
Proceedings of the Edinburgh Mathematical Society (2024) 67, 168–187

doi:10.1017/S0013091523000743

THE SPHERICAL GROWTH SERIES OF DYER GROUPS

LUIS PARIS1 AND OLGA VARGHESE2

1

IMB, UMR 5584, CNRS, Université de Bourgogne, Dijon, France
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Abstract Graph products of cyclic groups and Coxeter groups are two families of groups that are defined
by labelled graphs. The family of Dyer groups contains these both families and gives us a framework to
study these groups in a unified way. This paper focuses on the spherical growth series of a Dyer group D
with respect to the standard generating set. We give a recursive formula for the spherical growth series of
D in terms of the spherical growth series of standard parabolic subgroups. As an application we obtain
the rationality of the spherical growth series of a Dyer group. Furthermore, we show that the spherical
growth series of D is closely related to the Euler characteristic of D.
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1. Introduction

Let (G,S ) be a pair where G is a group and S = {s1, . . . , sk} is a generating set of G. One
way to study the group G is by counting its elements algebraically/geometrically. Each
element g ∈ G can be written as a word g = x1 . . . xn where each letter xi, i = 1, . . . , n
lies in the alphabet S ∪ S−1 =

{
s1, . . . , sk, s

−1
1 , . . . , s−1

k

}
. The length of g, denoted by

l(g) = lS(g), is the minimal length of a word expression of g in the alphabet S∪S−1. We
count the number of elements of length n in G and convert this sequence into a formal
power series:

G(G,S)(t) :=
∞∑

n=0

| {g ∈ G | l(g) = n} | · tn.

Thus, G(G,S)(t) =
∑∞

n=0 an · tn where an is the number of vertices in a sphere of radius
n in the Cayley-graph Cay(G,S). This formal power series is called the spherical growth
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series of G (with respect to S) and tends to be an important measure of complexity for
infinite groups.
Let us calculate the spherical growth series of the infinite cyclic group with the

canonical generating set:

G(Z,{1})(t) = 1 + 2t+ 2t2 + 2t3 + . . . = 1 + 2(t+ t2 + t3 . . .) = 1 +
2t

1− t
=

1 + t

1− t
.

Thus, G(Z,{1})(t) is a rational function. By definition, a pair (G,S ) has rational growth
series if there exist polynomials f (t) and g(t) with integer coefficients such that

G(G,S)(t) = f(t)
g(t) . Many groups that appear in geometric group theory have rational

growth series, for example Coxeter groups [2, 17], surface groups [4, 5], virtually abelian
groups [1] and hyperbolic groups [8, 9]. Note that the rationality of the spherical growth
series depends on the generating set, e.g. there exist nilpotent groups and finite generat-
ing sets, such that the growth series are not rational [19]. The central object under our
investigation is the growth series of Dyer groups. Throughout this paper (Γ,m, f) is a
Dyer graph and (D,V ) where V = V (Γ) is the associated Dyer system. This means that
the vertex set V (Γ) is finite and is endowed with a map f : V (Γ) → N≥2 ∪ {∞} and the
edge set E(Γ) is endowed with a map m : E(Γ) → N≥2. For two letters a, b and a natural
number m we define π(a, b,m) := abababa . . . where the length of the word is m. Further,
we assume that for every edge e = {x, y} ∈ E(Γ) if m(e) 6= 2, then f(x) = f(y) = 2. The
associated Dyer group is defined as follows:

D := 〈V | xf(x) if f(x) 6= ∞, π(x, y,m({x, y})) = π(y, x,m({x, y}))
if {x, y} ∈ E(Γ)〉.

We note that, if f(x) = 2 for all x ∈ V (Γ), then D is a Coxeter group, and if f(x) = ∞ for
all x ∈ V (Γ), then D is a right-angled Artin group. Further, if m(e) = 2 for all e ∈ E(Γ),
then D is called a numbered graph product.
For a subset Y ⊆ V we denote by DY the subgroup in D which is generated by the set

Y. This subgroup is called a standard parabolic subgroup. It is shown in [7] that (DY , Y )
is itself a Dyer system which is associated to the Dyer graph (ΓY ,mY , fY ), where ΓY is
the full subgraph of Γ spanned by Y, mY is the restriction of m to E(ΓY ), and fY is the
restriction of f to V (ΓY ) = Y .
Let (D,V ) be a Dyer system. We define V2 := {x ∈ V | f(x) = 2}, V∞ :=

{x ∈ V | f(x) = ∞}, Vp := {x ∈ V |2 < f(x) < ∞}. Let D2 resp. D∞ resp. Dp be
the subgroup of D generated by V 2 resp. V∞ resp. Vp. We have a decomposition
D = D2 × Dp × D∞ whenever Γ is complete. By definition, D is of spherical type if
Γ is a complete graph and D2 is finite. In particular, if D is of spherical type, then
D = D2 ×Dp ×D∞, Dp is a finite abelian group, and D∞ = Zl where l = |V∞|.
We state now our main result.
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Theorem 1.1. Let (D,V) be a Dyer system.

(1) If D is not of spherical type, then

(−1)|V |+1

G(D,V )(t)
=
∑
Y(V

(−1)|Y |

G(DY ,Y )(t)
.

(2) If D is of spherical type, then we decompose Dp =
∏

x∈Vp
Z/f(x)Z and let l = |V∞|.

