
CYCLES AND CONNECTIVITY IN GRAPHS 

M. E. WATKINS AND D. M. MESNER 

1. Introduction. In this note, G will denote a finite undirected graph 
without multiple edges, and V = V(G) will denote its vertex set. The largest 
integer n for which G is ^-vertex connected is the vertex-connectivity of G and 
will be denoted by X = X(G). One defines f to be the largest integer z not 
exceeding | V\ such that for any set U C V with f U\ = z, there is a cycle in G 
which contains U. The symbol i{U) will denote the component index of U. 
As a standard reference for this and other terminology, the authors recommend 
O. Ore (3). 

The purpose of this note is to characterize those graphs G for which X = f > 2. 
Since it is known (1, Theorem 9) that 

(1.1) if X > 2, then f > X, 
these graphs have a certain "marginal" character. The characterization is 
obtained in two parts: (1) for X > 3, and (2) for X = 2. 

THEOREM 1. Let G be a graph with X > 3. A necessary and sufficient condition 
that f = X is that there exist a set S C V with \S\ = X and i(S) > X + 1. 

THEOREM 2. Let G be a graph with X = 2. A necessary and sufficient condition 
that f = 2 w JiaJ ^ere a w l a se£ 5 C V such that one of the following three 
(sets of) conditions holds: 

I. |5| = 2 and i(S) > 3. 
II. (a) S = {s1, s\ s\ s}. 

(b) £ad* set Sm = {sw, s} separates G (m = 1, 2, 3). 
(c) Ea£& £air of elements of S is joined by an arc in G having no interior 

vertex in S. 
III . (a) 5 = {sn

m : m = 1, 2, 3; n = 1, 2}. 
(b) £ac/* se* 5W = {sin, s2

m} separates G (m = 1, 2, 3). 
(c) 77zer6 is an arc in G joining sn

m to sQ
p with no interior vertex in S 

if and only if m — p or n — q. 

We shall say that G is of Type I, II, or III according as conditions I, II, 
or III are satisfied. The simplest representations of these three types are 
shown in Figure 1. 

2. Preliminaries. If H is a subgraph of G, written H C.G, then V(H) 
denotes the vertex set of H. If U C V, then G(U) denotes the section subgraph 
of G with vertex set U. Thus i(U) is the number of components in G(V — U). 
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TYPE I TYPE II TYPE III 

FIGURE 1 

To say that A = A [a, b] is an arc, shall mean that a and b are its terminal 
vertices. If c, d Ç V(A), then A[c, d] denotes the subarc of A with terminal 
vertices c and d. The symbol A (c, d) denotes the arc A [c, d] with the edge 
incident to c deleted. Analogously we define A [c, d) and A (c, d). To any cycle 
Z in G, an orientation may be assigned. If a, & G V(Z), the arc traversed by 
moving along Z in the positive sense from a to & is denoted by Z[a, b]. Its 
complement in Z is naturally Z[b, a]. The above conventions hold for writing 
Z(a, b], etc. 

If H C G where \V(H)\ > n and if a Ç F - F(i7), then a family of arcs 
{^4i[a, bi] : i = 1, . . . , n] is said to radiate from a to H if Ai C\ H = {&*} and 
4̂̂  P\ yl̂  = {a} for i, j = 1, . . . , n and i ^ j . Each At is said to wee/ H at Z>*. 

An immediate corollary to a special case of another result by G. A. Dirac 
(2, Theorem I) is stated without proof: 

LEMMA 2.1. Let Hbe a subgraph of G with \V(H)\ > \(G).Leta G V - V(H). 
Then there is a family of X arcs radiating from a to H. 

3. The sufficiency proofs. 

For Theorem 1. Let S — {si, . . . , S\} be a subset of F with i(S) > X + 1, and 
choose vertices ci, . . . , C\+i from distinct components of G(V — S). Any arc 
A [ct, Cj] must contain at least one member of S as an interior vertex. But a 
cycle Z C G which contained ci, . . . , Cx+i would be the union of X + 1 such 
arcs A having no interior vertices in common. Hence, f < X. By (1.1), f = X. 

