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On the Lusternik-Schnirelmann Category
of Maps
This paper is dedicated to my mother.

Donald Stanley

Abstract. We give conditions which determine if cat of a map go up when extending over a cofibre. We
apply this to reprove a result of Roitberg giving an example of a CW complex Z such that cat(Z) = 2
but every skeleton of Z is of category 1. We also find conditions when cat( f × g) < cat( f ) + cat(g).
We apply our result to show that under suitable conditions for rational maps f , mcat( f ) < cat( f )
is equivalent to cat( f ) = cat( f × idSn ). Many examples with mcat( f ) < cat( f ) satisfying our
conditions are constructed. We also answer a question of Iwase by constructing p-local spaces X such
that cat(X × S1) = cat(X) = 2. In fact for our spaces and every Y 6' ∗, cat(X × Y ) ≤ cat(Y ) + 1 <
cat(Y ) + cat(X). We show that this same X has the property cat(X) = cat(X × X) = cl(X × X) = 2.

1 Introduction

The Lusternik-Schnirelmann category of a space, cat(X), (Definition 2.11) was in-
troduced in the early 1930’s [25], [24]. The category of a map, cat( f ), (Defini-
tion 2.12) was first defined by Fox [13] and seriously studied by Berstein and Ganea
[4]. The notion of category of a map is strictly more general since we have that
cat(X) = cat(idX). For an overview of the history of LS categories we suggest the two
survey articles of James [22], [23].

After some introductory material we turn to the problem of determining cat of a
map. We prove a proposition (Proposition 2.20) which determines cat of an exten-
sion of a map over a cone. This is applied to constructing examples of spaces with
category n all of whose skeleta all have category at most n−1. An example with n = 2
was already constructed by Roitberg [31]. The ease with which this is proved demon-
strates that sometimes the easiest way to calculate cat of a space can be to calculate
cat of some related map.

For the rest of the paper we study the relationship between cat( f ), cat(g) and
cat( f × g) and some applications. It is well known that cat( f × g) ≤ cat( f ) +
cat(g). Although examples where inequality holds have been known for a long time,
it was thought that morally equality should hold. In fact no rational examples of
inequality were known and actually if f and g are identity maps then Felix, Halperin
and Lemaire [11] proved that equality holds. The counterexample of Iwase [20] to
the long standing conjecture of Ganea that cat(X × Sn) = cat(X) + 1 changes our
perspective. We study the implication of this change on our knowledge of cat( f × g).
We prove:
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On the Lusternik-Schnirelmann Category of Maps 609

Theorem 1.1 (Corollary 3.4) Let us be given a strictly commutative diagram

A
i

//

h

��

B //

g

��

B/A

f

��
Fn(X) // Gn(X)

pn

// X

where i is a cofibration and the bottom row is the n-th Ganea fibration for X (Defini-
tion 2.10). Assume cat( f ) = n + 1 and Σrh ' ∗. Then for every map g such that
cat(g) ≤ r > 0, cat( f × g) ≤ n + r. In particular cat( f ) = cat( f × idSr ) = n + 1.

This gives us a systematic way of constructing maps f and g such that cat( f ×g) <
cat( f ) + cat(g). Our interest in the theorem is due to two applications. The first area
of application is in rational homotopy theory. In [32] Hans Scheerer and the author
constructed an example of a rational map such that cat( f × idSn ) = cat( f ) = 2. The
proof was a direct calculation with Sullivan models. Here we show that many such
examples can be constructed; for every r we construct maps f such that for every n,
cat( f × idSn ) = cat( f ) = r. The reason for the occurrence of such counterexamples
is essentially the same as the reason there are counterexamples to Ganea’s conjecture:
the instability of certain Hopf invariants. This same phenomenon also gives rise to
examples of f such that mcat( f ) < cat( f ) (see Definition 4.1). In fact we show:

Theorem 1.2 (Theorem 4.9) Let ΣW −→ X
i−→ Y be a cofibration sequence of

rational spaces and f : Y → Z a map of rational spaces. Assume that cat( f ) > cat( f i).
Assume dimension (X) ≤ 2

(
cat( f i) + 1

)
(connectivity Z + 1) − 2. Then for any n,

mcat( f ) < cat( f ) if and only if cat( f × idSn ) = cat( f ).

The second application is to answer a question of Iwase (see [20, p. 2]) who proved
the result for p = 2.

Theorem 1.3 (Theorem 5.1) For every prime p > 2 there exist p-local spaces X such
that cat(X) = cat(X × S1) = 2.

In fact we show that for the X of the theorem and every Y 6' ∗, cat(X × Y ) ≤
cat(Y ) + 1 < cat(Y ) + cat(X). In other words the LS category of a nontrivial product
with X is always less than what is “expected” using the product formula. This same X
has another very interesting property.

Theorem 1.4 Let X be one of the spaces of Theorem 5.1. Then cat(X) = cat(X×X) =
cl(X × X) = 2.

This is the first example of two p-local spaces whose product has LS category two
less than the sum of their categories.

Along the way we also rigidify a result of Baues [3] describing the cone structure
of a product (Proposition 2.9).
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610 Donald Stanley

2 Notation and Background

This section contains some general results and definitions. After fixing some notation
we prove Proposition 2.9 which describes a cone decomposition of a product in terms
of the cone decomposition of the pieces. Next we define the LS category of spaces and
maps (Definitions 2.11 and 2.12). Results which tell us if cat goes up when attaching
a cone are then given (Theorem 2.19, Proposition 2.20). This is determined by Hopf
invariants (Definition 2.18) in the space case and by simple obstruction theory in the
map case.

Let CG∗ denote the category of pointed compactly generated Hausdorf spaces. For
definitions and basic properties of CG∗ see [36]. All of our spaces will be assumed
to be in CG∗. All homotopies will be pointed and [X,Y ] denotes pointed homotopy
classes of pointed maps. Except where we specifically say we are working in CG∗ we
will also assume that all our spaces have the homotopy type of pointed CW complexes
[27]. For our purposes the two categories are compatible since the Kellification func-
tor (k in Definition 3.1 of [36]) does not affect CW complexes and because none of
our constructions produce non-Hausdorff spaces from Hausdorff ones. We choose
CG∗ over the categories of Vogt [42] because it is more familiar to a greater number
of homotopy theorists. In CG∗ let × denote the weak product. The only reason we
use CG∗ instead of all topological spaces is because we want our results to be general
enough to handle products of spaces which are not locally compact. We also assume
that the category we are working in is our category of spaces. This means that all
objects, maps and diagrams will be of spaces unless otherwise indicated.

For a map f : X → Y in CG∗, we let Y ∪ f Cyl X denote the reduced mapping
cylinder on f . Explicitly

Y ∪ f Cyl X = (Y ∪ X × I)/
(
∗ × I = ∗, (x, 1) = f (x)

)
x∈X

.

We let C( f ) denote the reduced cone on f . Explicitly

C( f ) = (Y ∪ f Cyl X)/
(

(x, 0) = ∗
)

x∈X
.

We call X
f−→ Y

g−→ Z together with a homeomorphism Z ∼= C( f ) compatible with
g and the inclusion Y → C( f ) a cofibration sequence. Often we will not explicitly
give the homeomorphism. This is consistent with standard practice. (For example it
is usually ignored that pushouts are only defined up to isomorphism. This is because

the isomorphism is canonical.) We call F −→ E
p−→ B a fibration sequence if p is a

fibration and F = p−1(∗). Observe that with our definitions fibration sequences and
cofibration sequences are not quite dual notions.

