eagle would enable
specific hypotheses to be developed and tested on the processes
limiting its distribution. This includes directing current field sam-
pling protocols to identify potential areas of occupation (sensu
Peterson and Anamza 2015).

Improving the predictive power of spatial models by incorpor-
ating biotic, landcover, and topographical predictors derived from
satellite remote sensing would also lead to higher certainty on
where to designate new protected areas, strengthening the existing
protected area network (Elith and Leathwick 2009). Applying this
knowledge to current conservation management can then direct
designation of protected areas in line with suitable environmental
areas (Sutton et al. 2023b). Given this background, our aims were to
apply spatial predictive modelling to estimate distribution and
identify ecological range limits for the Madagascar Serpent-eagle.
Our key objective was to use this information to inform current
spatial conservation planning and estimate a potential population
size. Here, we set out baseline estimates for: (1) the current distri-
bution of the Madagascar Serpent-eagle based on remote-sensing

habitat covariates; (2) identification of range-wide species–habitat
associations; (3) updated IUCN rangemetrics and a population size
estimate. From these baselines we then calculated protected area
coverage, and conducted a gap analysis to identify priority desig-
nations for new protected areas.

Methods

Study extent and species locations

We defined the species’ accessible area (Barve et al. 2011) as the
ecoregions corresponding to both Madagascar lowland and sub-
humid tropical forest extracted from the World Wildlife Fund
terrestrial ecoregions shapefile (Olson et al. 2001) (Figure 1). We
masked out the remaining ecoregions in the far north, east, and
south of Madagascar because the Madagascar Serpent-eagle is a
habitat specialist of moist tropical forest (Thorstrom and Rene de
Roland 2000, Benjara et al. 2021), and has not been recorded
outside these ecoregions.We compiled a database of 33Madagascar
Serpent-eagle point localities from the Global Raptor Impact Net-
work (GRIN), a global population monitoring information system
for all raptors (McClure et al. 2021). For the Madagascar Serpent-
eagle, GRIN consists of locations from unstructured surveys which
only recorded presence (n= 24), a literature search (n = 4; Sheldon
and Duckworth 1990, Raxworthy and Colston 1992, Hawkins et al.
1998, Karpanty and Grella 2001), and community science data
from the Global Biodiversity Information Facility (n = 5; GBIF
2020) (see Supplementary Materials).

Habitat covariate models

We considered eight potential habitat covariates a priori related
empirically to known Madagascar Serpent-eagle habitat associ-
ations (Thorstrom and Rene de Roland 2000, Benjara et al.

Figure 1. Current IUCN range map for the Madagascar Serpent-eagle with our model
accessible area derived from the tropical moist forest ecoregions (light grey) and IUCN
range map (khaki). The dark grey polygon defines the national boundary of Madagas-
car not within the species accessible area.
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2021). These were derived from satellite remote-sensing prod-
ucts representing climate, landcover, topography, and vegeta-
tion at a spatial resolution of 30 arc-seconds (~1 km resolution,
Table 1). We downloaded raster layers from the EarthEnv
(www.earthenv.org), ENVIREM (Title and Bemmels 2018),
and Dynamic Habitat Indices (Radeloff 2019) repositories,
which were then cropped and masked to a delimited polygon
representing the species accessible area (Figure 1). The Climatic
Moisture Index is a scaled measure (-1≤ Climatic Moisture
Index ≤1) of the ratio of annual precipitation and annual evapo-
transpiration (Willmott and Feddema 1992), used here as a
proxy for moist tropical forest coverage. Evergreen Forest is a
measure of percentage landcover here representing broadleaf
tropical evergreen forest derived from consensus products inte-
grating GlobCover (v2.2), MODIS landcover product (v051),
GLC2000 (v1.1), and DISCover (v2) from the years 1992–2006.
Full details on methodology and image processing for evergreen
forest can be found in Tuanmu and Jetz (2014).