Then

G(D,V )(t) = G(D2,V2)
(t) · G(Dp,Vp)(t) · G(D∞,V∞)(t),

where
• D2 is a finite Coxeter group, hence G(D2,V2)

(t) can be calculated using the formula
for finite Coxeter groups [17]:

G(D2,V2)
(t) =

k∏
i=1

(1 + t+ . . .+ tmi),

where m1, . . . ,mk are the exponents of (D2, V2).
• G(Dp,Vp)(t) =

∏
x∈Vp

G(Z/f(x)Z,{1})(t). If f(x) = 2r, then

G(Z/f(x)Z,{1})(t) = 1 + 2t+ 2t2 + . . .+ 2tr−1 + tr.

If f(x) = 2r + 1, then

G(Z/f(x)Z,{1})(t) = 1 + 2t+ 2t2 + . . .+ 2tr.

• G(D∞,V∞)(t) =
(1+t)l

(1−t)l
.

As a direct consequence we obtain the rationality of the spherical growth series of a
Dyer system.

Corollary 1.2. Let (D,V) be a Dyer system. The spherical growth series of D with
respect to V is rational.

Often there are interesting connections between special values of the spherical growth
series of (G,S ) with other properties of a group G, for example it was proven in [15] that
for a Coxeter system (W,S ), the value G(W,S)(1) is closely related to the rational Euler
characteristic of W which we denote by χ(W ). More precisely:

1

G(W,S)(1)
= χ(W ).

We prove that the same relation holds for all Dyer groups.

https://doi.org/10.1017/S0013091523000743 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000743


The spherical growth series of Dyer groups 171

Theorem 1.3. (see Theorem 5.3) Let (D,V) be a Dyer system. Then

1

G(D,V )(1)
= χ(D).

2. Preliminaries

We start this chapter by reviewing some standard facts of the word length and length
functions.

Definition 2.1. Let G be a finitely generated group and S be a finite generating set.

(1) For g ∈ G, g 6=1 the word length of g is defined as:

l(g) = lS(g) = min
{
n | g = s

ε1
1 s

ε2
2 . . . sεnn , si ∈ S, εi ∈ {−1, 1}

}
.

(2) For g ∈ G, g 6=1 the syllable length of g is defined as:

lsy(g) := min
{
m | g = s

a1
1 s

a2
2 . . . samm , si ∈ S, ai ∈ Z

}
.

And we set lsy(1) = l(1) = 0.

We note that for a given group G and a finite generating set S consisting of elements
of order two we have l(g) = lsy(g) for all g ∈ G.
The length of g ∈ G is closely connected to the length of a special path in a geometric

object which is associated to the group G, the Cayley-graph Cay(G,S). Before we give a
definition of this graph we recall the definition and some important facts about general
graphs which we will need later on.
A graph Γ is a pair (V (Γ), E(Γ)) where V (Γ) is a set whose elements are called vertices

and E(Γ) is a subset of P2(V ) := {X | X ⊆ V, |X| = 2} whose elements are called edges.
Usually, graphs are visualized graphically, where we draw for each vertex x ∈ V (Γ) a
point and label it with x and two points x, y are connected by a line if {x, y} ∈ E(Γ).
Given a graph Γ and a vertex x ∈ V (Γ) we define two subsets of V (Γ) that are associ-

ated to x. The link of x, denoted by lk(x ) is defined as lk(x) := {y ∈ V (Γ) | {x, y} ∈ E(Γ)}
and the star of x, denoted by st(x ) is defined as st(x) := lk(x)∪{x}. A graph Γ is called
complete if st(x) = V (Γ) for all x ∈ V (Γ). A subgraph Ω ⊆ Γ is called full if for all pair
of vertices (v, w) ∈ V (Ω)× V (Ω) we have {v, w} ∈ E(Ω) if and only if {v, w} ∈ E(Γ).
Let G be a group and let S be a generating set for G. The Cayley-graph for G with

respect to S, denoted by Cay(G,S) is a graph with vertex set V (Cay(G,S)) = G and edge
set E(Cay(G,S)) =

{
{g, gs} | g ∈ G, s ∈ S ∪ S−1

}
. The distance between two vertices is

defined as a number of edges in a shortest path connecting those vertices. Note that l(g)
is equal to the distance between the vertices 1G and g. Hence the number of elements in
G with word length n is equal to the number of vertices in the sphere with centre 1G of
radius n in Cay(G,S). Let us consider the Cayley-graph of the free group F 2 with the
generating set {x, y} in Figure 1.
For example, the number of elements in F 2 with length 2 is equal to 12. One geometric

way to count the elements in F 2 is by counting the vertices in the sphere with centre
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−

Figure 1. Cay(F2, {x, y}).

1 of radius n in the Cayley-graph Cay(F2, {x, y}). Let an be this number. We get the
sequence (an)n∈N where a0 = 1 and an = 4 · 3n−1 for n ≥ 1. We convert this sequence
into a formal power series 1 + a1t + a2t

2 + . . . which leads us to the definition of the
spherical growth series. The best general reference on growth series of groups is [11].

Definition 2.2. Let G be a group and S be a finite generating set of G.

(1) The spherical growth series of G with respect to S is the formal series:

G(G,S)(t) :=
∑
g∈G

tl(g) =
∞∑

n=0

| {g ∈ G | l(g) = n} | · tn.

(2) The spherical growth series of a subset A ⊆ G with respect to S is the formal series:

G(A,S)(t) :=
∑
g∈A

tl(g) =
∞∑

n=0

| {g ∈ A | l(g) = n} | · tn.

We note that G(G,S)(t) is an element in Z[[t]] the ring of formal power series in the
variable t over Z. We now give some examples.

Example 2.3.