For convenience we work localized at a prime or rationally. Sn and Dn refer to
localized spheres and disks of dimension n. In any category a diagram C is a functor
from some small category into C. This is sometimes referred to as a strictly com-
muting diagram. A diagram that commutes up to homotopy is a functor into the
homotopy category of C.

Lemma 2.1 Let f : X → Y be a map. Then the following two conditions are equiva-
lent:
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1) For every W , f induces a surjection [ΣW, f ] : [ΣW,X]→ [ΣW,Y ].
2) Ω f has a homotopy section.

Proof The lemma follows since Ω and Σ are adjoint and preserve homotopies.

The following lemma will be used a number of times. Its proof is an application
of the coaction. (See [38] for example.)

Lemma 2.2 Let f : X → Y be a map satisfying the equivalent conditions of the last
lemma. Let g : U → A be any map. Let us also be given a (strictly commutative) solid
arrow diagram:

U
g

// A

h

��

i
// C(g)

h ′

��

φ

}}|
|

|
|

X
f

// Y.

Assume that hg ' ∗. Then there exists φmaking the upper left triangle strictly commute
and the bottom right triangle commute up to homotopy. In particular if there exists a
φ making the upper triangle strictly commute then there exists one making the upper
triangle commute and the bottom triangle commute up to homotopy.

Proof The fact that hg ' ∗ implies there exists φ ′ : C(g) → X such that φ ′i =
h. Next we use [38, Proposition 2.48 i)] and its notation. Let θ ∈ [ΣU ,Y ] be a
map such that θ fφ ′ = h ′. (θ fφ ′ denotes the action of θ on fφ ′ via the coaction.)
Since [ΣU , f ] is surjective there exists θ ′ ∈ [ΣU ,Y ] such that f θ = θ ′. Then by
naturality of the coaction any representative of φ = θ ′φ ′ ∈ [C(g),X] makes the
diagram commute up to homotopy.

Lemma 2.3 For any map f : ΣW → X there is a cofibration sequence

ΣW → X ∨ ΣW → X ∪ f Cyl ΣW.

Proof Looking at I × I we see that there is a cofibration sequence

S1 → S1 ∨ S1 → S1 ∪id Cyl S1.

Since smashing with W preserves cofibration sequences we get a cofibration sequence

ΣW → ΣW ∨ ΣW → ΣW ∪id Cyl ΣW.

The lemma follows by taking a pushout.
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612 Donald Stanley

Lemma 2.4 Let a homotopy commutative diagram

ΣW
f

//

h

��

X

k

��

// C( f )

g

��
F

j
// E

p
// B

be given. Assume that the bottom row is a fibration sequence and that Ωp splits. Then
there exists a (strictly commutative) diagram

ΣW
i

//

h

��

X ∪ f Cyl ΣW

k∪H

��

// C( f )

g

��
F

j
// E

p
// B

(+)

where i is the inclusion into the free end of the cylinder and H : jh ' k f is a homotopy.

Proof Start with the diagram (+) with any H. Then the left square strictly commutes
but we know nothing about the right square. Since Ωp splits we can use Lemma 2.2
on the cofibration sequence

ΣW → X ∨ ΣW → X ∪ f Cyl ΣW

which exists by Lemma 2.3. This gives us a diagram (+) in which the left square
strictly commutes and the right square commutes up to a homotopy that fixes X ∨
ΣW . Since p is a fibration and X ∨ ΣW → X ∪ f Cyl ΣW is a cofibration we can
adjust H not changing the ends of the cylinder so that both squares in diagram (+)
commute exactly.

The next three lemmas are preparation for Proposition 2.9.

Lemma 2.5 Consider the following diagram in any category.

A //

��

C //

��

E

��
B // D // F

Assume that the left hand square is a pushout. Then the right hand square is a pushout
if and only if the outside rectangle is a pushout.

Proof Follows directly from the definition of pushout.
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Lemma 2.6 In CG∗ let the following diagram be a pushout.

A //

��

B

��
C // D

Then for every X

A× X //

��

B× X

��
C × X // D× X

is also a pushout.

Proof See [36].

Definition 2.7 For i = 1, 2, let f (i) : A(i) → B(i) be maps in CG∗. Then define(
C f (1)×C f (2)

)•
by letting the following diagram be a pushout.

B(1)× B(2) //

��

B(1)×C f (2)

��

C f (1)× B(2) // (C f (1)×C f (2)
)•

Notice that when B(i) = A(i) and f (i) = id then we get
(

C f (1) × C f (2)
)•

=
A(1) ∗ A(2), the join of the A(i).

Reading Arkowitz [1, Lemma 4.1] we see that the following lemma is only slightly
different from Cohen [8, Theorem 2.4].

Lemma 2.8 Let A(i) ∈ CG∗. Then there exists a homeomorphism φ such that

A(1) ∗ A(2)
j ′

//

j ''OOOOOOOOOOOO
C
(

A(1) ∗ A(2)
)

φ

��
CA(1)×CA(2)

commutes. Where the two maps j and j ′ in the diagram are the usual inclusions and
φ is natural in the A(i). In other words for i = 1, 2, given maps f (i) : A(i) → B(i) in
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614 Donald Stanley

CG∗ the following diagram commutes.

C
(

A(1) ∗ A(2)
) C( f (1))∗C( f (2))

//

φ

��

C
(

B(1) ∗ B(2)
)

φ

��

C
(

A(1)
)
×C

(
A(2)

) C( f (1))×C( f (2))
// C
(

B(1)
)
×C

(
B(2)

)
Proof

C
(

A(1) ∗ A(2)
)

=
{(

a(1), a(2), s, t
) ∣∣ a(i) ∈ A(i), s, t ∈ [0, 1]

}
∪
{(

a(1), a(2), s ′, t
) ∣∣ a(i) ∈ A(i), s ′, t ∈ [0, 1]

}
/ ∼

where ∼ is some equivalence relation. In particular
(

a(1), a(2), s, t
)
∼
(

a(1), a(2),

s ′, t
)

if s = s ′ = 0. Also

CA(1)×CA(2) =
{(

a(1), a(2), t(1), t(2)
) ∣∣ a(i) ∈ A(i), t(i) ∈ [0, 1]

}
/ ∼ ′

where∼ ′ is some other equivalence relation. We then define φ to be the map induced
by (

a(1), a(2), s, t
)
7→
(

a(1), a(2), t + s(1− t), t
)

and (
a(1), a(2), s ′, t

)
7→
(

a(1), a(2), t, t + s ′(1− t)
)
.

It is straightforward to check that φ is compatible with ∼ and ∼ ′ and is a homeo-
morphism. The naturality of φ is clear from the definition.

If B(i) ' ∗ then the following proposition is well known. Our proposition is
stronger than that of Baues [3] since we have homeomorphisms where he has homo-
topy equivalences.

Proposition 2.9 For i = 1, 2 let f (i) : A(i) → B(i) be maps in CG∗. Then there is a
cofibration sequence

A(1) ∗ A(2)→
(

C
(

f (1)
)
×C

(
f (2)

))•
→ C

(
f (1)

)
×C

(
f (2)

)
.

