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ASSOCIATED PRIME IDEALS IN NON-NOETHERIAN 
RINGS 

JUANA IROZ AND DAVID E. RUSH 

The theory of associated prime ideals is one of the most basic notions in 
the study of modules over commutative Noetherian rings. For modules 
over non-Noetherian rings however, the classical associated primes are not 
so useful and in fact do not exist for some modules M. In [4] [22] a prime 
ideal P of a ring R is said to be attached to an JR-module M if for each 
finite subset / of P there exists m e M such that / Q ann# (m) Q P. In [4] 
the attached primes were compared to the associated primes and the 
results of [4], [22], [23], [24] show that the attached primes are a useful 
alternative in non-Noetherian rings to associated primes. Several other 
methods of associating a set sé(M) of prime ideals to a module M over a 
non-Noetherian ring have proven very useful in the past. The most 
common of these is the set Assy(M) of weak Bourbaki primes of M [2, pp. 
289-290]. Another method, which was used by Krull in 1929 [8] and later 
studied by Banaschewski [1] and Kuntz [9], is the following. Call a prime 
ideal P a Krull prime of M if for each a e P there exists an m e M such 
that a e ann# (m) Q P. In his study of pseudo-Noetherian rings [14] [15], 
K. McDowell was led in [16, pp. 36-37] to consider the set of attached 
primes of M, which he called the strong Krull primes of M due to their 
relationship to the Krull primes. We prefer McDowell's terminology 
because of this connection with the Krull primes and also because the 
"attached prime" terminology has previously been used to mean 
something entirely different. (See for example the papers [12, 13, 25, 27, 
29, 30, 31].) McDowell developed many of the basic properties of strong 
Krull primes in [16] and in [17] where he compared the strong Krull 
primes to other well-known types of associated primes that have been used 
in non-Noetherian rings. 

After defining and summarizing in Section 1 some of the relationships 
among seven different notions of associated primes which appear in the 
literature, we show, in Section 2, that unlike the Nagata primes and weak 
Bourbaki primes, the Krull primes and strong Krull primes behave well 
with respect to flat ring extensions. Some further results on the behavior of 
these primes in polynomial rings are also given. After some remarks in 
Section 3 on when the strong Krull primes and weak Bourbaki primes are 
the same, we give in Section 4 a consequence of this behavior for 
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seminormality in abelian group rings. In Section 5 we show that the main 
result of [23] can be strengthened by replacing the strong Krull primes by 
weak Bourbaki primes. In the final section we give a brief discussion of the 
notion of "associated prime" in general. 

The authors were fortunate to have had access to the unpublished 
manuscript [17] and gratefully acknowledge the debt that the present work 
owes to it. 

1. Definitions and notation. We begin by giving the definitions of seven 
different notions of associated prime ideals that appear in the literature. 
For this we will need some notation. All rings will be commutative with 
identity. If M is an ^-module we let 

ZR(M) = {r e R\rm = 0 for some m e M, m ¥= 0}. 

If S is a multiplicative subset of R, M (S) denotes 

{m <E M\sm = 0 for some s e S). 

If S = R — P where P is a prime ideal of R we write M(P) instead of 
M(S). UN ç M, ami;? (N) denotes the annihilator of N(= {x <= R\xN = 
0} ). We will write ann# (m) instead of ann# ( {m} ) if m e M. 

Definition. Let P be a prime ideal of R, and M an i^-module. 
(a) If P = ann# (m) for some m e M we call P a Bourbaki prime of M. 

We let Ass(M) denote the set of Bourbaki primes of M. See for instance [2, 
Chapter IV] for a discussion of these primes. 

(b) If P <E Ass(M/M(P) ) then P is called a Noether prime of M. The set 
of these primes will be denoted Ne(Af). They are discussed in [10]. 

(c) P is called a Zariski-Samuel prime of M if ann# (m) is P-primary for 
some m e M. These primes will be denoted Z — S{M) and are discussed in 
[33]. 

(d) If P is minimal over ann# (m) for some m e M, then P is called a 
weak Bourbaki prime of M. We will denote the set of weak Bourbaki 
primes of M by Ass^(M). Many of the basic properties of these primes are 
found in [2, Chapter IV, Section 1, exercises 17-19] and [11]. 