Heterogeneity is a biophysical texture measure closely related to
vegetation structure, composition, and diversity (i.e. species rich-
ness) derived from textural features of the Enhanced Vegetation
Index between adjacent pixels; sourced from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) (https://modis.gsfc.na
sa.gov/). We inverted the raster cell values in the original EarthEnv
variable “Homogeneity” (Tuanmu and Jetz 2015) to represent the
spatial variability and arrangement of vegetation species richness
on a continuous scale which varies between zero (minimum het-
erogeneity, low species richness) and one (maximumheterogeneity,
high species richness). Elevation was derived from a digital eleva-
tion model product from the 250m Global Multi-Resolution Ter-
rain Elevation Data 2010 (Danielson and Gesch 2011). The Terrain
Roughness Index is a measure of variation in topography around a
central pixel, with lower values indicating flat terrain and higher
values indicating larger differences in elevation of neighbouring
pixels (Wilson et al. 2007).

Last, we used three biophysical vegetation layers based on
averaged 8- and 16-day MODIS vegetation products, used here as
composite Dynamic Habitat Index products (Radeloff et al. 2019).
We used the single composite phenology curve product for each
Dynamic Habitat Index vegetation layer, summarising three meas-
ures of vegetation productivity between 2003 and 2014: annual
cumulative, minimum throughout the year, and seasonality as the
annual coefficient of variation. The Normalised Difference Vege-
tation Index (NDVI) provides a measure of photosynthetic activity

linked to species richness and productivity (Huete et al. 2002).
However, NDVI can saturate in dense vegetation and highly pro-
ductive areas (such asmoist tropical forests) and cannot distinguish
differences in productivity in these areas (Huete et al. 2002).
Therefore, we used two further measures that directly assess prod-
uctivity, providing a more accurate proxy for vegetation coverage:
Leaf Area Index and Fraction of absorbed Photosynthetically Active
Radiation (FPAR).

Both the Leaf Area Index and FPAR incorporate landcover in
their calculation and use reflectance values from up to seven
MODIS bands, compared with the two or three bands for NDVI
and Enhanced Vegetation Index, respectively (Hobi et al. 2017).
The Leaf Area Index is ameasure of the amount of foliage within the
plant canopy and a key driver of primary productivity (Asner et al.
2003). FPAR is a measure of productivity inferred from available
photosynthetic activity driven by solar radiation (Myneni et al.
2002), characterising the energy absorption of the vegetation can-
opy. The Leaf Area Index and FPAR are closely related measures,
with the Leaf Area Index recommended for high productivity areas
and FPAR for lower productivity areas (Radeloff et al. 2019).
Combined, we used each Dynamic Habitat Index as proxies for
food availability, assuming summarising vegetation productivity
annually over the 11-year period captures seasonal variations in
prey species habitat, and thus the availability of prey species that
Madagascar Serpent-eagles would use as food (Hobi et al. 2017).

We selected covariates to use in our final model based on an
information theoretical approach using Akaike’s Information Cri-
terion (AIC) (Akaike 1974) corrected for small sample sizes
(Hurvich and Tsai 1989) in the R package AICcmodavg
(Mazerolle 2020). We fitted six candidate models using logistic
regression with a binomial error term and logit link function using
Generalised Linear Models (GLMs) in the R package stats (R Core
Team 2018). We fitted all candidate models to derive maximum
likelihood estimates on model parameters significantly different
from zero, with no interaction terms. We standardised all predict-
ors with a mean of zero and standard deviation (SD) of one. As
the occurrence data correspond to a presence-only dataset, we
randomly sampled background availability using 10,000 pseudo-
absence points suitable for regression-based modelling (Barbet-
Massin et al. 2012). We assigned equal weights to both presence
and background points allowing consistent sampling across the
model calibration area. We did this to avoid saturating the models
with excessive absence weighting, which makes presence trends
difficult to detect (Elith and Leathwick 2007).

Table 1. Habitat covariates selected a priori and considered as potential covariates used in all spatial analyses for the Madagascar Serpent-eagle. FPAR = Fraction
of absorbed Photosynthetically Active Radiation; NDVI = Normalised Difference Vegetation Index.