This sequence is natural in both variables. In other words if for i = 1, 2 we have dia-
grams

A(i)
f (i)

//

g(i)

��

B(i)

��
A ′(i)

f ′(i)
// B ′(i)
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then we get a diagram

A(1) ∗ A(2) −−−−→
(

C
(

f (1)
)
×C

(
f (2)

))•
−−−−→ C

(
f (1)

)
×C

(
f (2)

)y y y
A ′(1) ∗ A ′(2) −−−−→

(
C
(

f ′(1)
)
×C

(
f ′(2)

))•
−−−−→ C

(
f ′(1)

)
×C

(
f ′(2)

)
where the maps C

(
f (i)
)
→ C

(
f ′(i)

)
are the canonical extensions over the cone in-

duced by g × id : A(i)× I → A ′(i)× I.

Proof In the following diagram

A(1)× B(2) //

��

B(1)× B(2) //

��

B(1)×C f (2)

��

CA(1)× B(2) // C f (1)× B(2) // (C f (1)×C f (2)
)•

the left hand square is a pushout by Lemma 2.6 and the right hand square is by defi-
nition. Therefore Lemma 2.5 implies that the outside square is a pushout.

Next consider the diagram

A(1)× B(2) //

��

A(1)×C f (2) //

��

B(1)×C f (2)

��

CA(1)× B(2) // (CA(1)×C f (2)
)•

��

// (C f (1)×C f (2)
)•

��
CA(1)×C f (2) // C f (1)×C f (2).

The upper left square is a pushout by definition and we have just seen that the upper
rectangle is a pushout. Therefore the upper right square is a pushout. Also the right
rectangle is a pushout by Lemma 2.6. Therefore the bottom right square is a pushout.
Using the same argument again in the second variable we see that:

(
CA(1)×CA(2)

)•
j

��

// (C f (1)×C f (2)
)•

��
CA(1)×CA(2) // C f (1)×C f (2)

(∗)
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is a pushout. But
(

CA(1) ×CA(2)
)•

= A(1) ∗ A(2) and by Lemma 2.8 j ′ = φ−1 j.

So replacing the map j by j ′ : A(1) ∗ A(2) → C
(

A(1) ∗ A(2)
)

in diagram (∗) gives
the same pushout. This is the first statement of the lemma. Naturality follows from
the naturality of Lemma 2.8.

Observe that we get the pushout (∗) in any category where Lemma 2.6 holds.
Therefore the proposition will hold in many model categories with monoidal struc-
tures.

We define a sequence of spaces using the fibre-cofibre construction of Ganea [14].
In this case the spaces coincide, up to homotopy, with the stages En(ΩX) of Milnor’s
classifying space construction for ΩX. The spaces are used to define category.

Definition 2.10 Let X be a 0-connected space. We define fibration sequences.

Fn(X)
in

// Gn(X)
pn

// X

Let G ′0(X) = ∗ and p ′0 the inclusion. Let G ′n(X) −→ Gn(X)
pn−→ X be a (functorial)

factorization of p ′n into an acyclic cofibration followed by a fibration. (This is also
referred to as turning p ′n into a fibration.) Let Fn(X) = Fib(pn) and G ′n+1(X) = C(in).
We get the extension p ′n+1 by mapping Fn × I to ∗. Gn(X) is often referred to as the
n-th Ganea space and pn as the n-th Ganea fibration.

Notice that the fact that we are using a functorial factorization (as we get from
the standard construction of turning a map into a fibration) means that the above
construction is functorial. [27, Theorem 3] and [36] imply that these constructions
keep us inside our category of spaces. Recall that ∗1X = X ∗ X ' ΣX ∧ X and
∗n+1X = ∗nX ∗ X. It is shown in [14, Theorem 1.1] that Fn(X) ' ∗nΩX, the n-fold
join of ΩX with itself (this has n + 1 copies of ΩX in it).

Definition 2.11 We say a space 0-connected X has category n, cat(X) = n, if n is
the least integer such that pn has a section. If there does not exist such an n then we
say cat(X) =∞.

We can also define category for maps [13], [4].

Definition 2.12 We say a map f : Y → X of 0-connected spaces has category n,
cat( f ) = n, if n is the least integer such that there exists g : Y → Gn(X) such that
png = f . If there does not exist such an n then we say that cat(X) =∞.

Observe that cat(idX) = cat(X). Therefore the category of a map is strictly more
general than the category of a space. It follows directly from the definitions and
the homotopy invariance of the fibre-cofibre construction that cat( f ) and cat(X) are
homotopy invariant. The following concept was introduced by Scheerer-Tanré [34].
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Definition 2.13 Let f : E → X be a fibration of 0-connected spaces. Assume there
exists maps r : E → Gn(X) and s : Gn(X)→ E such that pnr = f and f s = pn. Then
we call f an n-LS fibration.

Lemma 2.14 Let n > 0 and f : E → X an n-LS fibration. Then Ω f has a section. In
particular Ωpn has a section.

Proof For pn the lemma follows from [14, Proposition 1.5]. For a general n-LS fi-
bration it follows from the result for pn and the definition of n-LS fibration.

We remark that, as observed below in Definition 2.17, G1(X) ' ΣΩX. Also the
evaluation map e and p1 are compatible with this equivalence. It follows that the
splitting of Ωe gives a splitting of Ωp1 and by composition of Ωpn. This is another
way to prove the result of the lemma.

The following proposition follows directly from the definition.

Proposition 2.15 [34] Let f : E → X be an n-LS fibration. Then cat(X) ≤ n if and
only if f has a section.

At times it can be more convenient to have some n-LS fibration rather than the
Ganea fibration. One reason is because the n-LS fibration may be considerably
smaller. For example it was shown in [35] that (Sn)l

sn → (Sn)l (that is the inclusion of
the sn skeleton into (Sn)l) turned into a fibration is an s-LS fibration. The following
well known facts about the category of maps are generalizations of the corresponding
facts about the category of spaces.

Proposition 2.16 Let f and g be maps between 0-connected spaces. Then

1) cat( f × g) ≤ cat( f ) + cat(g);
2) if f and g are composable then cat(g f ) ≤ min{cat(g), cat( f )};
3) if f is a homotopy equivalence then cat(g f ) = cat(g);
4) let h : X → Y be any map and f : Y → C(h) be the inclusion.

Then cat(g) ≤ cat(g f ) + 1. Also cat
(

C(h)
)
≤ cat(Y ) + 1.

Proof See [4] for a proof of 2). 1) follows from 2) and the product formula for spaces
[13, Theorem 9]. 3) is trivial. 4) follows from [4, Proposition 1.7].

Notice that 2) implies that for any map f : X → Y , cat( f ) ≤ min{cat(X), cat(Y )}.
As we shall see in the example at the end of the section this is sometimes useful in
getting lower bounds for cat(X).

Definition 2.17 There is a homotopy equivalence φ : ΣΩX = CΩX ∪ΩX CΩX →
G1(X) induced by choosing a homotopy H : i0 ' ∗. Since G0(X) is contractible
the homotopy class of φ is independent of H. Let f : ΣW → X be any map and
f a : W → ΩX denote its adjoint. Then Σ f a is a map ΣW → ΣΩX. We also let Σ f a

denote (the homotopy class of) the map φΣ f a and all further compositions with the
inclusions into Gn(X) for every n.
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We next define a kind of Hopf invariant. Iwase [21] has shown that this definition
is equivalent to that of Bernstein-Hilton [5].

Definition 2.18 Let X be a 0-connected space such that cat(X) ≤ n 6= 0 and
r : X → GnX a section. Let f ∈ [ΣW,X]. Define the Hopf invariant of f by Hr( f ) =
r f − Σ f a. Since pnΣ f a ' f ' pnr f we can, and will, consider Hr( f ) to be in
[ΣW, Fn(X)]. Observe that this homotopy lift is unique since the fibration pn has a
section.