(1) G(Z/4Z,{1})(t) = 1 + 2t+ t2.

https://doi.org/10.1017/S0013091523000743 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000743


The spherical growth series of Dyer groups 173

(2) G(Z/5Z,{1})(t) = 1 + 2t+ 2t2.

(3) G(Z,{1})(t) = 1 + 2t+ 2t2 + 2t3 + . . . = 1 + 2(t+ t2 + t3 . . .) = 1 + 2t
1−t =

1+t
1−t .

Given two groups G and H with finite generating sets SG resp. SH, to construct a new
group using given ones it is natural to use direct or free product construction. For direct
and free products, there are formulas for the spherical growth series in terms of spherical
growth series of the factors [11].

G(G×H,SG∪SH )(t) = G(G,SG)(t) · G(H,SH )(t) ,

1

G(G∗H,SG∪SH )(t)
=

1

G(G,SG)(t)
+

1

G(H,SH )(t)
− 1.

A generalization of direct resp. free product construction is amalgamated products and
graph products of groups. Let us recall a formula for the spherical growth series of an
amalgamated product. First, we need a definition.

Definition 2.4. Let (G, S) be a pair where G is a group generated by a finite set S.
A pair (H,T) is admissible in (G, S), if H is a subgroup of G, T ⊆ S, and there exists a
tranversal U for H in G such that if g= hu with g ∈ G, h ∈ H, u ∈ U , then lS(g) = lT (h)+
lS(u). We always assume that the transversal contains the identity as the representative
of H.

It was proven in [10] that if (L,R) is admissible in (H,S ) and in (K,T ), then the
spherical growth series of G = H ∗L K can be computed using smaller pieces of G.

Proposition 2.5. If (L, R) is admissible in (H, S) and in (K,T), then

1

G(H∗LK,S∪T )(t)
=

1

G(H,S)(t)
+

1

G(K,T )(t)
− 1

G(L,R)(t)
.

Now we move on to graph products of groups. Given a finite graph Γ and a collection
of finitely generated groups Gx for x ∈ V (Γ), the graph product of groups is defined as:

GΓ =
(
∗x∈V (Γ) Gx

)
/〈〈[g, h] | g ∈ Gx, h ∈ Gy, {x, y} ∈ E(Γ)〉〉.

We note that, if Γ is discrete, then the associated graph product of groups is the free
product of the vertex groups and if Γ is complete, then the associated graph product of
groups is the direct product of the vertex groups. If all vertex groups are infinite cyclic,
then we call GΓ a right-angled Artin group. For every vertex group Gx let Sx be a finite
generating set and we set S :=

⋃
x∈V (Γ) Sx. A formula for the spherical growth series

of GΓ in terms of the spherical growth series of the vertex groups was proven in [10]
for isomorphic vertex groups. Here we recall a special case of this formula where GΓ is a
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right-angled Artin group and Sx = {1} for every x ∈ V . Let ci be the number of complete
subgraphs in Γ on i vertices. Then

1

G(GΓ,S)(t)
=
∑
i

(−1)ici
( 1+t
1−t − 1)i

( 1+t
1−t )

i
.

This formula was generalized for arbitrary vertex groups in [6]. Let GΓ be a graph
product of finitely generated vertex groups. We define for each complete subgraph ∆ ⊆ Γ,
P∆(t) :=

∏
x∈V (∆)(

1
G(Gx,Sx)

(t) − 1). Then

1

G(GΓ,S)(t)
=
∑

P∆(t),

where the summation is taken over all complete subgraphs of Γ including the empty one
for which P∅(t) = 1.
We want also to point out that the geodesic growth series of graph products of cyclic

groups was studied in [12].
Further groups for which it is possible to compute the spherical growth series using

smaller building blocks of the group are Coxeter groups. Coxeter groups have special
subgroups which can be considered as building blocks for the whole group. Given a finite
graph Γ with an edge-labelling m : E(Γ) → N≥2. The Coxeter group associated to Γ is
given by the presentation:

W = 〈V (Γ) | x2 for all x ∈ V (Γ), (xy)m({x,y}) for all {x, y} ∈ E(Γ)〉.

For any subset X ⊆ V (Γ) the subgroup generated by the set X is canonically isomor-
phic to the Coxeter group which is associated to the full subgraph of Γ with the vertex
set X. This subgroup is called a standard parabolic subgroup and we denote it by WX. A
natural question is if it is possible to use the spherical growth series of special parabolic
subgroups to obtain a formula for the spherical growth series of the whole group. It was
proven in [17], [2] that it is indeed the case. Let (W,S ) be a Coxeter system. If W is
finite, then

tm + (−1)|S|+1

G(W,S)(t)
=
∑
X(S

(−1)|X|

G(WX,X)(t)
,

where m = max {l(w) | w ∈ W}. The spherical growth series of a finite Coxeter group
can also be calculated using the non-recursive formula:

G(W,S)(t) =
k∏

i=1

(1 + t+ . . .+ tmi),

where m1, . . . ,mk are the exponents of (W,S ).

https://doi.org/10.1017/S0013091523000743 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000743


The spherical growth series of Dyer groups 175

If W is infinite, then

(−1)|S|+1

G(W,S)(t)
=
∑
X(S

(−1)|X|

G(WX,X)(t)
.

In particular, the above formulas show that for a Coxeter group W there exists a
polynomial f (t) such that:

f(t)

G(W,S)(t)
=
∑
X(S

(−1)|X|

G(WX,X)(t)
.