(e) P is called a strong Krull prime of M if for every finitely generated 
ideal / contained in P there exists an m G M such that / Q ann (m) Q P. 
We will let sK(M) denote the set of strong Krull primes of M. They are 
discussed in [17] and also in [4] [22] [23] [24] where they are called attached 
primes. 

(f) P is called a Krull prime of M if for each/? G P there exists m G M 
such that p e ann (m) Q P. We will denote the set of these primes by 
K(M). See [1], [9] for the basic properties of Krull primes. 

(g) If there exists a multiplicative subset S of R such that S~lP is 
maximal in ZS\R(S~ ]Af), then P is called a Nagataprime of M. Many of 
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the basic properties of these primes can be found in [20] [33]. We will 
denote the set of Nagata primes of M by N(M). 

For an i^-module M we have 

Ass(M) ç Z-S(M) ç Ass/(M) Q sK(M) Ç K(M) Q N(M) 

and 

Ass(M) Q Ne(M) ç Assy(M). 

Further, all of these containments can be proper [33] [9] [10] [17], and 
there are no inclusions relating Ne(M) and Z — S(M). The equality 
Z-S(M) = N(M) holds if the zero submodule of M has a primary 
decomposition [20], and if R is Noetherian then Ass(M) = N(M). Also, it 
can happen that Ass(M), Ne(M), and Z — S(M) are empty for M ^ 0, 
whereas clearly 

Ass/(M) = 0 ** M = 0. 

In [9] the Krull primes of M were studied only for cyclic modules. 
However, most of these results extend easily to arbitrary i?-modules M. 
For example, if M is an i?-module and P is a prime ideal, the following 
statements are equivalent (see [9, Proposition 1] ): 

(a) P G K(M\ 

(b)P ç ZR{M/M(P)\ 

( c )P = ZR(M/M(P)). 

Also, if S is a multiplicative subset of R it follows that 

Ks-iR(S~lM) = {S~lP\P e KR(M), P n S = <t>). 

the corresponding result also holds for Assy(M) [2] and for sK(M) [4] 
[17]. 

2. Associated primes and ring extensions. In this section <f>:A —> B will 
be a ring homomorphism and 

fl<f>:Spec(5) -> Spec(^) 

will denote the induced map. If M is a i?-module the A -module obtained 
from M by restriction of scalars will be denoted ^M. If M is an A -module, 
then M ®^ B is a J9-module and when we consider it as an A -module we 
will write $(M ®A B). 

In [11] Lazard showed that if M is a ^-module then 

Ass/^M) ç ^ (As S / (M) ) 

and that equality holds if <f> is flat. Thus if M is an A -module and <f> is flat 
then 
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Ass,(*(M 0 ^ B) = a<j>(Assf(M ®A B) ). 

Heinzer and Ohm [5, Example 4.4] gave an example of a flat yl-algebra 
$:A -> B and an A -module M having a prime 

P G fl#Ass/(M ®A B) ) 

with P £ Assy(M), i.e., weak Bourbaki primes of M ®A B do not 
necessarily contract to weak Bourbaki primes of M. More recently 
Heitmann has given an example showing that Nagata primes of M ®A B 
do not always contract to Nagata primes of M [6] (again where (j>:A —> B is 
flat). To date the only positive result obtained without further restrictions 
on <J> is [5, Proposition 4.5] which states that if (j>:A —> B is flat, M is a 
cyclic ^-module, and P G A S S / ( M ®A B), then a<f>(P) G N(M). In this 
section we strengthen this by showing that if <J> is flat and M an A -module, 
then strong Krull primes of M ®A B contract to strong Krull primes of M 
and Krull primes of M ®A B contract to Krull primes of M. Some 
consequences of this will be considered later. We also give a couple of 
results on the behavior of associated primes in polynomial extensions. 

(2.1) PROPOSITION. If M is a B-module, then 

sK(^M) = ^(sK(M) ). 

Proof. Let Q e sK(M), P = a4>(Q) and let I be a finitely generated ideal 
of A contained in P. Then IB Q PB Q Q so there exists m e M such that 
IB ç annfi (m) Q Q. 

Thus 

/ c ^ _ 1 ( ann 5 (m) ) = ann^ (m) Q P and P G S K ( ^ M ) . 