The next theorem gives a characterization of cat in terms of Hopf invariants. It is
true both locally and integrally. In the theorem dim(X) refers to the dimension of X
which we define to be the dimension of the highest nontrivial cohomology class of X.

Theorem 2.19 ([21], [35]) Let X be a space that is simply connected. Assume that
dim(X) ≤ l > 1 and cat(X) = n > 0. Let

∨
f (i) :

∨
i∈I Sl → X be a map. Then

cat
(

C
(∨

f (i)
))
≤ n if and only if there exists a section r : X → Gn(X) such that for

every i, Hr

(
f (i)
)

= ∗.

We can also characterize when extending over a cone causes the category of the
map to go up. It can be considered a more general mapping version of the last theo-
rem. Since we are mapping into a fixed fibration the proof is easier than in the space
case and follows directly from obstruction theory.

Proposition 2.20 Let f : W → Y be a map of 0-connected spaces. Let i : Y → C( f )
denote the inclusion. Let p : E → X be an n-LS fibration and F be the fibre of p. Let
g : C( f ) → X be a map. Then cat(g) ≤ n > 0 if and only if there exists a map
h : Y → E such that gi ' ph and such that the map h f : W → E is null homotopic. If
W = ΣW ′ then cat(g) ≤ n if and only if there exists h : Y → E such that gi ' ph and
such that the map ΣW ′ → F induced by h is null homotopic.

Proof Let us assume there exists h as in the proposition such that h f ' ∗. Then
Lemmas 2.2 and 2.14 imply that there exists a map φ : C( f ) → E such that pφ ' g.
Therefore cat(g) ≤ n. The other direction of the first statement is trivial.

The second part follows since Lemma 2.14 implies that when W is a suspension
the induced map is uniquely determined and is inessential if and only if h f is.

In the statement of the last proposition the condition gi ' ph could also be re-
placed by the condition gi = ph. This is because p is a fibration. Observe that the
homotopic version allows us to replace C( f ) by any homotopy equivalent space. We
would replace i by a corresponding map.

To demonstrate the power of this deceptively simple proposition we offer an ex-
ample in Theorem 2.21. The proposition will also we used for the results of the later
sections. For a CW complex X let Xn denote the n-skeleton of X. This is Roitberg’s
example [31] of a CW complex X such that cat(Xn) ≤ 1 for every n but cat(X) = 2.
Remember that a phantom map is an essential map that when precomposed with any
map from a finite complex becomes trivial.
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Theorem 2.21 Let f : CP∞ → S3 be any phantom map. (See [16] or [44, Theo-
rem D] for some examples.) Let η : S3 → S2 denote the Hopf map. Then cat

(
C(η f )

)
=

2 but cat
(

C(η f |CPn )
)

= 1 for every n.

Proof That C(η f |CPn ) = 1 is clear since f being phantom implies that f |CPn ' ∗
and so C(η f |CPn ) ' S2 ∨ ΣCPn. Observe that cat

(
C(η f )

)
= 1 or 2 since it can be

represented as a two-cone. Also observe that η f 6' ∗ since if it were f would factor
through S1 = H(Z, 1). This can not happen since H1(CP∞) = 0.

Let g : C(η f )→ CP∞ be a map which represents a generator of H2
(

C(η f )
)

= Z.
Consider the following solid arrow diagram.

S2
h

//

��

G1(CP∞) ' S2

p1

��
C(η f )

g
//

φ

88q
q

q
q

q

CP∞

We can see by looking at cohomology that the only possible homotopy classes h mak-
ing the diagram commute are homology equivalences. But then there does not exist φ
making the diagram commute since h is a homotopy equivalence and η f 6' ∗. There-
fore by Proposition 2.20 cat(g) ≥ 2. Therefore cat

(
C(η f )

)
≥ 2. So cat

(
C(η f )

)
=

2.

Similarly by attaching the cones on phantom maps composed with higher order
Whitehead products to Tn(Sl) we could construct CW complexes such that cat(Xr) ≤
n− 1 for every r but cat(X) = n.

3 cat of Products of Maps

This section gives conditions when cat( f × g) < cat( f ) + cat(g). We first prove a
a general form of [20, Proposition 5.8]. This is used to give conditions when maps
have the property that for every g with cat(g) ≥ r, cat( f × g) < cat( f ) + cat(g)
(Theorem 3.3). The next theorem (3.6) shows that spaces have a similar property
whenever they are the cone on a map with an unstable Hopf invariant. The theorems
will be applied in Sections 4 and 5.

For this section let us be given (strictly commuting) diagrams of 0-connected
spaces of the following form for i = 1, 2.

W (i)
k(i)

//

l ′(i)

��

Y (i) //

l(i)

��

C
(

k(i)
)

f (i)

��
F(i)

j(i)
// E(i)

p(i)
// B(i)
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Assume that the top row is a cofibration sequence and the bottom row is a fibration
sequence. Let g(i) : C

(
k(i)
)
→ C

(
j(i)
)

and p ′(i) : C
(

j(i)
)
→ B(i) denote exten-

sions over the cone of l(i) and p(i) respectively, the former induced by l ′(i)× id and
the latter induced by mapping the cone to ∗. We let f (i) = p ′(i)g(i). In other words
that f (i) is the trivial extension of p(i)l(i) sending the cone to ∗.

The proof of the following lemma uses a method of Iwase [20]. The argument il-
lustrates the phenomenon which gives rise to examples where cat( f × g) < cat( f ) +
cat(g). The same phenomenon is responsible for counterexamples to Ganea’s con-
jecture.

Lemma 3.1 Assume that l ′(1)∗l ′(2) ' ∗. Then f (1)× f (2) : C
(

k(1)
)
×C
(

k(2)
)
→

B(1)× B(2) factors up to homotopy through
(

C
(

j(1)
)
×C

(
j(2)
))•

.

Proof From Lemma 2.9 we get a solid arrow diagram

W (1) ∗W (2) //

l ′(1)∗l ′(2)

��

(
C
(

k(1)
)
×C

(
k(2)

))• φ
//

(g(1)×g(2))•

��

C
(

k(1)
)
×C

(
k(2)

)
g(1)×g(2)

��

h

vvm m m m m m m

F(1) ∗ F(2) //
(

C
(

j(1)
)
×C

(
j(2)
))• φ ′

// C
(

j(1)
)
×C

(
j(2)
)
.

Since l ′(1) ∗ l ′(2) ' ∗ we get a map h such that hφ '
(

g(1)× g(2)
)•

. Since φ ′ splits
after looping we can use Lemma 2.2 and assume that φ ′h ' g(1) × g(2). Since we
also have a commutative diagram

C
(

k(1)
)
×C

(
k(2)

)
g(1)×g(2)

��

f (1)× f (2)

))TTTTTTTTTTTTTTTT

C
(

j(1)
)
×C

(
j(2)
)

p ′(1)×p ′(2)

// B(1)× B(2),

the lemma follows easily.

Lemma 3.2 Assume again that l ′(1) ∗ l ′(2) ' ∗ and also that cat
(

E(i)
)

= n(i).

Then cat
(

f (1)× f (2)
)
≤ n(1) + n(2) + 1.