Covariate Source Citation Year(s)

Climatic Moisture Index ENVIREM Title and Bemmels 2018 2000

Elevation EarthEnv Amatulli et al. 2018 2010

Evergreen forest EarthEnv Tuanmu and Jetz 2014 1992–2005

FPAR DHI Radeloff et al. 2019 2003–2014

Heterogeneity EarthEnv Tuanmu and Jetz 2015 2001–2005

Leaf Area Index DHI Radeloff et al. 2019 2003–2014

NDVI DHI Radeloff et al. 2019 2003–2014

Terrain Roughness Index ENVIREM Title and Bemmels 2018 2000
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First, we fitted model 1 with all eight covariates representing
climate, landcover, topography, and vegetation, model 2 with only
landcover, topography, and vegetation variables, and model 3 with
landcover and vegetation plus elevation, but without Terrain
Roughness Index. We fitted model 4 only considering landcover
and vegetation variables, and finally, models 5 and 6 were fitted
with landcover and vegetation both with and without NDVI and
FPAR. We did not include an intercept-only model because its
ΔAICc score was not competitive (ΔAICc= 20.75). We fitted linear
terms to allmodel covariates except for the ClimaticMoisture Index
and Terrain Roughness Index, which were fitted with quadratic
terms because we expected values of both covariates to be highest at
intermediate values and decrease at lower and higher values. We
considered all candidate models with anΔAICc <2 as having strong
support (Burnham and Anderson 2004), and we selected the best
supported model using the lowest ΔAICc and highest AICc weight-
ing. We tested all covariates for multicollinearity directly at the
Madagascar Serpent-eagle occurrences prior to model ranking and
then as a final check on our best supported model covariates
considering Variance Inflation Factors <2 (Dormann et al. 2013).

SDMs

After identifying the most parsimonious model covariates using
binomial GLMs, we fitted candidate SDMs, further tuning model
parameters using penalised elastic net logistic regression in the R
package maxnet (Phillips et al. 2017). Penalising regression model
coefficients reduces model variance, resulting in a regression model
that generalises better than standard logistic regression (Valavi et al.
2021). Penalised logistic regression imposes a regularisation pen-
alty to themodel coefficients reducingmodel complexity by shrink-
ing the covariates that contribute the least to model prediction
(Gastón and García-Viñas 2011, Fithian and Hastie 2013). An
elastic net is used to perform automatic variable selection and
continuous shrinkage simultaneously (via the glmnet package)
(Friedman et al. 2010), retaining all covariates that contribute less
by shrinking coefficients to either exactly zero or close to zero. We
fitted SDMs via maximum penalised likelihood estimation using a
complementary log-log (cloglog) link function as a continuous
index of environmental suitability, with 0 = low suitability and
1 = high suitability. We parametrised the penalised logistic regres-
sion model using infinite weighting (presence weights = 1, back-
ground = 100) equivalent to an inhomogeneous Poisson process
because this is the most effective method to model presence-
background data as used here (Warton and Shepherd 2010).

We used a random sample of 10,000 background points as
pseudo-absences recommended for regression-based modelling
(Barbet-Massin et al. 2012), and to sufficiently sample the back-
ground calibration environment (Guevara et al. 2018). We based
optimal-model selection on AIC (Akaike 1974), corrected for small
sample sizes (AICc) (Hurvich andTsai 1989), to determine themost
parsimonious model from two model parameters: regularisation
beta multiplier (β; level of coefficient penalty) and feature classes
(response functions; Warren and Seifert 2011). We considered
27 candidate models of varying complexity by conducting a grid
search using a range of regularisation multipliers from 1 to 5 in 0.5
increments, and three feature classes (response functions: linear,
quadratic, and hinge) in all possible combinations using the
“jackknife”method of k-fold cross validation within the R package
ENMeval (Muscarella et al. 2014).

The n –1 jackknife cross-validation approach is specifically used
to test predictions using small occurrence datasets where the

number of k folds is equal to the number of occurrences (n). All
records but one are used in each model iteration, rather than losing
valuable records via data splitting, with the single withheld record
used once for testing (Gerstner et al. 2018). From each withheld test
record, n models are calibrated and evaluated at each iteration
across all n models (Shcheglovitova and Anderson 2013). We
considered all models with an ΔAICc <2 as having strong support
(Burnham and Anderson 2004), with the model that had the lowest
ΔAICc that used all three feature classes selected as the best sup-
ported model. We assessed variable performance using response
functions and parameter estimates within the best supported cali-
bration SDM. We used the Continuous Boyce Index (Hirzel et al.
2006) as a measure of how predictions differ from a random
distribution of observed presences (Boyce et al. 2002). Last, we
tested the optimal model against random expectations using partial
Receiver Operating Characteristic ratios (pROC), which estimate
model performance by giving precedence to omission errors over
commission errors (Peterson et al. 2008) (see SupplementaryMater
ials).