For the opposite inclusion let P G S K ( ^ M ) . Since strong Krull primes 
localize well, we can assume that A is quasi-local with maximal ideal P. 
Then PB ¥= B, for otherwise we would have 

n 

1 = 2 afti with cij G P and bt G B. 
i=\ 

But then since P G S K ( ^ M ) we would have m G M such that 

[ah . . . , an) Q ann^ (m) Q P and 

n 

m = \m = Zu aftim = 0 
z = l 

which is impossible. Let Q G Spec(2?) be minimal over PB. By localizing 
at 0 we may assume that (B, Q) is quasi-local and Q = radical of PB. 
Then if / #= 0 is a finitely generated ideal of B contained in Q there exists 
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an integer n ^ 1 and a finitely generated ideal J oî A contained in P with 
In Q JB Q PB. Since P e S K ( ^ M ) there exists m <= M such that J Q ann^ 
(m) Q P. Then 

r Q JB Q ann^ (m)B Q ann5 (m) Q Q. 

Choose n such that Inm = 0 but In~xrn * 0 (where 7° = ,4). Then if x e 
7"_ 1 with xm ^ Owe get 

7 Q ann# (xm) ç g 

and hence Q e S K ( M ) . 

Remark. The above proof actually shows that any prime which is 
minimal over PB is in sK(M). 

The next theorem was given by McDowell for the case that A is coherent 
and M is a finitely presented ,4-module. An application will be given in 
Section 4. 

(2.2) THEOREM. If(j>:A —> B is flat and M is an A-module, then 

>(sK(M®AB))Q sK(M) 

and equality holds if (f> is faithfully flat. 

Proof Let Q e sK(M ®A B) and let P = a<t>(Q). Since strong Krull 
primes behave perfectly under localization we may pass to AP —> BQ and 
thus to prove the first statement we may reduce to the case that (A, P) and 
(By Q) are quasi-local and <p is faithfully flat. Let I Q P be a finitely 
generated ideal of A. Since Q <= sK(M ®A B) we have 

0 ¥= Hom5 (BUB, M ®A B) = Hom^ (y*//, M) ®A B\ 

the isomorphism from [2, p. 23, Proposition 11]. Thus 

Hom^ {All, M) ¥= 0 

since B is faithfully flat. For the last statement recall that if cj> is faithfully 
flat, the map 

M -> ^(M ®^ 5 ) 

is injective [2, p. 32, Proposition 8]. Thus 

sK(M) c sK(^(M 0 ^ B) ) = a<t>(sK(M ®A B) ), 

the last equality by Proposition 2.1. Thus 

sK(M) = a<j>(sK(M ®A B) ). 

We next consider the behavior of Krull primes under change of rings. A 
simple modification of the first part of the proof of Proposition 2.1 yields 
the following: 
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(2.3) PROPOSITION. Let <j>:A —> B be a ring homomorphism and M a 
B-module. Then 

a<HK(M)) Q K(+M). 

(2.4) THEOREM. If§\A -> B is aflat A-algebra and M is an A-module, 
then 

a(j>(K(M ®A B) ) c K(M). 

Proof. Let Q G K(M ®A B) and let P = a<t>(Q). Since Krull primes 
behave perfectly with respect to localization we may by passing to AP —> 
BQ reduce to the case that (A, P) and (P, Q) are quasi-local and (j> is 
faithfully flat. In this case we must show P Q ZA (M). But if x G P the 
exact sequence 

x 
0 —> annM (x) -* M -* M 

gives 

0 -> annM (JC) ®^ 5 -» M 0 ^ 5 *-> M ®A B. 

Thus we get 

annM (x) ®^ 5 = a n n M 0 5 (x 0 1) = annM0# (<Kx) ) ^ 0, 

and hence annM (x) ¥= 0. 

We conclude this section with a couple of results on associated primes 
in polynomial rings. The first shows a further relationship between Krull 
primes and strong Krull primes. The second will be useful in Section 5. 

(2.5) THEOREM. Let M be an R-module and X an indeterminate. Then 

[PR[X] \P G sK(M) } = sK(M 0 * R[X] ) = K(M ®R R[X] ). 

Proof. We first show 

[PR[X] \P G sK(M) } ç SK(M ® R[X] ). 

