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X-rays have been used for a long time to characterize nanostructures. Shapes and sizes of 
nanoparticles are routinely determined by small and large angle X-ray scattering. Elemental and 
chemical information is gained from X-ray fluorescence and absorption spectroscopy, respectively. 
These techniques are useful to study ensemble averages of macroscopic quantities of the specimen. 
Recent advances are starting to make it possible to use X-ray microscopy to study clusters, or even 
individual nanoparticles in isolation, or as parts of a larger system. 
 
A major advantage of using X-rays is the penetrating power of the radiation. The specimen may be 
relatively thick (e.g. nanoparticles embedded in a matrix, or a complex structure made up of 
nanoparticles). In addition, fluorescence and absorption spectra are beginning to be collected from 
individual nanostructures, extending the elemental and chemical analysis capabilities to the nano-
world. 
 
Several approaches to X-ray microscopy of nanostructures are under development. [1] 

• Zone plates are used to form nanoprobes for scanning microscopy and spectromicroscopy 
[2]. 

• Other forms of X-ray optics, such as Kirkpatrick-Baez mirror systems are rapidly improving 
in resolution, and offer broad spectral tunability in microprobe applications [1]. 

• Zone plates are also used as objective lenses in full-field microscopes, and the resolution in 
this form of imaging has already reached the 15 nm level [3]. 

• The technique of Diffraction Microscopy, where the diffraction pattern of a non-crystalline 
specimen is recorded, and the object is reconstructed by an iterative algorithm [4] dispenses 
with X-ray optics altogether.  

 
The ultimate limitation to the finest spatial resolution one can obtain in X-ray microscopy is either 
radiation damage [5] or, in the most radiation-hard specimens, it is the wavelength of the X-rays. 
Where multiple identical copies of the specimen can be obtained, and arrayed in a regular structure 
as in a crystal, the radiation dose can be shared among the many repeats, and atomic resolution is 
possible, as demonstrated by crystallographers on a routine basis. But what if the identical objects 
refuse to crystallize? With a suitably powerful X-ray laser with femtosecond pulse duration, one 
should still be able to exceed the radiation damage limit, by recording the diffraction pattern before 
the nanoparticle or molecule explodes. [6] Such a laser, the LCLS, is under construction at the 
Stanford Linear Accelerator Center [7]. If the diffraction pattern from a single object is not strong 
enough to allow reconstruction at the desired resolution, a stream of identical objects may be used. 
In this case the diffraction patterns need to be sorted depending on the orientation of the specimen, 
much as in electron-cryo-tomography [8]. Alternatively one may consider ways of pre-aligning the 
identical specimens to simplify the analysis. [9]. 
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Related to this last scheme is the suggestion by Spence and Doak [10]. They point out that if a large 
collection of identical, non-crystallizable specimens is available these may be aligned using the field 
of an intense infrared laser. It may then be possible to do “serial crystallography” [10], where the 
radiation dose to any one specimen is small enough that the diffraction pattern may be collected 
using a conventional synchrotron X-ray beam as the laser-aligned nanostructures or macromolecules 
stream by. The first tests of this idea are scheduled for the near future. 
 
Not only is X-ray microscopy suitable for the characterization of nanostructures, nanoparticles are 
also used as labels or markers in X-ray microscopy and tomography. Nanodots made of heavy 
metals are particularly useful, since these are easily identified, and can be functionalized to label 
structures of interest. [11], [12] 
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