Range metrics and population size estimation

We followed the spatial modelling framework of Sutton et al.
(2023b) and converted the final range-wide continuous prediction
into a binary threshold prediction which we term model area of
habitat (AOH), to be distinct from the standard IUCN AOH
methodology (Brooks et al. 2019). To calculate model AOH in
suitable pixels we reclassified the continuous prediction to a
binary threshold using all pixel values equal to or greater than
maximising the sum of sensitivity and specificity (maxTSS) from
the continuous model prediction. We used maxTSS because it is
the most appropriate threshold for SDM conservation applica-
tions using presence-only data (Liu et al. 2013).We calculated two
further IUCN range metrics from our model AOH binary predic-
tion in the R package redlistr (Lee et al. 2019). To do this we first
converted the model AOH raster to a polygon using an eight-
neighbour patch rule and applied a smoothing function using the
Chaikin algorithm (Chaikin 1974) in the R package smoothr
(Strimas-Mackey 2021).

First, we calculated the Extent of Occurrence, fitting aminimum
convex polygon around the furthest boundaries of the smoothed
modelAOH polygon following IUCN guidelines (IUCN 2018). We
calculated both a maximum Extent of Occurrence, including all the
area with the minimum convex polygon, and a minimum Extent of
Occurrence, masking out the areas that could either not be occu-
pied, or are unlikely to be, within the minimum convex polygon, in
our case over the ocean and outside the moist tropical forest
ecoregions (Marcer et al. 2013). Second, we calculated the Area of
Occupancy as the number of raster pixels predicted to be occupied,
scaled to a 2 � 2 km grid (4-km2 cells) following IUCN guidelines
(IUCN 2018). All range metric calculations were performed using a
transverse cylindrical equal area projection following IUCN guide-
lines (IUCN 2018).

Finally, we calculated the number of Madagascar Serpent-
eagle pairs ourmodelAOH could support as directly proportional
to the available habitat required by a territorial pair. We defined
the habitat area for a breeding pair based on nearest neighbour
distances of 6 km between nests from the Masoala Peninsula,
which currently has the highest known density of breeding
Madagascar Serpent-eagles (Thorstrom and Rene de Roland
2000). We used the area of a circle (113 km2), calculated from
the inter-nest distance of 6 km, and then divided ourmodel AOH
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area by this breeding habitat area to estimate the total number of
mature individuals across the species range using the IUCN Red
List definitions for population size (IUCN 2019). Finally, we
divided that figure by two to give the number of potential breed-
ing pairs.

Protected area coverage

We assessed the level of protected area coverage using the World
Database of Protected Area terrestrial shapefile for Madagascar
(as of December 2021) (UNEP-WCMC and IUCN 2021). We
quantified how much protected area representation is needed for
the Madagascar Serpent-eagle dependent on the model AOH to
calculate a protected area “representation target” following the
formulation of Rodrigues et al. (2004):

Target = max 0:1, min 1,�0:375� log10 range sizeð Þþ2:126ð Þð Þ
where “Target” is equal to the percentage of protected target
representation required for the species “range size”. We calcu-
lated the difference between the current level of protected area
coverage compared with the target level representation using the
model AOH intersected with the protected area polygons estab-
lishing those protected areas covering areas of habitat suitability
≥maxTSS threshold.We then overlaid the protected area network
polygons with the binary map identifying gaps in habitat suit-
ability ≥maxTSS threshold which were not covered by the ter-
restrial protected area polygons. We used the R program (v3.5.1,
R Core Team 2018) for model development and geospatial ana-
lysis using the raster (Hijmans 2017), rgdal (Bivand et al. 2019),
rgeos (Bivand and Rundle 2019), and sp (Bivand et al. 2013)
packages.

Results

Habitat covariate models

Three candidate GLMs had strong support with an ΔAICc <2
(Table 2), with our best supported candidate GLM, model 6 (Het-
erogeneityþ Evergreen Forestþ Leaf Area IndexþNDVI), with
half as much AICc weighting (AICc w = 0.44) from the next best
supported candidate GLM, model 5 (AICc w = 0.29). From the
best supported GLM linear beta coefficients (Table S1, Figure 2),
NDVI had the strongest positive association with Serpent-eagle
occurrence (β = 2.128, ns), followed by Evergreen Forest (β =
1.802, P <0.01) and Heterogeneity (β = 1.004, ns). The Leaf Area
Index had the strongest negative association with Serpent-eagle

occurrence (Figure 2). The covariates from the best supported
GLM model all had low collinearity (VIF <2) (Table S2, Figure
S1), and thus all covariates were included in the penalised SDMs.