For Theorem 2. If G is of Type 1, the proof is precisely that of Theorem I 
for X = 2. 
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Let G be of Type II or Type III. Then there exists a component Hm of 
G(V — Sm) for each m = 1, 2, 3 which contains no vertex of S. We assert that 

(3.1) Hmr\Hp = Q, m^p. 

If G is of Type III , let x € V(Hm Pi Hv). Since X = 2, G(V - {s^}) is con
nected, so by condition (b) of the theorem, s2

m is adjacent to some vertex of 
Hm. There exists, therefore, an arc A[x, s2

m] such that A[x, s2
m) C Hm. Hence, 

A contains neither vertex of Sp. This is impossible since x Ç V(HP) while 
s2

m i V(HP). If G is of Type II, we replace Sim by 5 and replace s2
m by sm in the 

foregoing argument, and (3.1) follows. 
Choose vertices cm Ç V(Hm) (m = 1, 2, 3). Thus cp g F(H"W) for £ ^ m. 

Any cycle Z through ci, £2, £3 would be the union of three arcs Ai[ci, c2], 
A2[c2, Cz], and A%[cz, £1] having no interior vertices in common. Since each arc 
Am must begin in Hm and terminate in some Hv, Am must contain at least one 
vertex of Sm and at least one vertex of Sp, and hence precisely one vertex of each. 

If G is of Type II, then S has but four elements. Hence no such cycle Z 
exists, and f < 2. If G is of Type III, suppose for définiteness that the vertex 
of Sl lying on Ax is s2

x. By condition (c) of the theorem, si2 (? V(A{). Hence 
the vertex of S2 on Ai is s2

2. Therefore, Si2 £ V(A2) and by the same argument, 
Si3 6 V(A2). This leaves s2

z and S\l for the arc A3. But by condition (c), the 
arc Az[s2

z, S\l] would require an interior vertex in S. Hence, Z cannot exist, 
and again f < 2. By (1.1), f = 2. 

4. The necessity proofs. 

LEMMA 4.1. Let \(G) > 2 and suppose vertices {ci, . . . , c\} lie on the cycle 
Z C G but that the set C = {ci, . . . , ex, cx+i} ^ 5 ow n o c;yc/e 0/ G. Then (i) any 
largest family F of arcs {Ri[c\+i, s*]} radiating from Cx+i to Z contains precisely 
X arcs, and (ii) aŵ y two vertices sif Sj are separated in Z by the set {c\, . . . , c\}. 

Proof. By Lemma 2.1, the required family F of X arcs exists. Suppose 
for some i 9e j that Z[st, Sj] contains no element of C. Then the cycle 
Z[Sj, st] \J Rt^J Rj contains all of C. This proves (ii) and also demonstrates 
that F cannot have more than X arcs. 

LEMMA 4.2. Let f = X > 2 and suppose that C = {c\, . . . , cx+i} &s on no 
cycle in G. Then to each ct 6 C, ̂ ere corresponds a set of X vertices 

S* = {*', . . . , Sx4} 

which separates ctfrom C — {ct}. Moreover, there is a cycle Zl passing through 
S*\J (C- {Ci}). 

Proof. By symmetry, we may let i = X + 1. By (1.1), a cycle Z through 
Ci, . . . , c\ exists. Let Z be oriented and let the elements of C be renumbered 
if necessary so that by proceeding around Z in the positive sense from d, one 
encounters in order C\,.. . , C\. Let the family of arcs {Rj[c\+i, sf\ : j = 1,. . . , X} 
radiate from cx+i to Z. By Lemma 4.1, the elements of 5 = {si, . . . , $x} may 
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be renumbered so that Sj lies on Z(CJ, Cj+i) (j = 0, 1, . . . , X — 1). (Throughout 
the proofs of the present lemma and of Theorem 1, whenever 0 or — 1 appears 
as a subscript, it is to be read as X or X — 1, respectively. Thus c0 = c\, etc.) 