3. Dyer groups

We begin this chapter with the definition of the main protagonist in this article, a Dyer
group. For two letters a, b and a natural number m we define π(a, b,m) := abababa . . .
where the length of the word is m. For example π(a, b, 3) = aba.

Definition 3.1.

(1) A Dyer graph is a triple (Γ,m, f) where Γ is a graph with finite vertex set V =
V (Γ), f : V → N≥2 ∪ {∞} and m : E(Γ) → N≥2 are maps. For every edge e =
{x, y} ∈ E(Γ), if m(e) 6= 2, then f(x) = f(y) = 2.

(2) The associated Dyer group is defined as follows:

D := 〈V | xf(x), x ∈ V if f(x) 6= ∞, π(x, y,m({x, y})) = π(y, x,m({x, y}))
if {x, y} ∈ E(Γ)〉.

(3) The associated pair (D,V) where D is a Dyer group and V = V (Γ) is called a Dyer
system.

3.1. Dyer tools

We start by recalling several results which were proven by Dyer in [7]. Let G be a
group and g ∈ G. We denote the order of g by o(g). If o(g) is finite, then we write Zo(g)

for the cyclic group of cardinality o(g) and if o(g) is infinite, then we write Zo(g) for the
infinite cyclic group. More generally we use the notation Zn = Z/nZ if n is a positive
integer and Z∞ = Z.
Let (D,V ) be a Dyer system. By definition, a conjugate of a generator x ∈ V is called

a reflection. We define

R :=
{
gxg−1 | g ∈ D,x ∈ V

}
.

R is the set of all reflections in D. For ρ ∈ R we define a copy of Zo(ρ) as Hρ ={
a[ρ] | a ∈ Zo(ρ)

}
. The set Hρ is an abelian group whose group operation is defined by
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a[ρ] + b[ρ] := (a+ b)[ρ]. Hence Hρ is isomorphic to Zo(ρ). Further, we define

M =
⊕
ρ∈R

Hρ.

This set is an abelian group with canonical group operation
∑

aρ[ρ] +
∑

bρ[ρ] =∑
(aρ + bρ)[ρ]. Furthermore, this abelian group is a D-module where the structure of

the D-module is defined for g ∈ D by:

g ·
∑

aρ[ρ] :=
∑

aρ[gρg
−1].

Let g ∈ D. We pick one syllabic representative (x
a1
1 , x

a2
2 , . . . , x

al
l ) for g, that is, a tuple

of syllables such that g = x
a1
1 x

a2
2 . . . x

al
l . For each i ∈ {1, . . . , l} we define a reflection:

ρi := x
a1
1 x

a2
2 . . . x

ai−1
i−1 xix

−ai−1
i−1 . . . x

−a2
2 x

−a1
1 .

We set

N(g) =
l∑

i=1

ai[ρi] ∈ M.

For n ∈ N≥2 ∪ {∞} and a ∈ Zn we denote by ‖a‖n the word length of a with respect
to the generating set {1}.

Theorem 3.2. ([7]) Let (D,V) be a Dyer system. Let g, h ∈ D.

(1) N(g) does not depend on the choice of the syllabic representative for g.
(2) Let N(g) =

∑
ρ∈R aρ(g)[ρ]. Then

(a) lsy(g) =| {ρ ∈ R | aρ(g) 6= 0} |.
(b) l(g) =

∑
ρ∈R‖aρ(g)‖o(ρ).

(3) N(gh) = N(g) + g ·N(h).

Let g ∈ D. A syllabic representative (x
a1
1 , x

a2
2 , . . . , x

al
l ) for g is called reduced if l =

lsy(g). The following is a direct consequence of part (2) of Theorem 3.2 and it will be
often used hereafter.

Corollary 3.3. Let g ∈ D and (x
a1
1 , x

a2
2 , . . . , x

al
l ) be a reduced syllabic representative

for g. Then

l(g) = ‖a1‖o(x1) + ‖a2‖o(x2) + . . .+ ‖al‖o(xl).

Proof. For each i ∈ {1, . . . , l} we set

ρi = x
a1
1 x

a2
2 . . . x

ai−1
i−1 xix

−ai−1
i−1 . . . x

−a2
2 x

−a1
1 .
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Then

N(g) =
l∑

i=1

ai[ρi].

Since l = lsy(g), by Theorem 3.2 (2–a) we have ρi 6= ρj for i 6= j. By Theorem 3.2 (2–b) it
follows that:

l(g) = ‖a1‖o(ρ1) + ‖a2‖o(ρ2) + . . .+ ‖al‖o(ρl) = ‖a1‖o(x1) + ‖a2‖o(x2) + . . .+ ‖al‖o(xl).

�

3.2. Standard parabolic subgroups

Let (D,V ) be a Dyer system. For any subset X ⊆ V , we denote the subgroup generated
by the set X by DX ⊆ D. DX is called the standard parabolic subgroup generated by X.
Let (Γ,m, f) be the Dyer graph associated with (D,V ). We denote by ΓX the full

subgraph of Γ spanned by X, by mX the restriction of m to E(ΓX), and by fX the
restriction of f to V (ΓX) = X. Then (ΓX ,mX , fX) is a Dyer graph and we know by [7]
that (DX , X) is the Dyer system associated with (ΓX ,mX , fX) (see also [13, Proposition
2.7]).

Lemma 3.4. Let (D,V) be a Dyer system. Let DX be a standard parabolic subgroup
of D. Then for any g ∈ DX we have lX(g) = lV (g).

Proof. Let g ∈ DX . Let (x
a1
1 , x

a2
2 , . . . , x

al
l ) be a reduced syllabic representative for g.