Proof If cat
(

E(i)
)

= n(i) then [39, Section 5] implies that there exists W (i) such

that Cat
(

E(i) ∨ ΣW (i)
)

= n(i). Let

Z =
((

C
(

j(1)
)
∨ ΣW (1)

)
×
(

C
(

j(2)
)
∨ ΣW (2)

))•
.
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It follows that Cat(Z) ≤ n(1) + n(2) + 1. The map f (1) × f (2) factors through(
C
(

j(1)
)
×C
(

j(2)
))•

and therefore through Z. Since cat ≤ Cat the lemma follows

from 2.16 2).

The last lemma in conjunction with Proposition 2.20 could easily be used to con-
struct examples where cat( f ×g) < cat( f )+cat(g). Next we use it to prove a theorem
which is designed for the applications of the next two sections.

Theorem 3.3 Assume cat
(

f (1)
)

= n + 1 and E(1) → B(1) is an n-LS fibration

for B(1) (for example the n-th Ganea fibration for B(1)). Assume that Σr
(

l ′(1)
)
' ∗.

Then cat
(

f (1)
)

= cat
(

f (1) × idSr

)
. Also for every map g such that cat(g) ≤ r > 0,

cat
(

f (1)× g
)
≤ n + r.

Proof From the definition of n-LS fibration there is a commutative diagram.

F(1) //

��

Fn

(
B(1)

)
��

E(1) //

��

Gn

(
B(1)

)
��

B(1)
=

// B(1)

Therefore we can assume that E(1) → B(1) is pn : Gn

(
B(1)

)
→ B(1). First we show

that for the Ganea fibration pr : Gr(X)→ X, cat
(

f (1)× pr

)
≤ n + r. There exists a

commutative diagram

Fr−1(X)

=

��

// Gr−1(X)

=

��

// G ′r (X)

pr

��
Fr−1(X) // Gr−1(X)

pr−1

// X

where the top row is a cofibration sequence. As remarked in Section 2, [14, The-
orem 1.1] implies that Fn(X) ' ∗nΩX, hence Fr−1(X) ' Σr−1W for some space
W . Therefore l ′(1) ∗ Fr−1(X) ' Σrl ′(1) ∧ W ′ ' ∗ by assumption. Since

cat
(

Gn

(
B(1)

))
≤ n and cat

(
Gr−1(X)

)
≤ r − 1 we can apply Lemma 3.2 to get

that cat
(

f (1)× X
)
≤ n + r.

Now let g be any map. Since cat(g) ≤ r there exists a factorization of g as
g ′pr : Y → Gr(X) → X. But then Proposition 2.16 says that cat

(
f (1) × g

)
≤

cat
(

f (1)× pr

)
≤ n + r.
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As well F1(Sr) ' ΣΩSr ' Sr ∧ Z, so the same arguments show that cat
(

f (1)
)
≤

cat
(

f (1)× idSr

)
≤ cat

(
f (1)

)
.

Corollary 3.4 Let us be given a (strictly commutative) diagram of 0-connected spaces

W (1)
k(1)

//

l ′(1)

��

Y (1) //

l(1)

��

Y (1)/W (1)

f

��
F(1) // E(1)

p(1)

// X(1)

where k(1) is a cofibration and the bottom row is an n-LS fibration for X(1). Assume
cat( f ) = n + 1 and Σrl ′(1) ' ∗. Then for every g such that cat(g) ≤ r > 0,
cat( f × g) ≤ n + r. In particular cat( f ) = cat( f × idSr ) = n + 1.

Proof When we let f (1) : C
(

k(1)
)
→ X(1) be the extension of p(1)l(1) sending the

cone to ∗ then we have the setup of the last theorem. Therefore for every map g such
that cat(g) ≤ r > 0, cat

(
f (1)× g

)
≤ n + r. We have a commutative diagram

C
(

k(1)
) π

//

f (1)

��

B/A

f{{wwwwwwwww

X(1)

Since k(1) is a cofibration, [43, Chapter I, Section 5] implies that π is a homotopy
equivalence. Therefore the theorem and Proposition 2.16 3) imply the corollary.

We also give a more homotopic version of the above corollary. We do not use it
but include it since it could be more convenient to apply in some situations.

Theorem 3.5 Let n > 0. Let us be given a homotopy commutative diagram of 0-
connected spaces

ΣW
f

//

h

��

X //

k

��

C( f )

g

��
F

j

// E
p

// B

such that the bottom row is an n-LS fibration (for example the n-th Ganea fibration).
Assume that Σrh ' ∗. Then cat(g) = cat(g × Sr). Also for every map g ′ such that
cat(g ′) ≤ r > 0, cat(g × g ′) ≤ n + r.
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Proof By Lemma 2.14 we can replace the diagram in the theorem by a strictly com-
muting one as in Lemma 2.4

ΣW
i

//

h

��

X ∪ f Cyl ΣW //

k∪H

��

C( f )

g

��
F

j

// E
p

// B.

We are now in the situation of Corollary 3.4 and so the theorem follows.

Next we prove a similar theorem but one which is sometimes more convenient to
apply. We use it in Section 5 to construct examples.

Theorem 3.6 Let f : ΣW → X be a map where X is 0-connected. Assume cat(X) =
n > 0 and cat

(
C( f )

)
= n + 1. Assume there exists a section of the Ganea fibration

s : X → Gn(X) such that ΣrHs( f ) ' ∗. Then for every g such that cat(g) = r,
cat(idC( f )×g) ≤ n + r < cat

(
C( f )

)
+ cat(g).

Proof Since Gn(i)(Σ f a) ' ∗ the following solid arrow diagram commutes up to
homotopy even though adding the dashed arrow may cause commutativity to be
lost.

ΣW
f

//

Hs( f )

��

X

s

��

i
// C( f )

=

��

Fn(X) //_____

Fn(i)
��

Gn(X)

Gn(i)
��

Fn

(
C( f )

) in
// Gn

(
C( f )

) // C( f )

The theorem then follows directly from Theorem 3.5.

4 Applications to Rational Homotopy

In this section we apply the results of the last section to rational homotopy theory.
First we define mcat and cat in the rational context. We review a result of Scheerer-
Stelzer that mcat is determined by the existence of a certain CDGA map. We show
how mcat of a map is determined by obstruction theory (Proposition 4.7). Next we
prove Theorems 4.8 and 4.9 which demonstrate a connection between the statements
mcat( f ) < cat( f ) and cat( f ) = cat( f × idSn ). This includes an equivalence of the
two statements under certain hypotheses. Finally we construct some examples where
mcat( f ) < cat( f ) and cat( f ) = cat( f × idSn ) both hold.
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We work in the rational homotopy category represented by commutative differ-
ential graded algebras over the rationals, CDGAs. For more information on CDGAs
and rational homotopy theory we refer the reader to [17], [37] and [40]. ΛV refers
to a CDGA which is free as a graded commutative algebra over some graded rational
vector space V and ΛV/Λ>nV denotes ΛV modulo the ideal generated by all prod-
ucts of length greater than n. When we write ΛV ⊗ ΛW we mean Λ(V ⊕W ) with
the added condition that dV ⊂ ΛV . For this section all of our CDGA’s and spaces
will be simply connected and of finite type unless stated otherwise. A space is called
rational if H̃∗(X,Z) is a rational vector space. There is a rationalization functor from
spaces to rational spaces. (See [6] for more details).