Certain alterations in the cycle Z will now be made which do not alter the 
order in which Z passes through c\, . . . , C\. If for some p = 0, . . . , X — 1, 
there exists a vertex t ^ sp on the arc Z[cp, cp+i] and an arc Q[t, s'] with the 
three properties: (i) Q C\ Z = {t}, (ii) Q r\ Rp(cx+i, sp) = {sf}, and (iii) 
Q C\ RQ = 0 when q ^ p, then, assuming for definiteness that t follows sp on 
Z[cp, cp+i], we alter Z[cP, cp+i] by replacing Z[sP, t] by the arc Rp[sp} sf] VJ Q. 
The arc Rp[cx±i, s'] is then considered to be all of Rp, and s' is renamed sp. We 
repeat this operation as many times as it is possible, i.e., as long as for some 
p = 0, . . . , X — 1 there exist a vertex t and an arc Q as described above. 
Each time this operation is performed, the arc Rp, for some p, is shortened. 
Hence, after some finite number, possibly zero, of these alterations, the 
required t and Q will no longer exist. Thus Z contains in order 

C\, Si, Ci, Si, . . . , C\, S\. 

To show that S separates C\+\ from any other vertex in C, let A be an arc 
from c\+\ to another vertex in C and suppose V(A) C\ S = 0. Proceeding 
along A from c\+i, let z be the first vertex of Z encountered and let r be the 
last vertex of W î = 1 Rt encountered before z. For some g = 0 , . . . , X — 1,2 must 
lie on Z[cq, cq+i]. Then r cannot lie on Rq(c\+u sq) or else r and A[r, z] would 
correspond respectively to / and Q above, which is no longer possible. Suppose 
then that r Ç V(RP) for some p ^ q and, for definiteness, that z follows sq on 
Z[cq, cq+i]. (We note that r could be C\+i). But then the cycle 

Z[z, sq] VRQVJ RP[CWJ r]\J A [r, z] 

contains c\, . . . , Cx+i, contrary to assumption. This proves the lemma. 

Necessity proof for Theorem 1. We continue all of the notation of Lemma 4.2, 
in the light of which it remains to show merely that, given i = 1, . . . , X, then 
S separates Ci from the vertex set {ci, . . . , c^-i, ci+i, . . . , C\}. I t will follow 
from this that ci, . . . , C\+i necessarily lie in X + 1 distinct components of 
G(V -S). 

Arbitrarily choose and then fix i = 0, . . . , X — 1, and define the cycle 

Z* = Z h ^ M J U ^ U i ? , 

(Clearly Zl excludes ct.) Consider a family of X arcs R/fa, s/] (j = 1, . . . , X) 
radiating from ct to Zl. Such a family exists by Lemma 4.1. Moreover, the 
elements of Sl = {si\ . . . , Sx*} can be named and Zi can be oriented so that 
as one proceeds around Zl in the positive sense from ci, one encounters in order 
ci, si\ . . . , Ci-u Si-i*, cx+i, sS, ci+i, si+1\ . . . , cx, sx*. In particular, 

(4.1) SiS e V(Z*(Ct-i, cx+i)) = F(Zfe_1? s^) U Ri_!), 

(4.2) 5/ G 7(Z'(cx+i, ^+i)) = 7 ( ^ i ^ 2(5<f c<+i)). 
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We remark that 

(4.3) i ? / n ^ C { ^ } 0" .*= 1 . - . . .X) , 

for, if (4.3) were false, there would exist a vertex x £ V{Rj* C\ Rk), x ^ sk, 
for some j , k = 1, . . . , X. Then the arc A = Rk[c\+i, x] U i?/[x, c j would 
join c\+i and c* and contain no vertex of S. But 5 separates C\+i and c* by 
Lemma 4.2. Hence (4.1) and (4.2) can be strengthened to read 

(4.4) StSe V(Z(ct-l9sM]), 

(4.5) st*e V(Z[suci+1)). 

It is asserted that 

(4.6) Si* = sj (i, i = 0, . . . , X - 1; j * i - 1, i). 

Suppose that (4.6) is false. Then some s/ (j 9e i — 1, i) lies either on Z(cjf Sj) 
or on Z(sj, Cj+i). In the first case, by (4.3) and (4.4), 

Ri* W Z[su s3*] URtV Ri U Z[Sj, s^*] U 22^1* 

is a cycle which contains C. In the second case, 

RS U Z[s/ f 5,_i] U £,_! V Ri\J Z[st\ s,] \J RS 

is such a cycle, by (4.3) and (4.5). 
I t is in fact true that 

(4.7) s^ = Si (i,j = 1, . . . , X ) . 

