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The formation generated by a

finite group

R. M. Bryant, R. A. Bryce and B. Hartley

We prove here that the (saturated) formation generated by a

finite soluble group has only finitely many (saturated)

subformations. This answers a question asked by Professor W.

Gaschutz. Some partial results are also given in the case of a

formation generated by an arbitrary finite group.

At the Ninth Slimmer Research Institute of the Australian Mathematical

Society, held in Canberra in 1969, Professor W. Gaschutz asked the

following questions [3, 7-22]: "Does the (saturated) formation generated

by a finite soluble group contain only finitely many (saturated)

subformations?" We show in §1 that the answer to each of these questions

is "Yes". The proof relies on that of the Oates-Powell theorem - 52.11 in

Hanna Neumann [5] - which answers the corresponding question for the

variety generated by a finite group. We have unsuccessfully considered

the same question for the formation generated by a finite insoluble group.

The best we can do in general is described in §2, where we show that among

the subformations generated by quotients of direct powers of the

generating group only finitely many are distinct. Incidentally, a

corollary of Lemma 1.5 below - Corollary 1.6 - is the result of Peter M.

Neumann [6] that a formation consisting of nilpotent groups is subgroup

closed.

We refer the reader to the paper [I] of Carter, Fischer and Hawkes

for notation and definitions relating to formations. In addition we

remark that if X_ is a class of groups then the formation generated by X
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is just QR X : this follows since R Qt £ QR x - i f X is a subdirect

product of groups Xi/Ni, . . . , X /N , where each X. (. )( , then clearly

X is a homomorphic image of a subdirect product of X\, ..., X under

the natural homomorphism of X} x ... x X onto X\/N\ * ••• * X /N

1. The soluble case

We denote by form(G) the formation generated by the group G . A

finite group G will be called formation critical if the formation

generated by those proper factors of G which lie in form(G) does not

contain G (cf. 51.31 in [5]). Every formation is generated by its

formation critical groups (cf. 'y'L.^l. in [5]). We remind the reader that a

Cross variety is a variety generated by a single finite group. We shall

prove

LEMMA 1.1. A soluble Cross variety contains only finitely many

formation critical groups.

The remarks preceding Lemma 1.1 then yield

THEOREM 1.2. The formation which consists of the finite groups of

a soluble Cross variety has only finitely many subformations.

Since the formation generated by a group is contained in the variety

it generates this is enough to answer one of the questions of Gaschutz

cited in the introduction. The other question can be answered easily

using Theorem 1.2.

COROLLARY 1.3. The saturated formation generated by a finite

soluble group contains only finitely many saturated sub formations.

Proof. We appeal to the well-known theorems of Gaschutz and

Lubeseder (B. Huppert [4, VI.7.5 and VI.7-25]) that a formation of finite

soluble groups is saturated if and only if it can be locally defined.

Let F be the saturated formation generated by a finite soluble

group G and let ir be the set of primes dividing \G\ . For p € IT ,

define F(p) = form(G/0 , (G)) , and define F(p) = 0 otherwise: then it

follows by the theorems just mentioned that F is the (saturated)

formation defined locally by the F(p) . (Here, as usual, 0 , (G)
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denotes the largest p-nilpotent normal subgroup of G .)

Let G be any saturated subformation of F , defined locally by

formations G(p) . Then G(p) = 0 for p \ IT . Furthermore, by replacing

G(p) by G(p) n F(p) if necessary, we may suppose that G(p) ĉ  F(p) ,

p f n . Now Theorem 1.2 ensures that each F(p) has only finitely many

subfonnations, and ir is finite, so there are only finitely many

possibilities for G .

The proof of Lemma 1.1 depends on the next two lemmas.

LEMMA 1.4. If Y is a subgroup of a nilpotent group X whose

class is smaller than that of X then the class of the normal closure

i of y in X is also smaller than the class of X .

Proof. It will be enough to show (we do it by induction on d) that

*) , d € {1, 2, ...} .

For d = 1 this is certainly the case since, for x € X , y 6 Y ,

yx = \x, y~ ~]y ; hence

Assume that (*) has been proved for some d i 1 . Then

as required.

LEMMA 1.5. Every supplement of the Fitting subgroup of a finite

group G is in the formation generated by G .

Proof. Let 5 be a subgroup of G and T a nilpotent normal

subgroup of G such that G = ST . We show, by induction on the class of

T , that S € form(G) .