We know by [13, Lemma 2.5] that x1, x2, . . . , xl ∈ X, hence, by Corollary 3.3,

lV (g) = ‖a1‖o(x1) + ‖a2‖o(x2) + . . .+ ‖al‖o(xl) ≥ lX(g).

It is clear that we also have lX(g) ≥ lV (g), thus lX(g) = lV (g). �

Proposition 3.5. Let (D,V) be a Dyer system and DX be a standard parabolic
subgroup. Then for every g ∈ D

(1) there exist a unique g0 ∈ gDX of minimal syllabic length in gDX and g0 satisfies:

lsy(g0h) = lsy(g0) + lsy(h)and l(g0h) = l(g0) + l(h)

for all h ∈ DX .
(2) there exists a unique g′0 ∈ DXg of minimal syllabic length in DXg and g0 satisfies

lsy(hg
′
0) = lsy(h) + lsy(g

′
0)and l(hg′0) = l(h) + l(g′0)

for all h ∈ DX .
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Proof. The statements regarding syllabic length were proved in [13, Proposition 2.8].
Hence we know that there exists a unique g0 ∈ gDX such that for all h ∈ DX we have:

lsy(g0h) = lsy(g0) + lsy(h).

Let h ∈ DX . Let (x
a1
1 , . . . , x

ap
p ) be a reduced syllabic representative for g0 and

(y
b1
1 , . . . , y

bq
q ) be a reduced syllabic representative for h. We know from the above

that (x
a1
1 , . . . , x

ap
p , y

b1
1 , . . . , y

bq
q ) is a reduced syllabic representative for g0h, hence, by

Corollary 3.3,

l(g0h) = ‖a1‖o(x1) + . . .+ ‖ap‖o(xp) + ‖b1‖o(y1) + . . .+ ‖bq‖o(yq) = l(g0) + l(h).

The proof of part (2) is the same as for part (1). �

Corollary 3.6. Let (Γ,m, f) be a Dyer graph and (D,V) be the associated Dyer
system. Every pair (DX , X) where DX is a standard parabolic subgroup is admissible.

Proof. For a standard parabolic subgroup DX and an element g ∈ D there exists a
unique g0 ∈ gDX such that l(g0h) = l(g0) + l(h) for all h ∈ DX . We take these minimal
elements as a transversal. Lemma 3.4 and Proposition 3.5 show that this transversal is
admissible. �

Corollary 3.7. Let (Γ,m, f) be a Dyer graph. Let v ∈ V (Γ). If st(v) 6= V (Γ), then

D = DV−{v} ∗Dlk(v)
Dst(v),

and

1

G(D,V )(t)
=

1

G(DV−{v},V−{v})(t)
+

1

G(Dst(v),st(v))
(t)

− 1

G(Dlk(v),lk(v))
(t)

.

Proof. The proof of the equality D = DV−{v} ∗Dlk(v)
Dst(v) follows by analysing the

presentation of D and the canonical presentation of the amalgam. By Corollary 3.6 the
groups in this amalgamated product are admissible. Thus by Proposition 2.5 we get the
above equality of the spherical growth series. �

4. X -minimality

Definition 4.1. Let (D,V) be a Dyer system and g ∈ D. For X ⊆ V the element g is
called X-minimal if lsy(g) ≤ lsy(gh) for all h ∈ DX .

Note that, by Proposition 3.5, if g is X -minimal, then lsy(gh) = lsy(g) + lsy(h) and
l(gh) = l(g) + l(h) for all h ∈ DX . Note also that, if X ⊆ Y ⊆ V and g is Y -minimal,
then g is also X -minimal, since gDX ⊆ gDY .
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Definition 4.2. Let (D,V) be a Dyer system and X ⊆ V . We define two subsets of
D as follows:

AX = AX(D) := {g ∈ D | gis X-minimal} and BX = BX(D) := AX − (∪X(Y AY ).

An important feature of these sets is that, for X ⊆ V , the set AX is the disjoint union
of those BY with X ⊆ Y . This property is less obvious than it seems and follows from
the following lemma.

Lemma 4.3. Let (D,V) be a Dyer system, let g ∈ D, and let X,Y ⊆ V . If g is both
X-minimal and Y-minimal, then g is (X ∪ Y )-minimal.

Proof. Let g0 be the unique (X ∪Y )-minimal element in gDX∪Y . By Proposition 3.5
there exists h ∈ DX∪Y such that g = g0h and lsy(g) = lsy(g0) + lsy(h). Suppose g0 6= g,
that is, lsy(h) ≥ 1. Let (x

a1
1 , . . . , x

ap
p ) be a reduced syllabic representative for h. We know

from [13, Lemma 2.5] that x1, . . . , xp ∈ X ∪ Y . But, if xp ∈ X, then g is not X -minimal,
and if xp ∈ Y , then g is not Y -minimal. This is a contradiction, hence h =1 and
g = g0. �

Corollary 4.4. Let (D,V) be a Dyer system and let X ⊆ V . Then AX is the disjoint
union of those BY with X ⊆ Y .

The following lemma is a particular case of the well-known general Möbius inversion
formula (see [18, Section 3.7] or [14] for example).

Lemma 4.5. Let V be a set and P(V ) be the set of all subsets of V. Further, let G be
an abelian group. If the functions f : P(V ) → G and g : P(V ) → G satisfy

f(X) =
∑
X⊆Y

g(Y )for all X ∈ P(V ),

then they satisfy

g(X) =
∑
X⊆Y

(−1)|Y−X|f(Y )for all X ∈ P(V ).