There are contravariant functors F : CDGA→ CG∗ and A : CG∗ → CDGA which
induce equivalences of homotopy categories between CDGA and the rational lo-
calization of CG∗. (See [7].) The composition FA is equivalent to rationalization.
(Actually the functors are into and from simplicial sets and not CG∗. We compose
those functors with the singular simplices and realization functors to get the F and A
above.)

For this section let

A
j

// ΛX
p

// ΛY

be a fibration sequence in CDGA. In other words p is a surjection and A = ker p.
Also let

ΛV
i

//

q $$IIIIIIIII
ΛV ⊗ ΛW

π

��
ΛV/Λ>nV

be a diagram where i is the inclusion, q is the quotient map and π is a weak equiva-
lence. Finally for this section we let the following be a diagram in CDGA.

ΛV
i

//

f

��

ΛV ⊗ ΛW

g

��

// ΛW

h

��
A

j
// ΛX

p
// ΛY.

(++)

Unless otherwise specified the diagram is assumed to be strictly commutative. ΛW
has the induced differential on the quotient. We remark that the top line in the dia-
gram above corresponds to a fibration sequence of spaces and the bottom line corre-
sponds to a cofibration sequence of spaces.

The definition of LS category of CDGAs was made by Felix-Halperin in their piv-
otal paper [10]. The definition of mcat is due to Halperin and Lemaire [18]. In the
following if f is a map of spaces then mcat( f ) means the mcat

(
A( f )

)
.
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Definition 4.1 ([10], [18]) cat( f ) ≤ n if and only if there exists a CDGA map h
making the following diagram commute.

ΛV //

f $$JJJJJJJJJJJ
ΛV ⊗ ΛW

h

��
A

If no such n exists then cat( f ) =∞.
Similarly mcat( f ) ≤ n if and only if there exists a ΛV module map h making the

above diagram commute. If no such n exists then mcat( f ) =∞.

The equivalence of the algebraic and topological definitions of LS category for
rational spaces was also shown in [10].

Theorem 4.2 ([10]) cat( f ) = cat
(

F( f )
)

.

We review the algebraic fibrewise Sp∞ construction of Scheerer-Stelzer [33]. Let
(ΛV ⊗ ΛW, d) be considered as a free ΛV module. Let ΛW denote the kernel
of the augmentation ΛW → Q . Consider ΛW as a graded vector space. Define
M(ΛV ⊗ ΛW ) to be ΛV ⊗ Λ(ΛW ) as an algebra with differential defined by the
Leibniz law. Another way to describe the differential is as the unique one such that

ΛV → M(ΛV ⊗ ΛW )

is a KS extension and

ΛV //

%%LLLLLLLLLL ΛV ⊗ ΛW

i

��
M(ΛV ⊗ ΛW )

is a diagram of ΛV modules. Clearly M(ΛV ⊗ ΛW ) is a CDGA. The proof of the
following insightful proposition is straightforward.

Proposition 4.3 ([33]) For every map f : ΛV ⊗ ΛW → ΛU of ΛV modules there
exists a unique map f ′ : M(ΛV ⊗ ΛW )→ ΛU of CDGAs such that f ′i = f .

Applying the proposition to id : ΛV ⊗ΛW → ΛV ⊗ΛW we find that there exists
a unique CDGA map r : M(ΛV ⊗ ΛW ) → ΛV ⊗ ΛW such that ri = id. So the
following theorem of Scheerer and Stelzer follows directly from Proposition 4.3.

Theorem 4.4 ([33]) Let f : ΛV → A be a map. Then mcat( f ) ≤ n if and only if
there exists a commutative diagram in CDGA

ΛV //

f %%LLLLLLLLLLLL M(ΛV ⊗ ΛW )

��
A.
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Next we describe a relationship between these ideas and the ideas of determining
category by Hopf invariants. Let us translate a couple of results from the previous
section into the language of Sullivan models. The translation of Theorem 3.3 gives
us:

Theorem 4.5 Assume cat( f ) = n+1 and H∗(h) is trivial. Then for every r, cat( f ) =
cat
(

F( f )× idSr

)
. Also for every map g such that cat(g) > 0, cat( f × g) ≤ (n + r) <

cat( f ) + cat(g).

Proof Apply F to diagram (++) of this section to get a strictly commuting diagram
of spaces.

F(ΛY )
F(p)

//

F( f )

��

F(ΛX)

F(g)

��

// F(A)

F(h)

��
F(ΛW ) // F(ΛV ⊗ ΛW ) // F(ΛV )

Replace F(ΛX) by the mapping cylinder of F(p) and F(A) by C
(

F(p)
)

with the maps
being the canonical extensions. Similarly replace F(ΛV ⊗ΛW )→ F(ΛV ) by a fibra-
tion and F(ΛW ) by its fibre. The new maps are the canonical liftings. Theorem 4.7
[10] implies that the topological realization of ΛV → ΛV/Λ>nV is an n-LS fibration.
Also, H∗(h) is trivial if and only if Σh ' ∗. So we can now use Theorem 3.3 to prove
the theorem.

An alternative proof of the above theorem would be given by a translation of the
proof of Theorem 3.3. The translation of Proposition 2.20 says:

Proposition 4.6 cat( f ) ≤ n > 0 if and only if there exists a g that makes our diagram
commute up to homotopy and such that pg ' ∗. If F(ΛY ) is a wedge of spheres then
cat( f ) ≤ n > 0 if and only if there exists a g such that the induced map h ' ∗.

There is also a version of this result for mcat.

Proposition 4.7 Consider homotopy commutative diagrams of the following form
with f fixed.

ΛV //

f

��

M(ΛV ⊗ ΛW )

g ′

��

// Λ(ΛW )

h ′

��
A

j
// ΛX

p
// ΛY

Then mcat( f ) ≤ n > 0 if and only if there exists g ′ making the diagram homotopy
commute such that pg ′ ' ∗. If F(ΛY ) is a wedge of spheres then mcat( f ) ≤ n > 0 if
and only if there exists a g ′ such that the induced map h ′ ' ∗.
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Proof Assume mcat( f ) ≤ n. Then by Theorem 4.4 there exists φ : M(ΛV ⊗ΛW )→
A such that

ΛV

f
%%LLLLLLLLLLLL

// M(ΛV ⊗ ΛW )

��
A

commutes. Then define g ′ = jφ and let h ′ be any extension. Then pg ′ = p jφ = ∗
and h ′ = ∗.

Now assume that there exists g ′ such that pg ′ ' ∗. Then there exists φ:
M(ΛV ⊗ ΛW ) → A such that jφ ' g ′. Notice that ΛV → M(ΛV ⊗ ΛW ) is
injective on the dual of homotopy (in other words it models a map that is surjective
on homotopy). So φ can be adjusted using the action so that

ΛV

f
%%LLLLLLLLLLLL

// M(ΛV ⊗ ΛW )

φ

��
A

commutes up to homotopy. (The action exists for fibrations in any model category.
See [30, Chapter I, Section 3]. To get the diagram to commute up to homotopy
using more explicit methods of rational homotopy theory is also possible. A third
way to get commutativity up to homotopy is to translate the problem to spaces, use
the coaction (Lemma 2.2) and translate back to CDGAs.) The map φ can then be
adjusted to make the diagram commute exactly since ΛV → M(ΛV ⊗ ΛW ) is a KS
extension. Theorem 4.4 then shows mcat( f ) ≤ n.

The sequence F(ΛV ) → F
(

M(ΛV ⊗ ΛW )
)
→ F

(
Λ(ΛW )

)
splits after looping,

so the statements when F(ΛY ) is a wedge of spheres follow since in that case pg ′ ' ∗
if and only if h ′ ' ∗.