Let / i , . . . ,f„ G PP[X], P G sK(Af). Then there exists m G M, such that 
m annihilates the coefficients of t h e / and (0:Rm) Q P. Let <J>:M —» M 0/? 
R[X] be the map x -» JC 0 1. Then 

{ / , , . . . , / „ } Ç (0:*m<H"0) ç P ^ m . 

Thus PR[X] G sK(M 0 ^ R[X] ). 
That sK(M 0 * R[X]) Q K(M ®R R[X] ) is clear. To show that 

K(M ®R R[X] ) ç [PR[X] \P G sK(M) } 

we first show that if Q G K(M 0 R[X] ) then g is an extended prime; g 
= PR[X] where P = g n P. For this we may assume R = RP. If Q ¥= 
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PR[X], then Q = (P,f)R[X] whe re / G R[X] is monic and irreducible 
modulo PR[X]. But then 

/ e Q G Â X M ® * P [ X ] ) 

implies that / is a zero divisor on M[X] and this is impossible since / is 
monic. Thus Q is an extended prime. 

It remains only to show that if PR[X] G K(M ®R R[X] ) then P G 
sK(Af), and for this we may again assume that R = RP. Let a& a\, . . . , an 

G P. To show that there exists m G M such that ÛQ, . . . , an G (0:Rm) Q P 
let 

/ = a0 + fllZ + . . . + anX\ 

T h e n / G PPIT] so there exists 

g = m0 + mxX + . . . + mKtf G M[X] = M ®R R[X] 

such that 

/ e ( 0 W ) c ? l i f f l . 

By [21, Theorem 1] there exists an integer; such that 

c(fy+ic(g) = c(fyc(fg) = o 
where c(h) denotes the P-submodule generated by the coefficients of h. If j 
is chosen minimal such that c(fyJrXc(g) = 0, then for any non-zero x G 
c(fy'c(g) we have 

(a0,...,an) = c(f) Q (0:Rx) Q P. 

Thus P G sK(M). 

If / is an ideal of R we will let 

^1 = {a ^ R\an^ I for some n â 1}. 

(2.6) THEOREM. Let M be an R-module and X an indeterminate. Then 

Assf(M ®R R[X]) = [PR[X] \P G Ass/(M) }. 

Proof. Let Q G A S S / ( M ®R R[X] ) and P = Q n R. Since g G S K ( M 

® P[X] ), then Q = PR[X] by Theorem 2.5. To show that P G Assy(M) 
we may assume that R = RP. Assume that PR[X] = Q is minimal over 
(Q'R[X]g) where 

g = m0 + m ^ + . . . + m„.T G M[X] = M ® P[X], mz G M. 

First we show that P Q V(®'Rc(g) )• L e t ^ ^ ^- Then a G P#[X] implies 
there exists k G R[X] - PP[X] such that 

A:a" G ( O i / ^ g ) for some n â 1. 
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Thus a" kg = 0 and since c(k) = R we get 

0 = c{ankg) = a"c(g). 

Thus P c ^0:Rc(g). But then 

P Q V(0:«c(g)) = n y/Ôw) Q P, 

and thus 

P = \/(0\Rmi) for some /*. 

It remains to show that if P e Assy(M), then 

PR[X] <= Ass/(M ®R R[X] ). 

Again it suffices to consider the case R = RP. Then 

P e Assy(M) => P = ^(O'.Rm) for some m e M. 

Cte'm. />£[*] = \/0:/?[ATW. L e t / G PR[X]. Since c ( / ) Q VW^w) 
we can choose n â 1 such that c{f)nm = 0. Then 

c(fnm) = c(fn)m Q c{f)nm = 0 

and hence 

f ^ V(0-R[X]*n). 

Conversely, assume/ £ PR[X]. Then c(fn) = R for all « > 0. But then if 
fnm = Owe get 

0 = c(fnm) = c(/w)w = m, 

a contradiction. Thus 

/>*[*] = VÔ^n-

3. Assy and sK. Since for many purposes it is desirable to have P e 
Assy(M) rather than just P e S K ( M ) (e.g. as in the proof of Theorem 4.2) 
and since sK(M) is in some ways better behaved than Assy(M), it would 
be of interest to know when Assf(M) = sK(M). Lacking a useful 
ideal-theoretical characterization of the rings R with the property that 
Assf(M) = sK(M) for every i^-module M we consider the following 
obviously sufficient condition for this to hold: 

(MFG) Each prime ideal of R is minimal over a finitely generated ideal 
of R. 