Consider the following subgroups of G x G x G :

K = {(e, s, s) : s € 5} ,

https://doi.org/10.1017/S0004972700042039 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042039


350 R.M. Bryant, R.A. Bryce and B. Hartley

Dx = {(*, t, 1) : t (. T} and D2 = {(l, t, t) : t i T} .

Let H be the subgroup they generate: then H , being subdirect, is in

form(G) . Note that D\ and D2 are each normalized by K .

If T is abelian then Oj and D2 centralize each other. Also

DiD2 n K = 1 because an arbitrary element of DiD2 may be written in the

form (t, tu, u) for some t, u 6 T and it is in K only if

t = tu = u , that is only if t = u = 1 . Consequently, when T is

abelian,

S = K = H/D1D2 £ form(G) .

Suppose now that the class a of I is greater than 1 . Put

M = Z{D\)Z{D2) and note that, as in the last paragraph, M n K = 1 .

Also A? is normal in H . Since

Cvi ( f l i ) > D^ = {(ls w'1) : w € V 2 1 ) * £ M »
the groups D\M/M and D2M/M generate a subgroup C of fl/A/ of class

c exactly. However D2M/M has class c - 1 and so its normal closure

B in C also has class a - 1 , by Lemma l.lt. But B is normal in H/M

and so, by induction, KDiM/M i form(H/M) . Finally DiM/M is normal in

KD\M/M and of class c - 1 , so, again by induction,

KM/M € form(KDiM/M) . Therefore

S = K = KM/M (. form(G) .

The result of Peter M. Neumann referred to in the introduction

follows immediately from Lemma 1.5-

COROLLARY 1.6. A formation consisting of nilpotent groups is

subgroup closed.

We shall also require the following version of 51-37 of [5]: this

consists simply of a rather precise statement of what emerges in the

course of the proof of 51.375 and we refer the reader to [5] for details.

LEMMA 1.7. Let A be a finite group which is generated by the

subgroup L together with normal subgroups Mi, M2, ... , 14 . Let )C be

the set of subgroups of A which can be generated by L together with

some proper subset of {Mlt M2 U } .
s
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Suppose that

for every permutation TT of {l, 2 s} . Then A is in QR X .

Proof of Lemma 1.1. We shall follow closely the proof of 52.23 of

[5]. In particular Lemma 1.7 will be used in place of 51.37 of [5].

Let V be a Cross variety. Then the results of Chapter 5 of [5]

show that there are bounds on

(a) the class of a nilpotent group in V̂  ,

(b) the order of a chief factor of a group in V_ , and

(c) the order of a finite group in V̂  on a given number of

generators.

Suppose that i is soluble and that A is a formation critical

group in V_ . Let F and $ be, respectively, the Fitting and Frattini

subgroups of A . By the results of W. Gaschutz [2] we know that F/$ is

the direct product of minimal normal subgroups Wi/*, Mz/$, ..., M /$ of

s

A/$ and that F/$ has a complement L/$ in A/$ . Also F/$ is the

Fitting subgroup of A/9 and so C.(F/$) = F by W.R. Scott [7, 7.U-TJ.

Suppose that s exceeds the bound given by (a) above. Then the

groups L and Mi, M2, ..., M satisfy the conditions of Lemma 1.7j and

s

furthermore the groups in the set X of Lemma 1.7 all lie in form(.4) by

Lemma 1.5« Thus we deduce that form(i4) is generated by ]( . But

A | X > an(i so this contradicts the definition of A .

Consequently (a) and (b) give a bound on the order of F/$ .

Therefore we also have that \A : F\ = \A : C.(F/$)\ is bounded. Thus we

obtain a bound on \A : $| and hence a bound for the number of generators

needed for A . Finally (c) gives a bound on the order of A and

completes the proof of Lemma 1.1.

To conclude this section we record the following result which is

presumably well-known (cf. VI.7.21 of [4]).

LEMMA 1.8. Let N be a normal subgroup of a group G and M a
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normal subgroup of G which centralizes N . Then the group G*

obtained by split extending N by G/M with its natural action on N is

in the formation generated by G .