We can also put diagram (++) together with the diagram of Proposition 4.7:

ΛV //

=

��

M(ΛV ⊗ ΛW )

r

��

// Λ(ΛW )

r

��
ΛV

i
//

f

��

ΛV ⊗ ΛW

g

��

// ΛW

h

��
A

j
// ΛX

p
// ΛY

(+)

and get the following:
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Theorem 4.8 Let f : ΛV → A be a map such that cat( f ) > cat( j f ) = n > 0.
Assume we have a commutative diagram as throughout the section such that the compo-
sition hr : Λ(ΛW ) → ΛW → ΛY is null homotopic. Equivalently we can assume that
ΣF(h) ' ∗. Then the following five statements hold:

1) cat
(

F( f )× idSr

)
= cat

(
F( f )

)
for some r > 0,

2) cat
(

F( f )× idSr

)
= cat

(
F( f )

)
for all r > 0,

3) cat( f ⊗ g) ≤ cat( f ) + cat(g)− 1 for all maps g,
4) cat( f ⊗ idA) ≤ cat( f ) + cat(A)− 1 for some CDGA A.

If F(ΛY ) is a wedge of spheres then also:

5) cat( f ) > mcat( f ).

Proof 5) follows directly from Proposition 4.7. 1), 2), and 4) are special cases of 3).
Observe that F

(
Λ(ΛW )

)
' Ω∞Σ∞F(ΛW ) and that under this equivalence E∞ :

F(ΛW ) → Ω∞Σ∞F(ΛW ) is equivalent to F(r) : F(ΛW ) → F
(

Λ(ΛW )
)

. Also ra-
tionally for any map, Σg ' ∗ if and only if Σ∞g ' ∗. Therefore hr being null is
equivalent to ΣF(h) ' ∗. Hence, 3) follows from Theorem 4.5.

The next theorem says that in a range all the five statements of the last theorem
are equivalent. In the theorem dim(ΛX) is the dimension of the highest non-trivial
homology class of ΛX and con(ΛY ) is one less than the lowest positive dimensional
non-trivial homology class of ΛV . (This is also known as the connectivity.)

Theorem 4.9 Let f : ΛV → A be a map such that cat( f ) > cat( j f ) = n > 0.
Assume that dim(ΛX) ≤ 2(n + 1)

(
con(ΛV ) + 1

)
− 2. Also assume that F(ΛY ) is a

wedge of spheres. Then the following five statements are equivalent:

1) cat
(

F( f )× Sr
)

= cat
(

F( f )
)

for some r > 0,

2) cat
(

F( f )× Sr
)

= cat
(

F( f )
)

for all r > 0,
3) cat( f × g) ≤ cat( f ) + cat(g)− 1 for all maps g,
4) cat( f × A) ≤ cat( f ) + cat(A)− 1 for some CDGA A,
5) cat( f ) > mcat( f ).

Proof Clearly 3) implies 1), 2) and 4). Since for every n, mcat(Sn) = 1, 1) implies
5) follows directly from the result of Parent [28] that for every f , g, mcat( f ⊗ g) =
mcat( f ) + mcat(g). So we just need to show that 5) implies 3). Assume 5) holds.
Then by Proposition 4.7 there exists a diagram:

ΛV //

f

��

M(ΛV ⊗ ΛW )

g ′

��

// Λ(ΛW )

h ′

��
A // ΛX // ΛY

(∗)

such that h ′ ' ∗.
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Since the kernel of q : ΛV → ΛV/ΛV>n starts in dimension (n + 1)(con ΛV + 1)
we get that con(ΛW ) ≥ (n + 1)

(
con(ΛV ) + 1

)
− 2. So we see that r : Λ(ΛW ) →

ΛW and hence r : M(ΛV ⊗ ΛW ) → ΛV ⊗ ΛW induces an isomorphism on H∗
in dimensions less than 2(n + 1)

(
con(ΛV ) + 1

)
− 3. Therefore, since dim(ΛX) ≤

2(n + 1)
(

con(ΛV ) + 1
)
− 2 we can extend (∗) to get a diagram of the form (+). We

keep f fixed and change g ′ by a homotopy that fixes ΛV . Since F(ΛY ) is a wedge of
spheres the new induced h ′ is homotopic to the old one. Therefore in the extended
diagram hr = h ′ is null homotopic. Hence we can apply Theorem 4.8 to get 3).

We believe that the five statements of the corollary are equivalent for any map f .
In particular we believe that for any rational map f and any r ≥ 1, mcat( f ) < cat( f )
if and only if cat( f ) = cat( f × idSr ).

Examples Let n ≥ 2. Let

Tn(Sl) = {(x1, . . . , xn) ∈ (Sl)n | for some i, xi = ∗}

denote the fat wedge, i : Tn(Sl) → (Sl)n denote the inclusion and F denote the fibre
of i. Porter [29] shows that F is a wedge of spheres. (In this case the result also
follows easily from the cube theorem of Mather [26]. Rationally, it also follows by
direct calculation.) Let g ′ : Ss → F be any Whitehead product of the inclusions of
two different spheres into F, g : Ss → Tn(Sl) be the composition of g ′ into Tn(Sl)
and f : C(g) → (Sl)n denote any extension of i. Then f satisfies all the hypothesis
of Theorem 4.8 and Corollary 3.4. In particular for every r > 0, cat( f × Sr) =
cat( f ) = n and mcat( f ) ≤ n − 1. (Remember mcat( f ) means mcat of a model of
the rationalization of f .)

Proof of Examples We wish to apply Proposition 2.20 to show that cat( f ) > n− 1.
Let ı̃ be the inclusion i : Tn(Sl) → (Sl)n turned into a fibration and consider the
diagram

Ss
k

//

g ′

��

Tn(Sl) ∪g Cyl Ss

h

��

π
// C(g)

f

��

F // T̃n(Sl)
ı̃

// (Sl)n

where the bottom row is a fibration sequence, k is the inclusion into the free end of
the cylinder, h is an extension lift of i and g ′ is the lift of hk to the fibre. Then h is a
homotopy equivalence since the map Tn(Sl) → T̃n(Sl) and the inclusion Tn(Sl) →
Tn(Sl) ∪g Cyl Ss are. By [35, Lemma 6.9] ı̃ is an (n − 1)-LS fibration. Also since ı̃
splits after looping the inclusion of F into T̃n(Sl) is injective on π∗. So g 6' ∗ and
Proposition 2.20 implies that cat( f ) > n − 1. But since cat

(
Tn(Sl)

)
= n − 1,

cat
(

C(g)
)
≤ n. Therefore cat( f ) ≤ n and so cat( f ) = n.

Σg ′ ' ∗ since it is a Whitehead product. We can then apply Theorem 3.4 to see
that for every r, cat( f × idSr ) = cat( f ) = n and Theorem 4.8 to see that mcat( f ) ≤
n− 1.
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Notice that for our example we could have picked g to be any nontrivial homotopy
class such that i(g) ' ∗ and such that the lift of g to F suspends to a null homotopic
map.

5 An Interesting Example

We construct spaces X that answer a question of Iwase [20] (Theorem 5.1 below).
Our examples X also have the property that cat(X) = cat(X × X) = cl(X × X) = 2
(Corollary 5.4). It is interesting to compare our example to the one of Fernandez
[12]. Working at the prime 3 she shows a certain space Z has the property cl(Z) =
cl(Z × Z) = 2. However, the Z there has cat(Z) = 1. In fact the author jointly with
Martin Arkowitz [2] has shown that for any space Y , Z if cat(Y ) = cat(Z) = 1 then
cl(Y × Z) ≤ 2.