Perhaps the most obvious examples of non-Noetherian rings with this 
property are the rings with Noetherian spectrum. Recall that this means 
that R has the following equivalent properties [5]: 

(3.1) (i) R has the ascending chain condition on radical ideals. 
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(ii) For each ideal A there exists a finitely generated ideal A0 with 

V ^ = VÂ~O. 
(iii) For each prime ideal P there exists a finitely generated ideal A such 

that P = y Z 
(iv) R has the ascending chain condition on prime ideals and every ideal 

of R has finitely many minimal prime divisors: 
We make a few simple observations on the rings satisfying MFG. 

(3.2) (i) A von-Neumann regular ring R satisfies MFG, but has Noetherian 
spectrum only if it is Noetherian. 

Proof Let m be a non-finitely generated maximal ideal of R. Then m is 
minimal over the zero ideal, but is not the radical of any finitely generated 
ideal since any finitely generated ideal of R is contained in a principal 
maximal ideal. 

(ii) If R satisfies MFG, then R has the ascending chain condition on prime 
ideals. The converse holds ifSpec(R) is a tree (i.e., if for each Q £ Spec(/?), 
{P G Spec(i?)|P ç Q} is a chain). 

Proof Let P\ Q P2 Q . . . be a chain of prime ideals of R. Then Q = 
CO 

U / = ! Pj is a prime ideal so Q is minimal over a finitely generated ideal / of 
R. But since / is finitely generated and I Q U/=i Ph we must have / Q 
Ptl for some n, and thus Pn = Pn + \ = . . . = Q by the minimality of Q 
over /. 

If P G Spec(P) and Spec(P) is a tree, then the ascending chain 
condition on primes implies that P is not the union of primes properly 
contained in P. This clearly implies that P is minimal over a principal 
ideal of R. 

(iii) If P is a prime ideal of R and S is a multiplicative subset of R with S 
Pi P = 0, then P is minimal over a finitely generated ideal if and only if 
S~XP is. 

(3.3) THEOREM. Let <p:R —> B be a ring homomorphism. If R and all of the 
fibers B ®R k(P), P G Spec(#), satisfy MFG, then B satisfies MFG. 

Proof Let Q G Spec(i?) and let P = Q D R. Then P is minimal over 
some finitely generated ideal I of R since R satisfies MFG. Let S = R — 
P. Since 

B ®R k(P) = S~lB/S~l(PB) 

satisfies MFG there exists a finitely generated ideal J Q Q such that 
(S~lQ)* is minimal over ( S - 1 / ) * where the asterisk denotes the image in 
S~ ]B/S~ \PB). But then Q is minimal over / + / , for if Qx G Spec(£) is 
such that I + J Q Qx Q Q, then 

p , = QX n R Q p => px = p. 

https://doi.org/10.4153/CJM-1984-021-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-021-6


ASSOCIATED PRIME IDEALS 353 

Thus 

( S " 1 / ) * Q (^_ 1Ôi)* £ (S~lQ)* 

and hence 

S~lQi = S~XQ^QX = Q. 

(3.4) COROLLARY. Let R be a ring with the property MFG, and let R^ B 

be a ring homomorphism. Then B has MFG in the following cases: 
(a) B is a localization of a finitely generated R-algebra. 
(b) B is an INC extension of R [3], i.e., no two comparable primes of B 

contract to the same prime of R. 

4. An application to seminormality. In this section we give an 
application of some of the previous results to an area not directly related 
to associated primes (or to the MFG condition). Recall that a ring R is 
said to be reduced if it has no nonzero nilpotents. 

(4.1) Definition. A reduced ring R is seminormal if every rank 1 
projective i£[X|-module is of the form M ®R R[X] for some rank 1 
projective i^-module M. This is equivalent to the condition: if a, b e R 
with a1 = b3 then there exists c <E R such that a = c3, b = c2 [32]. 

(4.2) THEOREM. Let R be a reduced ring with Noetherian spectrum, and let 
77 be a finite abelian group of order n. Then RTT is seminormal if and only if R 
is seminormal, n is regular on R, and nR, nR are radical ideals, where R is 
the integral closure of R. 