SDMs

Three candidate SDMs had an ΔAICc ≤2, with the best supported
penalised SDM using linear, quadratic, and hinge terms and a
coefficient penalty β = 3 as model parameters (model 15, Table
S3). The optimal SDM had high calibration accuracy (CBI= 0.835)
and was robust against random expectations (pROC= 1.892, SD�
0.058, range: 1.746–2.000). The largest continuous AOH extended
along the remaining areas of tropical moist forest of the Eastern
Malagasy Region in the Central and Eastern domains (Figure 3). A
second substantial area of habitat was identified across the Masoala
Peninsula and further north into forested, lower elevation areas of
the Tsaratanana Massif.

The optimal model shrinkage penalty was able to retain four
non-zero beta coefficients, setting to zeromost model terms, mean-
ing only a small subset of covariate termswere highly informative to
model prediction (Figures S2–S4). From the penalised linear beta
coefficients, the Madagascar Serpent-eagle was most positively
associated with vegetation heterogeneity (β = 1.220), followed by
NDVI (β = 0.148), Evergreen Forest (β = 0.043), and Leaf Area
Index (β = 0.002). From the penalised response functions, peak
suitability for vegetation heterogeneity was at 90–95%, with highest
suitability for composite NDVI values >20 (Figure 4). The Mada-
gascar Serpent-eagle was positively associated with >95%Evergreen
Forest cover with a flat response to Leaf Area Index values between
0.0 and 3.0.

Range metrics, population size, and protected area coverage

The reclassified binary model (maxTSS threshold = 0.670) calcu-
lated amodel AOH = 30,121 km2, 13% less than the current IUCN
range map area of 34,655 km2 (Figure 5). From the model AOH,
maximum Extent of Occurrence = 397,293 km2 and minimum
Extent of Occurrence = 281,736 km2 (Figure 5), with an Area of
Occupancy = 79,520 km2. Using our formulation based on habitat
area from nearest neighbour distances, we calculated that the
model AOH could potentially support 533 mature individuals, or
267 breeding pairs, across the entire Madagascar Serpent-eagle
range. The current protected area network covered 95%
(28,654 km2) of the model AOH, 50% greater than the target
protected area representation of 45% (Figure 6). Priority areas of
habitat which are without protected area coverage in the protected

Table 2. Comparison of candidate logistic regression habitat covariate models for the Madagascar Serpent-eagle using Akaike’s Information Criterion corrected for
small sample sizes (AICc). Number of model parameters (K), change in AICc (ΔAICc), Akaike weight (AICc w), and log-likelihood (LL) are reported for each candidate
model. CMI = Climatic Moisture Index; EF = Evergreen Forest; ELEV = Elevation; FPAR = Fraction of absorbed Photosynthetically Active Radiation; HG =
Heterogeneity; LAI = Leaf Area Index; NDVI = Normalised Difference Vegetation Index; TRI = Terrain Roughness Index.

# Candidate model K AICc ΔAICc AICc w LL

6 HG þ EF þ LAI þ NDVI 5 24.22 0.00 0.44 –7.11

5 HG þ EF þ LAI þ FPAR 5 25.05 0.82 0.29 –7.52

4 HG þ EF þ LAI þ NDVI þ FPAR 6 26.22 2.00 0.16 –7.10

3 HG þ EF þ ELEV þ LAI þ NDVI þ FPAR 7 28.20 3.97 0.06 –7.09

2 TRI2 þ HG þ EF þ ELEV þ LAI þ NDVI þ FPAR 8 29.84 5.62 0.03 –6.91

1 CMI2 þ TRI2 þ HG þ EF þ ELEV þ LAI þ NDVI þ FPAR 9 31.67 7.45 0.01 –6.83
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area network were identified as: (1) a large area of forest at Alan’ i
Fampanambo linking up to Ambotavoky Special Reserve; (2) a
forest corridor 20 km west of Anosibe an’ala extending north from

Marolambo National Park; (3) connecting Midongy Befotaka
National Park with d’Andohahela National Park in the far south
(Figure 6, blue circles).