By symmetry and in the light of (4.6), it suffices to prove that Si* = s{ 

(i = 1, . . . , X). If this were not true for some i, then proceeding along Rt* 
toward cit let d be the first vertex of Z encountered after st*. Clearly d lies on 
Z(Si_i, Si). If <2 lies on Z(s*_i, c*], then iV[^> V ] VJ Z*[Si*, st] U Z[d, sf] is a 
cycle which contains C. Hence, 

(4.8) d € F ^ / n Z f o ^ ) ) . 

Since X > 3, there is an integer k such that ct ^ ck-\, ck. Hence by (4.6), 
st* = st; that is, Rt* = Rik[ck, st]. 

Case 1. Suppose that the condition 

(4.9) Rt*[d, st*] r\ Rf = 0 

holds for j = i, k. Then 

Ri*[d, s^] U Z[st*, sk-i] U iS^i U ^ U £<* KJ Rk* U Z[s / , d] 

is a cycle, by (4.3) and (4.8), which contains C. 
Case 2. Suppose (4.9) holds for j = k but fails for j = i. Proceeding along 

Ri* from sS, let u be the first vertex of R* encountered. Since u lies on 
Ri*(d, s^), C is contained in the cycle 

Rt U R^ \J Z[Si*, 5,_x] U RSlsS, u] \J Rt*[u, ck] \J Rk
k \J Z[sk

k, st]. 
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Case 3. Suppose (4.9) fails for j = k. Proceeding along R^ from s^, let v be 
the first vertex of Rk

k encountered. Thus v lies on Ri
i{dJ s^), and 

Rf \J Rt*[ck, v] \J Rftv, st*] W Z*[Si\ st] 

is a cycle containing C. 
We have now proved (4.7). 
Now let B be any arc from a vertex d to any one of the vertices C\, . . . , c*_i, 

ci+i, . . . , c\, where i = 0, . . . , X — 1. Suppose V(B) C\ S = 0. Proceeding 
along B from cu let w be the first vertex of Zl encountered and let e be the 
last vertex of U{ i2 / : j = 1, . . . , X} encountered before w. Since 5 separates 
d and C\+i, w must lie on Z(su s*-i). In particular, w lies on Z(CJ, cj+i) for some 
j = 0, . . . , X — 1. If e lies on Rji(ci, Sj), consider the family of X arcs: 
Pm = Rm*, m j* j ; Pj = Rj^Cu e] U B[e, w], which radiates from ct to Z\ 
By (4.7), each arc Pm meets Zl at sm. In particular, w = Sj. If, on the other 
hand, elies on some Rp

l iov p ^ J, assume for definiteness that Sj Ç V(Z(cj, w)). 
The cycle Z^w, Sj]\J Rjl\J R^lcu e]\J B[e,w] then contains C. Hence, 5 
separates d from the other vertices in C, and the proof of Theorem 1 is complete. 

Necessity proof for Theorem 2. Suppose there are vertices cu c2, c3 which 
lie on no cycle in G. Henceforth symbols i, j , k will be used to denote some 
arbitrary rearrangement of the integers 1, 2, 3. By Lemma 4.2, there cor
responds to each ct the pair 5* = {si\ s2

2} which separates c{ from cjy ck. Let 
5 = Sl \J Sj VJ Sk. If Z is any cycle through ct and cjy then, regardless of its 
orientation, the arcs Z{cu cf) and Z(cjy ct) will be called the sides of Z. Using 
this terminology, Lemma 4.1 states: 

(4.10) Any pair of arcs radiating from ck to a cycle Z through ct and Cj must 
meet Z on opposite sides of Z. 

We show next: 

LEMMA 4.3. If Z is a cycle through cu ch sk, and sk, then S C V(Z), and if 
either side of Z is traversed from ct to cjy the vertices ciy sPi\ spk

k, svj
j, Cj are en

countered in the given order, where pu pj, pk £ {1, 2}. 

Proof. Since Sl separates ct from ch the vertices s\, s^ belong one to each 
side of Z. Similarly, the vertices Sij, s%j lie on opposite sides of Z. Since Sk 

separates ck from ct and cj} any pair of arcs radiating from ck to Z must meet Z 
at Si° and 52*. By (4.10), Sik and s2

k must then lie on opposite sides of Z. Thus, 
for either orientation of Z, there are pu pj, pk £ {1, 2} such that 

V(Z[ci} Cj]) r\S = {spi\ sP]
j, spk

k\, 
and it remains only to determine their order. Unless spi

l £ V(Z(cit spk
k]), then 

cu spkk] together with some arc P[ck, spk
k] joins Ci to ck without passing through 

S\ Similarly we conclude that spj
j lies on Z[sp

k, cf). This proves the lemma. 