Proof In [28, Proposition 2.4] one direction has been shown, namely the 
one assuming that RIT is seminormal. For the converse (see [28, Theorem 
2.1] ) the assumption that nR have no embedded primes was needed. By a 
remark following Proposition 2.4 in [28], this assumption can be removed 
if we know that weak-Bourbaki primes contract to weak Bourbaki primes 
under R —» RIT. But this follows from Theorem 2.2 since R satisfies the 
MFG condition. 

5. A result of Northcott. An important application of associated prime 
ideals is to the study of grade. Let Gr (/; M) denote the polynomial grade 
of / on M [7]. This is also called the true grade in [22] [23]. The intimate 
connection of polynomial grade to Ass^ and sK can be inferred from the 
following well-known result [7] [11]. 

(5.1) Remark. The following are equivalent for an ideal / and an 
i^-module M. 

(i) Gr (/, M) = 0. 
(ii) Each finitely generated ideal J Q I is contained in a member of 

Assy(M). 
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(iii) Each finitely generated ideal J Q I is contained in a member of 
sK(M). 

The connection between grade and strong Krull primes is further 
accented by the main result of [23] which states: 

(5.2) THEOREM. Let A be an R-ideal of positive {true) grade. Then A is 
projective if and only if 

(i) A has a resolution of finite length by finitely generated projective 
modules, and 

(ii) every P e sK(R/A) has (true) grade one. 

In this section we show that this theorem remains valid if sK(R/A) is 
replaced by Assf(R/A). Since it is the if direction of the above theorem 
that requires the work, then this replacement can be regarded as a 
strengthening of Northcott's result. Our argument will procède along the 
same lines as Northcott's. However we can use Theorem 2.6 to reduce to 
the case that A contains a regular element. Thus one only needs the 
MacRae invariant for the case considered in [26], [34], or [22], where it was 
shown that for each torsion 7^-module M having a resolution of finite 
length by finitely generated projective P-modules, there is a smallest 
invertible ideal G(M) containing the initial Fitting invariant F(M) of M. 
Further, given a short exact sequence of such P-modules 0 —» M —» M —> 
M" —» 0 one has 

G(M) = G(Mf)G(M"). 

We will need the following lemma which extends [23, p. 213, Lemma 4] by 
replacing sK(R/A) by AsSf(R/A) and R by an arbitrary ^-module M. The 
proof is essentially the same as that given in [23]. 

(5.3) LEMMA. Let A ¥= R be an ideal and M an R-module. Then 

Gr (A; M) = inf {Gr (P; M)\P e Assf(R/A) }. 

Proof. By [21, p. 152, Theorem 16], there exists a prime ideal Q of R 
such that 

A Q Q and Gr (A; M) = Gr (g ; M). 

Let P be a minimal prime ideal of A with P Q Q. Then 

P e Assf(R/A) and Gr (A; M) = Gr (P; M). 

Note. The above proof actually shows that 

Gr (v4; M) = inf {Gr (P; M)\P is minimal over a}. 

(5.4) THEOREM. Let A be an ideal of R with Gr (A; R) > 0. Then A is 
projective if (and only if) the following conditions hold: 

(i) Gr (P; R) = 1 for all P G Assf(R/A), 
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(ii) A has a resolution of finite length by finitely generated projective 
R-modules. 

Proof By adjoining an indeterminate we may assume that there exists a 
regular element a <E A. Then A is contained in some P E Assf(R/aR). 
From [26, Lemma 2.5] we have PdRp(RP/AP) = 1 and thus 

AP = F(RP/Ap) = G(RP/Ap) = G(R/A)RP [26]. 

Therefore G(R/A) ¥= R. Now to show that A is projective it suffices to 
show that ^ = G(R/A). If A ¥= G(R/A) let E = G(R/A)/A. Then £ is a 
torsion .R-module having a resolution of finite length by finitely generated 
projective /^-modules, and from the exact sequence 

0 -> E -> RIA -> R/G(R/A) -> 0 

we get 

G(#/,4) = G(E)G(R/A). 

Therefore G(E) = R. By [23, Theorem 8] there exists a minimal prime P of 
Ann (E) with 

Gr (P,R) = Gr (P*„, /?„). 