Discussion

Raptors resident in developing countries with small geographical
ranges that are forest dependent are particularly extinction prone
and under-studied (Buechley et al. 2019). Additionally, tropical
forest raptor species are more threatened compared with tropical
non-forest raptors, mainly due to habitat alteration driven by
logging and land clearance for agriculture (McClure et al. 2018).
This is further compounded for conservation action by the lack of
fundamental biological information on tropical raptors in general
(Buechley et al. 2019), required for underpinning the scientific
understanding needed to effect policy and conservation action
(McClure et al. 2018). The Madagascar Serpent-eagle is thus a
prime example of a raptor facing all these combined threats and
knowledge gaps. Our results updated previous IUCN rangemetrics,
with our AOH map predicting beyond the Madagascar Serpent-
eagle known range. We estimated a population size of 533 mature
individuals and that 95% of Madagascar Serpent-eagle AOH is
currently protected. Additionally, we recommend three new pro-
tected areas for full habitat protection across the species range.

Species range metrics are a key component for assessing the
conservation status and extinction risk of taxa on the IUCN Red
List (IUCN 2019). Using model-based interpolation within our
SDM framework we were able to extend the current known range
of the Madagascar Serpent-eagle (BirdLife International 2016),

Figure 2. Coefficient estimates (with standard errors) for the best supported candidate logistic regression habitat covariate model (#6) for the Madagascar Serpent-eagle using
Akaike’s Information Criterion corrected for small sample sizes.

Figure 3. Continuous Species Distribution Model for the Madagascar Serpent-eagle
using a penalised logistic regression model algorithm. Map denotes continuous pre-
diction with red areas (values closer to 1) having highest habitat suitability, orange/
yellow medium suitability, and blue/green low suitability.
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predicting into an extensive area further south than the current
IUCN range map (see Figure 5). However, despite this predicted
range extension our AOH map closely matched that of the IUCN,
albeit 13% less than the IUCN range area. We recommend that this
updated range map is incorporated into the next Red List assess-
ment for the Madagascar Serpent-eagle. In the meantime, explora-
tory surveys should be undertaken to assess model accuracy in this
newly predicted habitat area, like previous SDMs used for rare taxa
in Madagascar (Raxworthy et al. 2003, Pearson et al. 2007).

Quantifying species–habitat associations is key to understand-
ing species’ habitat requirements and environmental preferences
(Matthiopoulos et al. 2020, Sutton et al. 2022). We identified the
most parsimonious habitat variables based on our occurrence data
fitted with multiple logistic regressions. Interestingly, including the
Climatic Moisture Index resulted in the worst performing habitat
covariate model (model 1) (Table 2), despite the assumption that
climate is key to defining species range limits at broad scales
(Pearson and Dawson 2003). We suspect that vegetation indices
such as NDVI, which can be strongly correlated with climatic
conditions (Ichii et al. 2002, Pettorelli 2013), were better able to
capture the broad scale tropical forest vegetation dynamics and thus
habitat associations for the Madagascar Serpent-eagle. Similarly,
topography was not as important when compared with biophysical

measures such as Leaf Area Index and FPAR, with neither topo-
graphical covariate in the best supported models (see Table 2).
Perhaps complex topography does not explain habitat associations
as well as biophysical measures for those tropical forest taxa that
inhabit less complex terrain at low to mid elevations.

From the penalised SDMs, our best model identified the
strongest association with Heterogeneity (i.e. vegetation species
richness) derived from the Enhanced Vegetation Index, followed
by composite NDVI. This concurs with the Enhanced Vegetation
Index being a more important biophysical measure than NDVI in
dense tropical forests (Huete et al. 2002, Qiu et al. 2018). We
suspect this strong association with high vegetation species rich-
ness is possibly a proxy related to increased prey availability
(i.e. chameleons and geckos) in vegetation-rich habitats (Hobi
et al. 2017), which are thus more likely to be areas conserved for
high biodiversity. Madagascar Serpent-eagles had a flat response
up to Leaf Area Index values of 3.0 (see Figure 4), concurrent with
the negative association in the best-fit habitat covariate model.
This suggests a weak association between Madagascar Serpent-
eagle distribution with Leaf Area Index values lower than expected
from a global analysis (Asner et al. 2003), though this study did
not include Madagascar. Perhaps the flat to negative association
with Leaf Area Index was related to our low occurrence sample