Proposition 4.6. Let (D,V) be a Dyer system. For X ⊆ V we have

G(BX,V )(t) =
∑
X⊆Y

(−1)|Y−X| G(D,V )(t)

G(DY ,Y )(t)
.

In particular, for X = ∅ we obtain:

G(B∅,V )(t) =
∑
Y

(−1)|Y | G(D,V )(t)

G(DY ,Y )(t)
,
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which is equivalent to:

G(B∅,V )(t) + (−1)|V |+1

G(D,V )(t)
=
∑
Y(V

(−1)|Y |

G(DY ,Y )(t)
.

Proof. Let (D,V ) be a Dyer system. We define two functions f : P(V ) → Z[[t]] and
g : P(V ) → Z[[t]] where Z[[t]] is the formal power series ring with coefficients in the group
Z as follows:

f(X)(t) =
∑

g∈AX

tl(g)and g(X)(t) =
∑

g∈BX

tl(g).

By Corollary 4.4 the set AX is a disjoint union of those BY, where X ⊆ Y . Hence
we have

f(X)(t) =
∑
X⊆Y

g(Y )(t),

and by Lemma 4.5 we obtain

g(X)(t) =
∑
X⊆Y

(−1)|Y−X|f(Y )(t).

By definition we have g(X)(t) = G(BX,V )(t). Thus we obtain

G(BX,V )(t) =
∑
X⊆Y

(−1)|Y−X|f(Y )(t).

Further,D = ∪g∈AY
gDY and this union is disjoint. More precisely, two cosets are equal

or disjoint. Assume that there exist g1, g2 ∈ AY , g1 6= g2 such that g1DY = g2DY . Since
g1 and g2 are both Y -minimal it follows by Proposition 3.5 that g1 = g2, contradiction.
We obtain

G(D,V )(t) =
∑

g∈AY

∑
u∈DY

tl(g)+l(u) = f(Y )(t) · G(DY ,V )(t).

Finally, by Lemma 3.4 we have G(DY ,V )(t) = G(DY ,Y )(t), hence

G(BX,V )(t) =
∑
X⊆Y

(−1)|Y−X|f(Y )(t) =
∑
X⊆Y

(−1)|Y−X| G(D,V )(t)

G(DY ,Y )(t)
.

�

Our next task is to give a good description of the set B∅. We are particularly interested
in properties of (D,V ) that ensure the set B∅ to be empty.
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Definition 4.7. Let (Γ,m, f) be a Dyer graph and (D,V) be the associated Dyer
system. We define V2 := {x ∈ V |f(x) = 2}, V∞ := {x ∈ V |f(x) = ∞}, Vp :=
{x ∈ V |2 < f(x) < ∞}. Let D2 resp. D∞ resp. Dp be the standard parabolic subgroup
of D generated by V2 resp. V∞ resp. Vp.
The Dyer group D is called of spherical type if Γ is a complete graph and D2 is a finite

Coxeter group.

Note that, if D is of spherical type, then D = D2 ×Dp ×D∞, Dp =
∏

x∈Vp
Z/f(x)Z,

and D∞ = Zl where l = |V∞|.
The description of B∅ when D = D2 is a Coxeter group is well-known and it is a direct

consequence of the following.

Proposition 4.8. ([2]) Let (W, S) be a Coxeter system. The following conditions on
an element w0 ∈ W are equivalent.

(a) For each u ∈ W , l(w0) = l(w0u
−1) + l(u).

(b) For each s ∈ S, l(w0s) < l(w0).

Moreover, w0 exists if and only if W is finite. If w0 satisfies (a) and/or (b), then w0

is unique, w0 is an involution, and w0Sw0 = S.

The element w0 of Proposition 4.8 is called the longest element of W, if it exists. The
following is a straightforward consequence of Proposition 4.8.

Corollary 4.9. Let (W, S) be a Coxeter system. We have B∅(W ) 6= ∅ if and only if
W is finite. If W is finite, then B∅(W ) = {w0}, where w0 is the longest element of W.

In the general case we have the following.

Lemma 4.10. Let (D,V) be a Dyer system.

(1) We have B∅ 6= ∅ if and only if D is of spherical type.
(2) Suppose D is of spherical type. Set Vp = {x1, . . . , xk} and V∞ = {y1, . . . , yl}. Let

g ∈ D. Then g ∈ B∅ if and only if g can be written in the form:

g = w0x
a1
1 . . . x

ak
k y

b1
1 . . . y

bl
l ,

where w0 is the longest element of D2, ai ∈ (Z/f(xi)Z)−{0} for all i ∈ {1, . . . , k},
and bj ∈ Z− {0} for all j ∈ {1, . . . , l}.

Proof. We first prove that, if B∅ 6= ∅, then D is of spherical type. We will then show
that, if D is of spherical type, then B∅ 6= ∅ and the elements of B∅ are as described in
part (2).
Suppose B∅ 6= ∅. This means that there exists g ∈ D such that g 6∈ A{x} for all

x ∈ V . So, we can pick g ∈ D such that, for all x ∈ V , there exists a ∈ Zf(x) − {0}
such that lsy(gx

a) ≤ lsy(g). We start by showing that Γ is complete. Let x, y ∈ V , x 6= y.
Set X = {x, y}. We know that there exist a ∈ Zf(x) − {0} and b ∈ Zf(y) − {0} such as
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lsy(gx
a) ≤ lsy(g) and lsy(gy

b) ≤ lsy(g). On the other hand by Proposition 3.5, there exist
g0 ∈ AX and h ∈ DX such that g = g0h. By Proposition 3.5 we have

lsy(g) = lsy(g0) + lsy(h) , lsy(gx
a) = lsy(g0) + lsy(hx

a) , lsy(gy
b) = lsy(g0) + lsy(hy

b).