For this section fix a prime p > 2. Let β ∈ π4p−3(S3) ⊗ Z(p) be a generator.
(In fact β = α2 but we will not use this.) Let X = (S2 ∨ S3) ∪[ι2,ι3]Σβ e4p−1 and
Y = S1 ∨ S2 ∨ S3 ∪β e4p−2, where ιn always denotes the inclusion of a sphere of
dimension n into a space.

Theorem 5.1 cat(X) = 2 and for every Z 6' ∗, cat(X × Z) < cat(Z) + cat(X). In
particular cat(X × S1) = cat(X).

Proof The only facts we use about β are that Σβ 6' ∗ and Σ2β ' ∗. The first fact is
a consequence of S3 being an H-space. The existence of β and the fact that Σ2β ' ∗
were proved by Toda [41]. We must verify the hypotheses of Theorem 3.6.

To show cat(X) = 2 we use Proposition 2.20. Let f : X → S2×S3 be any extension
of the identity. Assume cat( f ) ≤ 1. Then by Proposition 2.20 there exists a diagram

S2 ∨ S3

��

f ′

// G1(S2 × S3)

p1

��

X
f

// S2 × S3

such that f ′[ι2, ι3]Σβ ' ∗. Also G1(S2× S3) ' ΣΩ(S2× S3) ' S2 ∨ S3 ∨ S3∨ higher
spheres. (See [43, Chapter VII, Section 2] for a proof of the second equivalence.)
Since the diagram above commutes we see that f ′ is injective on π∗. This gives us
a contradiction and so cat( f ) > 1. Therefore cat(X) > 1 and so cat(X) = 2 by
Proposition 2.16 since X can be represented as a two cone.

On the other hand Σ2β ' ∗ so for every s

ΣHs([ι2, ι3]Σβ) =
(

ΣHs([ι2, ι3])
)

Σ2β ' ∗.

So the hypotheses of Theorem 3.6 have been verified.

One of the ingredients needed to make this example work was an unstable element
in the homotopy groups of spheres. Since there are many unstable elements in the
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homotopy groups of spheres we could have chosen many other examples. We chose
our example partially to demonstrate how easy Theorem 2.19 is to use, even when
there are many sections.

We proceed to show another interesting property of the space X. We will show
cat(X) = cat(X × X). First we need a preliminary lemma.

Lemma 5.2 Y ∗ Y is a wedge of spheres.

Proof

Y ∗ Y ' ΣY ∧ Y

'
(

S2 ∧ (S1 ∨ S2 ∨ S3 ∪β e4p−2)
)
∨
(

S3 ∧ (S1 ∨ S2 ∨ S3 ∪β e4p−2)
)

∨
(

S4 ∪Σβ e4p−1 ∧ (S1 ∨ S2)
)
∨
(

Σ(S3 ∪β e4p−2) ∧ (S3 ∪β e4p−2)
)
.

Since Σ2β ' ∗ all the pieces in the wedge decomposition except Σ(S3 ∪β e4p−2) ∧
(S3 ∪β e4p−2) are easily seen to be wedges of spheres. Again since Σ2β ' ∗ there is
some f such that Σ(S3∪β e4p−2)∧(S3∪β e4p−2) ' Σ(S6∨S4p+1∨S4p+1∪ f e8p−4). Σ f
must be an element in π8p−4(S7 × S4p+2 × S4p+2). Also Σ2 f ' ∗ since Σ2β ' ∗. So
Σ f ' ∗ since S7 is an H space (hence Σ induces an injection on π∗) and π8p−4(S4p+2)
is already in the stable range. Thus Y ∗ Y is a wedge of spheres.

Theorem 5.3 There exists a wedge of spheres W , a space U ' X×X and a cofibration
sequence.

W → ΣY ∨ ΣY → U

Proof From Lemma 2.9 we have a cofibration sequence.

Y ∗ Y
f

// ΣY ∨ ΣY // ΣY × ΣY

Let p : ΣY → X denote a map that sends S4 to [ι2, ι3], is the identity on S2 ∨ S3 and
is the canonical extension over the 4p − 1 cell. Clearly H∗(p) is surjective.

Let r : H∗(X ∧ X)→ H∗(ΣY ∧ ΣY ) be a splitting of H∗(p ∧ p). Let Z be a wedge
of spheres and i : Z → Y ∗Y be a map such that there exists a homotopy equivalence
φ : ΣZ → X ∧ X and such that H∗(Σi) = rH∗(φ). That there exists such an i follows
from Lemma 5.2.

Next consider the following diagram.

Z

i

��

f i
// ΣY ∨ ΣY

��

// C( f i)

g

��
Y ∗ Y

f
// ΣY ∨ ΣY

p∨p

��

// ΣY × ΣY

p×p

��
X ∨ X // X × X
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where g is the induced map between cofibres. Using the long exact sequence on
homology and the fact that (p ∧ p)Σi : ΣZ → X ∧ X is a homology equivalence we
see that H∗

(
(p× p)g

)
is surjective. Let h : S4∨S4 → ΣY ∨ΣY denote (ι4−[ι2, ι3])∨

(ι4 − [ι2, ι3]). Then since (p ∨ p)h ' ∗ we get a diagram

Z ∨ S4 ∨ S4
f i+h

// ΣY ∨ ΣY //

p∨p

��

C( f i + h)

φ

��
X ∨ X // X × X

where φ is an extension of (p×p)g. The map φ is easily seen to be an H∗ isomorphism
and therefore a homotopy equivalence since X × X is a CW complex and all spaces
are simply connected.

Recall that cl(X) denotes the cone length of X. (See [35, Definition 2.9] for a
definition.)

Corollary 5.4 cat(X) = cat(X × X) = cl(X) = 2.

Proof cat(X) = 2 and so cl(X ×X) ≥ 2. But we have realized a space U ' X ×X as
a two cone. Therefore cl(X) ≤ 2 and so cl(X) = 2.

More generally we believe for every n there exists a simply connected space Z such
that cat(Z) = cat(Zn) = n. Perhaps easier to construct would be an example of a
space Z such that cat(Z) = cat

(
Z×(Sr)n−1

)
= n. Simpler still would be to construct

a space Z with torsion free homology such that cat(Z) = n but, for Z0 denoting the
rationalization of Z, cat(Z0) = 1.
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https://doi.org/10.4153/CJM-2002-022-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-022-6


On the Lusternik-Schnirelmann Category of Maps 633

[13] R. H. Fox, On the Lusternik-Schnirelmann Category. Ann. Math. 42(1941), 333–370.
[14] T. Ganea, A generalization of the homology and homotopy suspension. Comm. Math. Helv. 39(1965),

295–322.
[15] , Lusternik-Schnirelmann Category and Strong Category. Illinois J. Math. 11(1967), 417–427.
[16] B. Gray, Spaces of the same n-type, for all n. Topology 5(1966), 241–243.
[17] S. Halperin, Lectures on minimal models. Mém. Soc. Math France (N.S.), 9–10, 1983.
[18] S. Halperin and J.-M. Lemaire, Notions of Category in Differential Algebra. Springer Lecture Notes

in Mathematics 1318(1988), 138–154.
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