COROLLARY. Subscripts pu pj, pk may be assigned so that when Z is given some 
orientation, the vertices cu si*, S\k, S\j, cjt s%j, s2

k, Sz1 are encountered in the given 
order as one proceeds around Z from ct. 
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Pursuing the argument in the proof of the lemma, it is also immediate that 

(4.11) if V = V» then V = sp* = V (P = h 2). 

This result will be used to show that if the vertices of 5 are not all distinct, 
then G is of either Type I or Type II. 

Suppose that sn
m = sq

p for some m 7e p or n 9^ q. Since X = 2, each set S™ 
contains two (distinct) vertices. By the Corollary, therefore, no generality is 
lost in assuming that Si* = Si3. Two cases now arise. 

Case 1: s2
i = s2

j. By (4.11), si* = Sij = Si° = si and s2* = s2
j = s2

k = s2. 
Since {̂ i, 2̂} = S separates each ct from cjf ck, G(V — S) has at least three 
components, and G is of Type I. 

Case 2\ s2
i 9e s2

j. Again, s^ = Sij = Sik = s; but S2* 9e s2\ s2
jj for otherwise 

(4.11) with superscripts permuted implies s2
f = s2

j. By Lemma 4.2, each set 
5m = {sy s2

m} separates G, and there is a cycle Z through s, s2
k, cu and Cj. 

By Lemma 4.3, Z can be oriented to contain ct, s, cjy s2
j, s2

k, s2
l in the given 

order. Z contains arcs with no interior vertices in 5 that join each pair of 
vertices of 5 except the pairs s, s2

k and $2̂ , s2
f. These pairs are joined by arcs 

free of interior vertices in S which are contained in any cycle Z' through s, 
s2

jy cu and ck. Thus G is of Type II. 
I t remains to prove that if the vertices of S are all distinct, then G is of 

Type III . I t will first be shown that si* can be joined to precisely one of sim, 
s2

m (m = j , k) by an arc having no interior vertex in S. By symmetry, we 
assume that m = j . 

There exists a cycle Z through sij, s2
j, cu ck by Lemma 4.2, and by the 

Corollary to Lemma 4.3, we may suppose that Z is oriented so that, proceeding 
around Z from cu one encounters in order: ciy Si\ Sij, sik, ck, s2

k, s2
j, s^. Let 

A = Z[5i*, *i'], B = Z[s2
j, 52*], C = Z[sx', si*], and D = Z[s2

k, s2>]. For any 
arc E[sij, s2

j] through cj} it is clear that E C\ Z = Sj;see Figure 2. 

FIGURE 2 
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Let T[x, y] be an arc with x G V(A \J C) - {s^} and y G V(B W D) but 
not satisfying x = s / , y = s2

p, for any p = 1, 2, 3. Suppose also that 
T r\ (ZU E) = {xf y}. If there were an arc r*[si*, V ] in G free of interior 
vertices in S, it would necessarily contain a subarc T[x, y] as described. Our 
procedure, therefore, is to prove that the existence of T leads inevitably to a 
contradiction. We first disallow 

(4.12) x G V{A[Sl\ Sl>)) y G V(D[s2\ s2 ')), 

since (4.12) would imply a cycle E KJ Z[s2
j, x] W T ^J Z[sij, y] through cu cjt 

and ck. Symmetrically, 

xe ViWtsf]), ye V&isAsS]) 

is impossible. There remain the two cases 

xG ViAls^sS)), ye V&isAsi']) 

and 

(4.13) x G 7 ( C W , 5!*])f 3̂  € V(D[s2\ s*>)). 

These cases are also symmetrical. We shall derive a contradiction from (4.13). 
By Lemma 4.2 and the Corollary, there is a cycle Z' which may be oriented 

to pass through ct, Sik, cjy s2
k in the order given. Let the first vertex of A \J B 

encountered when one proceeds along Zf from: 

Sik in the reverse sense be a, 

Sik in the forward sense be a!, 

s2
fc in the reverse sense be b', 

s2
k in the forward sense be b. 