Proof. Let Gx = {(g, g) : g i G) and N1 = {(n, l) : n f N} be

subgroups of G x G ; and note that Gi normalizes Ni . Put

M\ = {(m, m) : m € M} , so that Mi is normalized by G\ and centralized

by N\ . Then, clearly,

G* = GiNi/Mx € fonn(G) .

2. Direct powers and formations

Throughout this section G will denote a given finite group and

g •* g* , g •* g. and g •* g*. will denote fixed isomorphisms of G onto

groups G* , G. and G* , respectively. We shall employ the natural
Is Is

consequences of th i s notation - thus if K i s a subgroup of G then K.
"V

will denote the subgroup of G. corresponding to K , and so on.

Let U 5 V be normal subgroups of G with [V, G] 5 U and let

D(.U, V) be the subgroup of G x G* consisting of all elements vw* with

V, W i V and V = W modulo U . Then Dili, V) o G x G* . By a central

factor square of G we shall mean a group isomorphic to a group

G x G*/D{U, V) . Since any two isomorphisms G •*• G* differ by an

automorphism of G , such a group is determined up to isomorphism by U

and V and is independent of the particular isomorphism g •*• g*

selected.

The main result of this section is the following.

THEOREM 2.1. Let H be a homomorphic image of a direct power of

G . Then the formation generated by H can be generated by a central

factor square G x G*/D(.U, V) of G such that U and V are

characteristic in G and the automorphism group of G/U acts trivially

on V/U .

Proof. The proof will be conducted by induction on \G\ . If

\G\ = 1 the theorem clearly holds and so we may assume that \G\ > 1 and

that the theorem holds for all groups of order smaller than |c| .
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Suppose then that

H = Gf x G* x ... x G*/X

where l*> 1 and X < D = G* * G* *....* Gi . Let jf = OX01 , the

intersection being taken over all a € AutD . Then clearly D/X and H

generate the same formation and so we may assume that X is characteristic

in D . We now distinguish two cases.

Case 1: X contains Y* x ... x y* for some 1 =j= Y 5 G . Then

/ n G* is a non-trivial characteristic subgroup Tj1 of Gj1 and, since

the symmetric group 5, acts naturally on D , X contains

T* x ... x Ti . But then H is a homomorphic image of a direct power of

G/T and so, by our inductive hypothesis, form(#) can be generated by a

central factor square of G/T constructed with respect to characteristic

subgroups U/T and V/T of G/T , with the properties described. The

central factor square is isomorphic to G x G*/D(U, V) : furthermore U

and V are characteristic in G and AutG/U acts trivially on V/U .

Case 2: .£ contains no subgroup of the form JJ x ... x y* with

1 + J S G . Let

E = G\ x G2 x ... x £

and let L be the intersection of the kernels of the homomorphisms of E

onto H . If (j) is any such homomorphism and a € AntE then ai{) is

another homomorphism of E onto # with kernel (ker <j>) : thus L

is characteristic in E .

We shall show that L contains no element of the form

(1) t = z.W.x

where i \ 3 , z and w are distinct elements of G , and

x £ "| f G, . In fact suppose that L does contain such an element.

kH,d K

Then, since the symmetric group Sj+-i acts on E , we find that L also

contains u = W .z x . Hence L contains £w = z/ .# . where
*• 3 <* 3
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y = zu 4 1 > an<i by replacing y by a suitable power we may assume that

y has prime order p . By applying further elements of 5,+1 we find

that L contains every element y-iif with k % m and so if Y = (z/>

and 2 = %i x ... x y we have

(2) |Z : Z n L| £ p .

However let '!> be the homomorphi sm of E onto # determined by the

conditions g^ -*• g*X (i ̂  I + l) and 9i+-\ "*" ! • Then by the assumptions

of Case 2 we have y . \ ker̂ i for some j with 1 £ j £ Z- . On the other
0

hand there is a homomorphism \ of E onto H whose kernel contains

y • , and even the whole of G . , but fails to contain some other y, .
3 0 *•

Therefore Z n kerij; and Z n ker\ are distinct proper subgroups of Z

and so

|Z : Z n kerip n kerx| 2 p 2 .

This contradicts (2) and shows that L contains no element of the form

(1).

Z+l
The set of all elements g i G such that ~| f g. € L is a subgroup

i=l l

V ot G . Now if a is an automorphism of G and fc an element of V

1+1
then (ha)i ] f ?z. is in L , and consequently ha = h by what we have

i=2 %

just proved. Hence AutC fixes every element of V and in particular V

is characteristic in G .