Figure 4. Penalised logistic regression response functions for each habitat covariate from the optimal Species Distribution Model for the Madagascar Serpent-eagle. The curves
show the contribution to model prediction (y-axis) as a function of each continuous habitat covariate (x-axis). Maximum values in each response curve define the highest predicted
relative suitability. The response curves reflect the partial dependence on predicted suitability for each covariate and the dependencies produced by interactions between the
selected covariate and all other covariates.
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and further compounded by the inclusion of the evergreen forest
landcover layer. Importantly, our penalised SDM was able to
identify a strong positive association with >95% evergreen forest
cover, concurrent with previous ground-based habitat

associations for the species (Thorstrom and Rene de Roland
2000, Benjara et al. 2021).

Estimating population size is key for IUCN Red List assess-
ments, because it is used in the criteria for designating the specific
Red List threat category for a given taxon (IUCN 2019). Our
estimate of 533 mature individuals based on predicted AOH is
within the population size range currently given by the IUCN
(250–999 mature individuals) (BirdLife International 2016). Our
estimate would technically place the Madagascar Serpent-eagle in
the Vulnerable category based on criterion D for a very small or
restricted population (IUCN 2019). However, due to low breeding
productivity (1 young every 2–3 years) (Thorstrom and Rene de
Roland 2000), and possible high juvenile mortality (Benjara 2015,
BirdLife International 2016), we are reluctant to recommend
re-listing from Endangered to Vulnerable without first assessing
population size from further ground-truthing surveys. Encour-
agingly, protected area coverage was very high, and we recommend
consideration of the threemajor gapswe have identified here as new
protected areas, further supported by exploratory surveys to con-
firm presence. Protected areas have been effective in preventing
species extinctions (Geldmann et al. 2013). Therefore, protecting as
much Madagascar Serpent-eagle habitat as possible is key to its
future survival as carried out previously in the Masoala Peninsula
(Thorstrom and Rene de Roland 2000).

We recognise there are limitations to our approach regarding
sample size, but we used the current best-practice modelling meth-
odology combined with robust remote-sensing variables to calcu-
late our baseline metrics. Even though unstructured occurrence
data can have sampling bias (Beck et al. 2014), opportunistically
collected presence-only data are often the only location data avail-
able and generally sample beyond the extent of the smaller spatial
scale of systematic surveys (Sutton et al. 2020, Sutton & Puschen-
dorf 2020). Thus, when used in conjunction with a modelling
framework designed to account for inherent spatial biases unstruc-
tured data can fill distributional knowledge gaps (Rhoden et al.
2017, Sutton et al. 2023b). However, obtaining further occurrences
would be useful for improving our predictions and updating the
baseline biological parameters set out here.

Madagascar has been identified as a priority region for raptor
research and conservation due to its range of endemic, under-
studied raptors (Buechley et al. 2019). Future modelling goals
include predicting the core remaining areas of habitat for all
Madagascar raptors to identify priority areas for current spatial
conservation planning. Future work should thus focus on build-
ing upon the SDM framework set out here to estimate range
metrics, population size, and protected area coverage for all
Madagascar raptors combined with remote-sensing technology.
Our model framework is a fast, cost-effective method to establish
key spatial conservation baselines. This framework is widely
applicable across all taxa but particularly for rare, under-studied
species such as the Madagascar Serpent-eagle which faces threats
to its future survival.

Supplementary Materials. To view supplementary material for this article,
please visit http://doi.org/10.1017/S0959270922000508.
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reclassified binary model Area of Habitat (brown) and Extent of Occurrence (hashed
black polygon). Blue polygon defines current IUCN range map. Light grey polygons
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the reclassified binarymodel Area of Habitat (brown) overlaid with the World Database
on Protected Areas (WDPA) network (black-bordered polygons). Light grey polygons
represent the species accessible area. The dark grey polygon defines the national
boundary of Madagascar not within the species accessible area. Blue circles identify
priority WDPA network coverage gaps: (1) Alan’ i Fampanambo forest and surrounding
area north; (2) a forest corridor 20 km west of Anosibe an’ala extending north from
Marolambo National Park; (3) a forest corridor connecting Midongy Befotaka National
Park with Andohahela National Park.
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