The existence of these vertices is assured by Lemma 4.3. Thus, on Z' one 
encounters in order: cu a, Si°, af, cj} V, s2

k, b. Let A' = Zf[a, Sik], B' = Z'\s2, b], 
C = Z'[si\ a'], and B' = Z'[b', s2

k]. Define the cycle Y = Z[s2>, Sl'] U E. 
We show that (Bf \J Dr) C\ C = 0. Four pairs of arcs radiating from ck to 

the cycle Y are obtained by choosing one arc from 

(4.14) A' U Z[Sl
k, ck], C \J Z[Sl\ c*] 

and one arc from the pair 

(4.15) Z[ck, s2
k] U B', Z[ck, s2

k] W D'. 

By (4.10), the arc chosen from (4.14) must meet F on the opposite side from 
the arc chosen from (4.15). Thus, a and a! lie on one side of Y while b and V 
lie on the other side. Proceeding along C from Sik, let h be the first vertex 
(after Sik) encountered on Bf U D''. For definiteness, say h G V{B')\ see 
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Figure 3 or Figure 4. The pair of arcs Z[ck, s2
k] U D' and Z[h, ck] U B'[h, b] 

radiating from ck meet Y on the same side, contrary to (4.10). Hence, 

(B'KJD') r\c = 0. 

(In particular, C[x, sf] C\ (Bf U D') = 0.) Since (4.12) is impossible, 
(£ ' U D ' ) n i l = 0. Hence, 6, 6' 6 7 ( 5 ) . 

FIGURE 3 

FIGURE 4 
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We define a vertex y' as follows. If T H (Bf U Dr) ^ 0, then proceeding 
along T from x, let y' be the first vertex of B' U D' encountered. If 

Tr\(B'KJ Dr) = 0, 
then proceeding along D from y toward s2

j, let yr be either the first vertex of 
B' \J Df encountered or s2

j, whichever comes first, and extend T to include 
D[y,y']. If y' 7e s2

j, assume for definiteness that yf £ V(Bf). Then the two 
arcs Z[ck, s2

k] U D' and Z[x, ck] \J T[x, y'] U B'[yf, b], radiating from ck to F, 
meet on the same side of F, contrary to (4.10). If y' = s2

j, this latter arc 
becomes Z[x, ck] W T[x, s2

j]. This concludes the proof that an arc T*[si\ s2
j] 

with no interior vertices in 5 cannot exist. 
We complete the proof that condition III(c) is satisfied by noting that at 

least one of the arcs 
A[si\a]UA't AW,a']\J C 

joins Si* to sik with no interior vertices in 5, and that at least one of the arcs 
B[s2

i
Jb]\JB/, B[s2\b

f]\JDf 

joins s2
l to s2

k with no interior vertices in S. The other required connections 
are all subarcs of Z. 

5. Concluding remarks. In the proof of Lemma 4.2, if for some i = 0, . . . , 
X — 1 there really were to exist a vertex t and an arc Q as described, then the 
vertex finally chosen as st would not be a vertex of the original cycle Z. Thus 
the arc Z[ciy ct+i] of that cycle would contain no vertex in 5, contrary to the 
lemma itself. I t follows then that vertices t and arcs Q never did exist, that 
Si, . . . , 5\ never had to be renamed, and that set S was uniquely determined 
by the original cycle Z. Moreover, Z was an arbitrary cycle excluding precisely 
one of the vertices c\, . . . , Cx+i- The conclusion is that, given a set {ci, . . . , cx+i} 
of X + 1 vertices in no cycle of G, there is a unique subset S C V as described in 
Theorem 1 or Theorem 2 such that c\, . . . , c\+i lie in distinct components of 
G(V — S). The same set S is determined by any set {ci, . . . , c\+i} where 
c'i and ct lie in the same component of G(V — S). 

In conclusion, we pose a question. Given a non-negative integer n, which 
graphs G have the property f = \{G) + n? For n = 0, the answer has been 
given in this paper. At the other extreme, when n = \ V\ — X, is the problem 
of characterizing the Hamiltonian graphs of connectivity X. 
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