But then 

P e Assy(£) c Assf(R/A) 

and thus we get 

PdRp(EP) = PdRp{EP)+ Gr (PPP ; £ P ) = Gr^p (PPP ; P P ) = 1, 

the second equality coming from [22, Theorem 2, p. 176] and the third by 
hypothesis. Thus G(EP) = F(EP), [22], [26], and F(EP) = Ann (EP) since 
EP is cyclic. Thus G(EP) Q PRp, and this contradicts the previous 
conclusion that G(E) = R since G(E)RP = G(EP) [26]. 

6. Associated prime systems. In this section we add some remarks on 
associated prime systems in general which we hope will give some 
perspective to the various possible notions of associated prime ideal. For 
this discussion an axiomatic description of associated primes is conven
ient. Let R be a ring and let ^ b e a mapping which associates to each 
P-module M a subset s/(M) of Spec(P). (We will write s/R(M) if it is 
necessary to emphasize the ring R.) Examination of the notions of 
associated primes that have been used in the past shows the particular 
significance of the following properties for such a function: 

(Al) U s/(M) Q ZR(M). 
(A2) If 0 —> M'—> M —> M" —> 0 is an exact sequence of P-modules, 

then 
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(A3) If S is a multiplicative subset of i ? a n d ? e s/(M) with P n S = 0, 
then P e s/(M/M(S) ). 

(A4) If S is a multiplicative subset of i ^ a n d P E j / ( M / M ( S ) ), then P 
G j / ( M ) . 

(A5) stf{M) = 0 if and only if M = 0. 

Definition. If the function J/satisfies the above properties we will call s/ 
an associated prime system for R. A function s# which satisfies the first 
three of the above properties will be called a formal associated prime 
system. 

Axiomatic definitions of associated primes have previously been 
considered by Merker [18] [19] and McDowell [17]. McDowell's notion of 
associating system is equivalent to our formal associated prime system. 
However, we feel that our definition is simpler and more natural since it is 
given in terms of a single ring P, whereas McDowell's definition requires 
the simultaneous consideration of all rings of quotients of R. It is 
well-known (e.g. [2, Chapter IV] ) that Ass is a formal associated prime 
system and that Assy* is an associated prime system. It is also 
straight-forward that Ne and Z—S are formal associated prime systems 
and that sK is an associated prime system. 

The following result shows that sK and Assy* are the largest and smallest 
associated prime systems respectively. The first statement is due to 
McDowell [17]. We repeat the proof in our slightly different setting. 

(6.1) THEOREM. If stfis a formal associated prime system for R and M is 
an R-module, then s/{M) Q sK(M). Each member of s/(M) contains a 
member ofAssf(M) and ifs/is an associated prime system, then Assy(M) Q 

Proof. Let P e jtf(M). First assume that P = ZR(M). Let / be a finitely 
generated ideal contained in P. We want to show that there exists a 
non-zero m e M such that / Q ann (m) Q P. We will proceed by 
induction on the number of generators n of / . For n = 1 this is clear so 
assume that it is true for n and let / = (x\, . . . , xn+\), F = (x\, . . . , xn). 
Let 

S = { 4 + 1 | £ > 0 } . 

Then 

JC W + 1 £ Z(M/M(S)) and P £ s/(M/M(S)). 

By (A2) P <= s/(M(S) ) and P = ZR(M(S) ). By the induction hypothesis 
there is a non-zero m e M(S) such that / ' Q ann (m). Since m e M(S) 
there exists k such that xn + xm = 0. Choose k minimal, so that xn+]m 
^ 0. Then 
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/ ç ann (xk
n + \m) Q P and P G S K ( M ) . 

For the general case assume that P G S/(M) and let S = R — P. Then P 
n S = 0 and by (A3) 

P G s/(M/M(P)) and P = ZR(M/M(P)). 

By the first part 

P G sK(M/M(P) ). 

Therefore P G S K ( M ) since strong Krull primes satisfy (A4). 
For the second statement let P G jtf(M). Then since 

s/(M) Q sK(M) ç Supp (M), 

then P contains a minimal member Q of Supp (M). But then Q G 
Assy(M). 

For the final statement let P G Assy(M), say P is minimal ovet the 
annihilator of Rm = N, m G M. Then 

Supp (N/N(P)) = {P} 

and so from A5 we must have P e s/(N/N(P) ). But then 

P G J ^ ( A 0 Ç J / ( M ) 

by A4 and A2. 