Thus, lsy(hx
a) ≤ lsy(h) and lsy(hy

b) ≤ lsy(h). If x and y are not connected by an edge,
then DX = Zf(x) ∗ Zf(y) and there is no h in Zf(x) ∗ Zf(y) such that lsy(hx

a) ≤ lsy(h)

and lsy(hy
b) ≤ lsy(h). So, x and y are connected by an edge.

Since Γ is a complete graph, we have D = D2 ×Dp ×D∞, Dp =
∏

x∈Vp
Z/f(x)Z, and

D∞ = Zl, where l = |V∞|. Assume that B∅ 6= ∅. Let g ∈ B∅. We write g = g2gpg∞ with
g2 ∈ D2, gp ∈ Dp, and g∞ ∈ D∞. For each x ∈ V2 we have

l(g2x) + lsy(gp) + lsy(g∞) = lsy(gx) < lsy(g) = l(g2) + lsy(gp) + lsy(g∞),

hence l(g2x) < l(g2).
By Proposition 4.8 this implies that D2 is a finite Coxeter group and g2 is the longest

element of D2. So, if B∅ 6= ∅, then D is of spherical type.
Suppose now that D is of spherical type. ThenD = D2×Dp×D∞, D2 is a finite Coxeter

group, Dp =
∏

x∈Vp
Z/f(x)Z, and D∞ = Zl, where l = |V∞|. Set Vp = {x1, . . . , xk}

and V∞ = {y1, . . . , yl}. Let g ∈ B∅. Write g in the form g = wx
a1
1 . . . x

ak
k y

b1
1 . . . y

bl
l

with w ∈ D2, ai ∈ Z/f(xi)Z for all i ∈ {1, . . . , k}, and bj ∈ Z for all j ∈ {1, . . . , l}.
Let i ∈ {1, . . . , k}. If we had ai = 0, then we would have lsy(gx

c
i ) > lsy(g) for all

c ∈ (Z/f(xi)Z) − {0}, hence we would have g 6∈ B∅. So ai 6= 0 for all i ∈ {1, . . . , k}.
Similarly, bj 6= 0 for all j ∈ {1, . . . , l}. If w were not the longest element of D2, then
there would exist x ∈ V2 such that l(wx) > l(w), hence there would exist x ∈ V2 such
that lsy(gx) > lsy(g). So, w is the longest element of D2.

Let g ∈ D which can be written in the form g = w0x
a1
1 . . . x

ak
k y

b1
1 . . . y

bl
l , where w0 is

the longest element of D2, ai ∈ (Z/f(xi)Z)− {0} for all i ∈ {1, . . . , k}, and bj ∈ Z− {0}
for all j ∈ {1, . . . , l}. Notice that such an element always exists. It is easily seen that

lsy(gx
−ai
i ) < lsy(g) for all i ∈ {1, . . . , k} and lsy(gy

−bj
j ) < lsy(g) for all j ∈ {1, . . . , l}. On

the other hand, if x ∈ V2, then l(w0x) < l(w0), hence lsy(gx) < lsy(g). So, g ∈ B∅. �

Let (D,V ) be a Dyer system of spherical type. So, D = D2 ×Dp ×D∞, D2 is a finite
Coxeter group, Dp =

∏
x∈Vp

Z/f(x)Z, and D∞ = Zl, where l = |V∞|. Let x ∈ Vp. If

f(x) = 2r is even we set Px(t) = 2t+ 2t2 + . . .+ 2tr−1 + tr, and if f(x) = 2r + 1 is odd
we set Px(t) = 2t+ 2t2 + . . .+ 2tr. Then we set

PD(t) = tm

 ∏
x∈Vp

Px(t)

 2ltl

(1− t)l
,

where m is the maximal length in D2.
As an immediate corollary we obtain the following whose first part finishes the proof

of Theorem 1.1.
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Corollary 4.11. Let (D,V) be a Dyer system.

(1) If D is not of spherical type, then

(−1)|V |+1

G(D,V )(t)
=
∑
Y(V

(−1)|Y |

G(DY ,Y )(t)
.

(2) If D is of spherical type, then

PD(t) + (−1)|V |+1

G(D,V )(t)
=
∑
Y(V

(−1)|Y |

G(DY ,Y )(t)
.

Proof. By Proposition 4.6 it suffices to show that G(B∅,V )(t) = 0 if D is not of spherical

type and that G(B∅,V )(t) = PD(t) if D is of spherical type. If D is not of spherical type

then, by Lemma 4.10, B∅ = ∅, hence G(B∅,V )(t) = 0. Suppose D is of spherical type. Let

Vp = {x1, . . . , xk} and V∞ = {y1, . . . , yl}, and let m be the maximal length in D2. Then,
by Lemma 4.10,

G(B∅,V )(t) = tm

(
k∏

i=1

G(Z/f(xi)Z−{0},{1})(t)

)(
l∏

i=1

G(Z−{0},{1})(t)

)
=

tm

(
k∏

i=1

Pxi
(t)

)(
2t

1− t

)l

= PD(t).

�

We end this chapter with the proof of Theorem 1.1.

Proof of Theorem 1.1. The first part follows from Corollary 4.11 which we already
mentioned above. We assume now that D is of spherical type, then D = D2 ×Dp ×D∞.
Hence we can use the formula for direct products on page 5. We get

G(D,V )(t) = G(D2,V2)
(t) · G(Dp,Vp)(t) · G(D∞,V∞)(t).