Now clearly H and E/L generate the same formation. However let

K. . = 1~T Gi,<V.V. : V € vy (1 < i, j < £ + 1, i 4 j) .

Then E/K. • = G x G*/D{l, V) and DX. . = £ . Consequently ff/L generates
T-J I'O

the same formation as G x G*/D{l, V) , and the proof is complete.

COROLLARY 2.2. OnZj/ finitely many formations can be generated by

subsets of QD (G) .
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(Here D (G) denotes the class of isomorphic copies of direct powers

of G .)

Proof. Let F be a formation generated by groups H\, B.^, ...

belonging to QD (G) . By Theorem 2.1 the formation generated by H. can
O %•

be generated by one of the groups G * G*/D{U, V) and so each H. can be

replaced by one of these groups. Thus there are only finitely many

possibilities for F .

It may be worth remarking that the formations generated by the groups

G x G*/D{U, V) are not necessarily distinct as can be seen by taking G

to be cyclic of order two.

3. The formation generated by SL(2, 5)

As an application of Theorem 2.1 we shall briefly indicate how the

lattice of subformations of the formation F generated by G = SL{2, 5)

may be determined. It will be clear that the method is of more general

application, but in the interests of brevity we shall refrain from

stating a cumbersome general result. Much of the detail will be left to

the reader.

In the sequel Gj, G^, ••• will denote isomorphic copies of G and

Z. will be the centre of G. , with Z . = <3 •> .
If Is Is 1*

Firstly we remark that G has the following property.

(3) If M is a finite group with a central subgroup W such that

M/W = G then M splits over W .

Proof. By [4, V.25.U] the Schur multiplicator of G is trivial.

Let (j) be an epimorphism of a free group F of finite rank onto M and

let R = <)>" (V) . Then F/R = G , and, since the Schur multiplicator of

G is isomorphic to R n F'/[F, R] (V.23.5 of [4]), we have

R n F' 5 [F, R] . Therefore M' n W = 1 and M = M' * W .

It is clear that any group I f F has a central subgroup W of

exponent 2 such that L/W belongs to the formation generated by the

alternating group A5 . Furthermore the latter formation consists of all

finite direct powers of A$ ; and so L/W is perfect. Therefore
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L = L'W . It follows that L' = L" and that if U is a complement for

L' n W in W then L = L' * U . Notice that, by Lemma 1.8, every central

subgroup of G belongs to F , and so F contains the cyclic group- C2

of order 2 .

Now we have already pointed out that form(G) = QR (G) . We shall

show that any group H (. RQ(
G) is a direct product of copies of G and of

C2 . By the remarks made in the preceding paragraph it is enough to

consider the case where H is perfect and is subdirectly contained in

G\ x ... x Gn for some n . Our assertion follows by induction on n

unless C'H n ffj = Zj , and we shall now exclude this possibility.

Suppose then that H n Gj = Zx . Induction shows that

H = A1A2 . . . Av where the A. are normal subgroups of H containing Zi

such that A./Zi = G and A. n A. = Zj if i i j . By (3) we have

A' = Zi x B. with B. = G . B. is characteristic in A> and so normal

in H , and it follows easily that H = Z\ x sx x . . . x fi . As H = H'

we have a contradiction.

It now follows that any group I f F has the form

(Gj x ... x GJX] x C

where I > 0 , X S Z\ x ... x Z^ and C is elementary abelian of

exponent 2 . If X = Z\ * ... x Z, it is clear that the formation

generated by L can be generated by one of the groups 1 , Ci •> ̂ 5 and

A5
 x Ci . Otherwise, by Theorem 2.1, the formation generated by L can be

generated either by G or by the central square S of G .

Finally we show that the formations F and F* generated by G and

5 are distinct. Otherwise G € F* and G would be a homomorphic image

of a group <?! x ... x GJX with X < Z\ * .. . x Z, and X an

intersection of kernels of homomorphi sms of Cj x ... * C, onto S . It

is easy to see that any such kernel contains the element z = Z\ ... z-, .

Therefore G would be a homomorphic image of the group

Gj x ... x G-j/<zy . However this is not the case and so G | F* .
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Thus F has precisely six subformations. They are generated

respectively by the groups 1 , Ci , As , A5 * C2 , S , and G itself.
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