The following methods were suggested by [16] and [19] respectively for 
obtaining other associated prime systems. (1) If j ^ i s an associated prime 
system for R and M is an P-module \ets/'(M) consist of those primes of R 
which are directed unions of elements of s/(M). Is it known that the 
inclusions 

Ass/(M) Q st\M) Q sK(M) 

may be strict where s/ = Assy [17]. (2) Let 

stf'\M) = {P n R\P G Ass/(M ®R B) for some flat P-algebra B}. 

It would be interesting to know if jtf" = sK. The next theorem shows how 
some of the standard results on AsSf extend immediately to arbitrary 
associated prime systems. 

(6.2) THEOREM. Let s/be an associated prime system for R and let M be 
an R-module. Then 

(i) ZR(M) = U jtf(M) 
(ii) n s/(M) = {a G R\for each m G M there exists n > 0 such that anm 

= 0} ( = the set of locally nilpotent elements on M). 
(iii) If S is a multiplicative subset of R and 

X = {P G s/(M)\P n S = 0}, 
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then 

sf(M/M(S)) = X and s/(M(S)) = s/(M) ~ X. 

Proof, (i) follows since 

ZR(M) = U Ass/(M) Q u ss?(M) Q ZR(M). 

To prove (ii) let / be the ideal of locally nilpotent elements on M. Then 
we have 

n ^f(M) Q n Ass/(M) = / [2, p. 289]. 

Further, if a £ p for some P G stf(M) let 

S = {an\n > 0}. 

Then P n S = 0 so P G s/(M/M(S) ) by A3. Thus M ± M(S) and 
therefore a is not locally nilpotent on M. Thus Pi s#(M) = I. 

To prove (iii) let P G S/(M/M(S) ). Then P G S/(M) by A4. Thus P G 

X Let P G s/(M(S) ). If P n S = 0 we get the contradiction 

P G j / (M(S)/M(S')(S ' ) )= J / ( 0 ) = 0. 

Thus PDS ¥> 0 and P G j / ( M ) - X The result now follows from A2. 

We conclude this section with a brief discussion of the behavior of 
associated prime systems under localization. The reader will have noticed 
the absence of any need to localize thus far in this section since all that 
was needed was already built in. In fact an associated prime system on R 
determines in a natural way an associated prime system on each 
localization of R as follows: 

Let S be a multiplicative subset of R and let <|>:P —> S~]R be the 
canonical map. If s?R is a formal associated prime system for R and M is 
an S~ ^-module define 

S*S-*R(M) = {S]P\P G s/R(+M) }. 

PROPOSITION, (a) Ifs/R is a formal associated prime system for P, the 
induced map s#s~xR *s a formal associated prime system for S~lR and for 
each R-module M we have 

^S-]R(S"1M) D { S - 1 P | P G s?R(M) and P n S = 0}. 

(b) Ifs/R is an associated prime system for P, thenstfs-\R is an associated 
prime system for SlR and for each R-module M we have 

^S-
1R(S~]M) = {S~[P\P <=s/R(M)andP n S = 0}. 

Proof Let s/R be a formal associated prime system for P. That the 
induced mapj/5-1^ satisfies Al and A2 is immediate. To show that j /ç - i / j 
satisfies A3 we will use the following simple result. 
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LEMMA. If T is a multiplicative subset of S~ R and 

T] = {r G R\r/s G Tfor some s G S}, 

then 

(ST^-^R = T~\S']R), 

and for each S~ R-module 

4M(T) ) = ^ ( s r , ) . 

Now to show that A3 holds let T be a multiplicative subset of S~ ]R and 
let T, be as in the lemma. If S~ XP G S/S -\R{M\ P G Spec(P), with S~lP 
n T = 0, then P n (STO = 0. Thus 

P es/ai+MZ+MiSTO) 

since P G J^R(^M) and J ^ satisfies A3. Thus 

P G stR(+M/£M(T) ] ) = sfR(£M/M{T) ] ) 

and therefore 

S~lP G j ^ - i ^ ( M / M ( r ) ) . 

For the last statement of part (a) let P G S/R(M) with P n 5 = 0. Then 
by A3 

P G j*fc(Af/M(S)) 

and since M/M(S) c S _ 1 M we get 

P G ^ ( S ^ M ) ) . 

Thus 

S _ 1 P G j / s - i ^ ( 5 _ 1 M ) . 

The arguments for part (b) are similar. 
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