Further, since G(Z,{1})(t) =
1+t
1−t we get G(D∞,V∞)(t) =

(1+t)l

(1−t)l
where l is the cardinality

of V∞. A direct calculation shows the formulas for the spherical growth series of finite
cyclic groups with the standard generating sets which ends the proof of the second part
of the theorem. �

5. Euler characteristic

We start this chapter by recalling the definition and useful formulas of the Euler char-
acteristic of groups. Following [3] a group G is said to be of finite homological type if
the virtual cohomological dimension of G is finite and for every G-module M which is
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finitely generated as an abelian group, Hi(G,M) is finitely generated for all i. If G is
torsion-free and of finite homological type, then its Euler characteristic is defined by:

χ(G) :=
∑

(−1)irkZ(Hi(G)).

If G is of finite homological type and has a torsion free subgroup H of finite index,
then the Euler characteristic of G is defined by:

χ(G) :=
χ(H)

[G : H]
.

We list some useful properties of the Euler characteristic.

Proposition 5.1. ([3])[Proposition 7.3]

(1) Let 1 → A → B → C → 1 be a short exact sequence where A and C are of finite
homological type. If B is virtually torsion-free, then B is of finite homolocial type
and

χ(B) = χ(A) · χ(C).

(2) Let G = A∗BC be an amalgamated product where A,B,C are of finite homological
type. If G is virtually torsion free, then G is of finite homological type and

χ(G) = χ(A) + χ(C)− χ(B).

As a corollary we obtain

Corollary 5.2. Let (D,V) and (D′, V ′) be Dyer systems.

(1) χ(D ×D′) = χ(D) · χ(D′).
(2) If D = DV−{x} ∗Dlk(x)

Dst(x), then

χ(D) = χ(DV−{x}) + χ(Dst(x))− χ(Dlk(x)).

Proof. It was proven in [16, Corollary 1.2] that every Dyer group is a subgroup of
finite index in a Coxeter group. Further, it was proven in [15] that Coxeter groups are of
finite homological type. Since the property of being of finite homological type is preserved
by taking finite index subgroups [3, Lemma 6.1], we know that every Dyer group is of
finite homological type and is therefore virtually torsion free. Proposition 5.1 shows the
results of the corollary. �
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Theorem 5.3 Let (Γ,m, f) be a Dyer graph and (D,V) be the associated Dyer system.
Then

1

G(D,V )(1)
= χ(D).

Proof. Assume first that Γ is complete. In this case D = D2 ×Dp ×D∞, where Dp is
finite and D∞ ∼= Zl. Hence, by Corollary 5.2

χ(D) = χ(D2) · χ(Dp) · χ(Zl).

Since D2 is a Coxeter group we know by [15] that χ(D2) =
1

G(D2,V2)
(1) . We get

χ(D) =
1

G(D2,V2)
(1)

· χ(Dp) · χ(Zl).

Further, since Dp is finite we have χ(Dp) =
1

|Dp| and G(Dp,Vp)(1) = |Dp|. Thus

χ(D) =
1

G(D2,V2)
(1)

· 1

G(Dp,Vp)(1)
· χ(Zl).

We know that χ(Zl) = 0 and 1
G(D∞,V∞)(1)

= (1−1)l

(1+1)l
= 0 if l > 0, and χ(Zl) = 1 and

1
G(D∞,V∞)(1)

= 1 if l =0. Hence

χ(D) =
1

G(D2,V2)
(1)

· 1

G(Dp,Vp)(1)
· 1

G(D∞,V∞)(1)
=

1

G(D,V )(1)
.

Now assume that Γ is not complete, then there exists x ∈ V (Γ) such that st(x) 6= V (Γ).
Then we have

D = DV−{x} ∗Dlk(x)
Dst(x).

By Corollary 3.7 we obtain

1

G(D,V )(1)
=

1

G(DV−{x},V−{x})(1)
+

1

G(Dst(x),st(x))
(1)

− 1

G(Dlk(x),lk(x))
(1)

.

By Corollary 5.2 we get

χ(D) = χ(DV−{x} ∗Dlk(x)
Dst(x)) = χ(DV−{x}) + χ(Dst(x))− χ(Dlk(x)).

We decompose DV−{x}, Dst(x) and Dlk(x) again in amalgamated products. Using this
strategy we will get a linear combination of Euler characteristics resp. spherical growth
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series of standard parabolic subgroups of D where all defining graphs are complete.
Applying the above formulas we get

1

G(D,V )(1)
= χ(D).

�
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83, (Birkhäuser Boston, Boston, MA, 1990), 165–187.

(9) M. Gromov, Hyperbolic groups. Essays in group theory. Math. Sci. Res. Inst. Publ.,
Volume 8, (Springer, New York, 1987), 75–263.

(10) J. Lewin, The growth function of some free products of groups, Comm. Alg. 19(9):
(1991), 2405–2418.

(11) A. Mann, How groups grow. (London Mathematical Society Lecture Note Series),
(Cambridge University Press, Cambridge, 2011).

(12) L. Marjanski, E. Solon, F. Zheng and K. Zopff, Geodesic Growth of Numbered
Graph Products, J. Groups Complex. Cryptol. 14(2): (2023), doi.org/10.46298/jgcc.
2023.14.2.10019.

(13) L. Paris and M. Soergel, Word problem and parabolic subgroups in Dyer groups, Bull.
Lond. Math. Soc. 55(6): 2928–2947.

(14) G. -C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions,
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